U.P.B. Sci. Bull., Series C, Vol. 82, Iss. 3, 2020 ISSN 2286-3540

RESEARCH ON CREDIBLE SOFTWARE TEST CASE
GENERATION BASED ON BEHAVIOR DECLARATION

Wei ZHUO", Xuejun YU?

In the software testing process, in order to complete the verification of
software credibility and improve the efficiency of software testing, this paper
proposes a software testing method that combines software credibility with software
test case automatic generation technology. First, a credible behavior declaration for
the software under test is generated as a standard for verifying software credibility
and algorithm initial values. Then, in the selection of test case generation algorithm,
this paper proposes an improved particle swarm optimization algorithm
(DACSPSO). The experimental results show that the automatic generation model of
credible test cases based on behavior declaration can verify the credibility of the
software, and at the same time improve the efficiency of software testing.

Keywords: software test; software credibility; behavior declaration; particle
swarm optimization

1. Introduction

Regarding the research on software credibility, Academician Shen
Changxiang of China gave a detailed introduction and analysis of trusted
computing in the literature [1]. Guo and others have built a credible framework
for testing hardware and software that enables credibility verification of third-
party vendor projects [2]. Anurag and others conducted credibility studies on
crowdsourcing software development and analyzed the factors and risks that can
impact the credibility of crowdsourced software [3]. Wu and others have proposed
a framework for assessing the credibility of cloud services, and their decision
support can be customized [4]. At the same time, because the scale and
complexity of software systems are gradually increasing, we need an efficient and
fast testing technology [5]. In the research of automatic generation of test cases,
Particle Swarm Optimization (PSO) has the characteristics of fast convergence
and strong versatility compared with most evolutionary optimization algorithms
[6][7]. However, in practical applications, PSO has problems such as lack of
diversity of particles in the late stage of the algorithm, reduced search accuracy,

1 * MA. Eng., Faculty of Information Technology, Beijing University of Technology, Beijing,
correspondng author, e-mail: 18810819561@163.com

2 A.P., Faculty of Information Technology, Beijing University of Technology, Beijing, e-mail:
yuxuejun@bjut.edu.cn

62 Wei Zhuo, Xuejun Yu

and poor local search ability. In view of the shortcomings of particle swarm
optimization, Micael Couceiro and others introduced the fractional algorithm into
the particle swarm optimization algorithm, which improved the local search
ability of the algorithm [8]. Li and others made precise adjustments to the fitness
value of the particle swarm optimization algorithm, which improved the
convergence efficiency of the algorithm [9]. Zheng and others introduced
improved genetic algorithms in the particle swarm optimization algorithm, which
enabled the population to obtain the characteristics of genetic variation and
enhanced the performance of the algorithm [10]. Through the above analysis, this
paper proposes an automatic generation method of test cases based on credible
behavior declaration.

2. Test case generation model based on behavior declaration

The test case automatic generation model proposed in this study mainly
includes three parts, namely test environment construction module based on
behavior declaration, algorithm implementation module and test run module, as
shown in Fig. 1.

Program control

Static analysis of flow chart —
the program progm

Acquisition of credible l
statement declaration \
Analysis of behavior declaration ﬁlcsl

P s memEm———— 1
| construction module of test } l
4 environment based !
' chavi sclarati . . Generate driver
i onbehavior declaration | Select coverage path Select test path ¢ i
L S] Processing of variables

Processing of /O

l Instrumentation of
| Construction of test environment branch functions

e DACSPSO

feeeeeeesemaaamaa
! DACSPSO
1 implementation module

Initialize the search space

w Return

fitness

k

Update particle speed and
position based on adaptive strategy

I

Calculate the fitness value of particle

value

| Pile module

| Pile module

l Update population according to
chaotic optimization strategy

Update individual extremum
and global extremum

Y

Is the termination
condition met?

Is the convergence
condition met?

P Y Output test
End case set

Fig. 1. Automatic generation model of test cases based on behavior declaration

Research on credible software test case generation based on behavior declaration 63

3. Construct a test environment based on behavior declaration

3.1 Credible behavior declaration

A credible behavior declaration describes a collection of all behaviors
related to credibility in the software, describing only the expected behavior of the
software. The behavior of the software can be described more accurately and more
fully through the declaration of credible behavior.

Credible behavior declaration can be defined in a variety of styles for
different types and platforms of software. However, the behavior in all styles
should include the action name, unique ID, action content, trigger condition,
constraint parameters, expected results, and security level. The generic credible
behavior declaration structure is shown in Fig. 2 (a).

Behavior declaration

Functional module

Rule entry
Operation name ‘ | Unique identifier
Operational content Triggered condition
Constraint parameter Expected result

Security Level

Rule entry

Functional module

Fig. 2 (a) Structure of a generic credible behavior declaration (a)

This paper defines the generic credible behavior declaration by means of
XML, as shown in Fig. 2 (b).

64 Wei Zhuo, Xuejun Yu

Generic behavior declaration template

<FunctionalModulel> //Function module 1
<Behaviorl> //Rule entry 1
<Behaviorltem 1=***</Behaviorltem 1> /Rule sub-item 1
<Behaviorltem2=>***</Behaviorltem2=> //Rule sub-item 2

</Behaviorl>

<Behavior2= //Rule entry 2
<Behaviorltem3>***</Behaviorltem3> /Rule sub-item 3
<Behaviorltemd=***</Behaviorltem4: //Rule sub-item 4

</FunctionalModule1>
<FunctionalModule2> //Function module 2

</FunctionalModule2>

Fig. 2 (b). Structure of a generic credible behavior declaration
3.2 Analysis of behavior declaration

In a behavior declaration, a rule entry represents a constraint on a specific
operation, and each rule entry has a security level rule subkey. Validating the
software through behavior declaration file ensures that the initial values of the
generated algorithms are credible. Through the definition of the behavior
declaration, the logical structure analysis of the path of the program under test,
you can get the path structure based on the behavior declaration, as shown in Fig.

oo
D@

Fig. 3. Schematic diagram of the path structure based on the behavior declaration

Research on credible software test case generation based on behavior declaration 65

In Fig. 3, 1, 2, ..., S, N represent all path nodes in the program under test,
each node has a corresponding rule entry, and the direction of path execution is
determined according to the content defined in the rule entry.

3.3 Equivalence class

After obtaining the path structure based on the behavior declaration, in
order to make the designed test case cover all the paths, the equivalence class is
introduced as a parameter filling. This paper implements the equivalence class
generation algorithm, which is based on the predicate expression of the branch
node and generates the equivalence class through the key sentence coverage
criterion. Where b is the branch predicate, b; is the key sentence, R, is the
predicate clause set, K, is the true value set, and Ej, is the generated equivalence
class set. The specific algorithm steps are shown in Algorithm 1.

Algorithm 1: Equivalence class generation algorithm
Begin
Input: Ry, TK,,, FK},
Set: TK, = {k|k € K,(b(k) = True)}, FK, = {k|k € K, (b(k) = False)}
For (b in predicate set R})
For (k, intruth set TK,,, k, in truth set FK})
if (b; € R, N (b; # b;) N b(ky) # b(k,))
ifk, € Ep
k, add to E,
ifk, ¢ E,
k, add to E},
Output: E,
End

According to the above algorithm, taking the geolocation operation as an
example, an equivalence class of the path node can be obtained, as shown in Table
1.

Table 1
Analysis results of the path equivalence class
Effective invalid
Number Rule entry Security Level equivalence .

class equivalence class
1 LocationAccuracy | Suspicious behavior -- 100 meters
2 LocationFrequency Safe behavior No limit --
3 LocationCoding Dangerous behavior -- Unable to locate

66 Wei Zhuo, Xuejun Yu

3.4 Fitness function and program instrumentation

The fitness function is the only interface that connects the particle swarm
algorithm to the actual problem [11]. Since the branches in the program under test
have different coverage difficulty and different test priorities, the branch weight
w; 1S introduced. The fitness function is obtained by the formula (1).

fitness = 1/[0.1 + XN, w;f()]? (1)

In the formula (1), N is the total number of branches, f(i) is the branch
distance function of the i-th branch, and w; is the weight of the i-th branch, and
YN w; = 1. The value of branch weight w; is obtained by branch nesting and
branch predicate. First, the implementation of branch coverage becomes more and
more difficult as the branch nesting level increases, so the branch nesting weight
w1; is introduced. Let [; be the level of the current branch, and [,,,, and L,,;, be
the largest and smallest branch levels in the tested program. Then use the formula

Li=lmin
wl; = 0.417 - etmax=tmin to obtain the branch nesting weight. Then, at the branch
node, several conditions are connected as branch predicates by the relational
operators. Since the weights of the operators are different, the branch predicate
weight w2; is introduced. Let the weight of the basic condition be w,. If the
current relational operator is “and”, the predicate weight acquisition formula is

w2; = / N, w,. If the current relational operator is “or”, the predicate weight

acquisition formula is w2; = min{w,}. Finally, the branch weight of the branch i
is calculated by the formula w; = 0.5 - (w1; + w2;).

Program instrumentation refers to the collection of dynamic information
about program execution by inserting branch functions into the program under test
[12]. To perform the instrumentation operation, you first need to specify the
information to be obtained and select the insertion position of the branch function.
Then insert the branch function in front of the selected branch judgment
statement. Finally, insert the fitness function of the current target path into the end
of the program.

4. Improvement of test case generation algorithm
4.1 Basic particle swarm optimization

The running process of particle swarm optimization algorithm is as
follows, the corresponding flowchart is shown in Fig. 4.

(1) Initialize the particle swarm optimization algorithm to randomly
initialize the speed and position of each particle in the population;

Research on credible software test case generation based on behavior declaration 67

(2) After the initialization is successful, the fitness of the particles, the
individual optimal value L; and the global optimal value L, in the population are
calculated;

(3) Calculate the latest speed and position of the particles through the
speed and position update formula;

(4) Adjust according to the fitness value of the particles. If the fitness
value of the selected particle is better than the individual optimal value L; in the
population, the fitness value of the particle is assigned to L;. If the fitness value of
the selected particle is better than the global optimal value L, of the population,
then the fitness value of the particle is assigned to Lg;

(5) If the number of iterations of the population has reached the maximum
value or the optimal value found by the population meets the requirements, step
(6) is performed, otherwise step (3) is performed,;

(6) End the algorithm and output the global optimal value of the

population at this time.

Random initialization
particle swarm

Calculate the fitness of the particles,
the individual optimal value L; and the
global optimal value Lg in the population

|

Update the particle's latest
speed and position by formula

l

Adjust individual optimal value L; and global optimal
value L according to the fitness value of particles

Determine whether
the algorithm i
condition is met

Fig. 4. Basic particle swarm optimization flowchart
4.2 Improved particle swarm optimization

For the automatic generation of test cases, although particle swarm
optimization has advantages over other optimization algorithms, such as fast
convergence and strong versatility. However, particle swarm optimization also
has some shortcomings, such as lack of diversity in the late stage of the algorithm,
reduced search accuracy, and poor local search capabilities. In view of the
shortcomings of particle swarm optimization, this article uses an improved

68 Wei Zhuo, Xuejun Yu

version of particle swarm optimization algorithm | proposed before, which is
based on dynamic adaptive and chaotic search, see the literature [13] for details.
The specific flow of the algorithm is shown in the figure below:

Start

Algorithm initialization, such as population size N , algorithm allows
maximum number of iterations Tj,q , search space dimension D.

]

Chaos initializes the velocity and position of particles.

The inertia weight factor, acceleration coefficient, and equilibrium point are calculated by
the dynamic adaptive strategy. Then update the speed and position of the particles.

]

Calculate the fitness value of the particle and update the individual
extreme value L and the global extreme value Lg.

}

Is there a premature convergence?

According to the fitness value, select the excellent particles and introduce
the chaotic perturbation strategy. Get the best solution ;.

i

Find the particles with the lowest fitness values in the population,
replace them with C7; , and update the global extremum Lg.

v

Reach the maximum number of iterations?

Y

Output global optimal solution

End

Fig. 5. Improved particle swarm optimization flowchart

5. Experiment and result analysis
5.1 Experimental purpose and experimental steps

Experimental purpose: In order to verify the credible test case generation
model proposed in this paper, the efficiency of software test can be improved
while verifying the credibility of the software. In this paper, the iOS application
software is used as the program to be tested, and the general function of the tested
software is selected as an example to verify the model.

Research on credible software test case generation based on behavior declaration 69

Experimental steps: First step, upload the test program source file and
behavior declaration file to the model proposed in this paper. The model analyzes
the sequence of program tuning through the behavior declaration file to obtain a
collection of sensitive behaviors of each functional module. Then check the
behavior name, trigger condition and constraint indicator of the current behavior
of each function. Then, in order for the designed test case to cover all the paths,
the corresponding equivalence class is populated as a parameter into the current
behavior sub-item. Finally, the improved particle swarm algorithm is used to
generate the credible test cases automatically, and the test cases are analyzed to
obtain experimental conclusions.

5.2 Experimental results and experimental analysis

By analyzing the program under test and selecting its various functional
modules as objects to generate credible test cases, the relevant test cases are
generated by the model proposed in this paper, as shown below.

Table 2
Test case generation results of image reading and writing function
Serial . File A
number File Type Number File Size expected results actual results
001 The mc_>s_t ac_curate 3 6.7 MB Not creqmle ConS|sten'_[with
positioning behavior expectations
002 _ Range of 1 18.2 MB Not creghble ConS|sten'_[with
kilometer error behavior expectations
003 The mc_)s_t ac_curate 1 52 KB Not creghble ConS|sten'_[with
positioning behavior expectations
004 Range of hundred 1 21 MB Credlple ConS|sten'_[with
meters error behavior expectations
Table 3
Test case generation results for geolocation
Serial Location Location Location expected
. actual results
number Accuracy Frequency Coding results
001 The most accurate 400 Unable to Not credible Consistent with
positioning meters locate behavior expectations
Range of L. Positioning Not credible Consistent with
002 . No limit - .
kilometer error successful behavior expectations
The most accurate - Positioning Credible Consistent with
003 o No limit . .
positioning successful behavior expectations
Range of hundred Positioning Not credible | Consistent with
004 50 meters - .
meters error successful behavior expectations

It has been verified by Table 2 and Table 3 that the credible test case
automatic generation model proposed in this paper can detect the credibility of the
tested software. At the same time, in order to verify that the model improves the
efficiency of test case generation, this paper introduces the basic particle swarm

70 Wei Zhuo, Xuejun Yu

optimization algorithm and genetic algorithm as the comparison algorithm of
DACSPSO, and carries out related experiments. The three algorithms are
compared and analyzed mainly from the average iteration number of the algorithm
and the average iteration time. Taking the test geolocation function as an example,
the experimental results obtained are shown in Table 4.

Table 4
Experimental results of the three algorithms
Number Number Average number of iterations Average iteration time (ms)
of of
population | executions DACSPSO PSO GA DACSPSO PSO GA

10 70.2 113.7 208.3 5.36 6.82 11.43

100 20 73.6 105.8 215.6 5.17 7.64 10.78
30 65.5 102.6 210.4 4.85 7.23 12.36
10 64.1 123.5 193.2 5.62 7.51 10.82

150 20 75.6 107.3 204.5 5.39 7.82 11.71
30 72.9 103.1 208.9 4.52 6.94 11.16
10 74.5 116.3 201.4 5.13 7.47 10.27

200 20 66.2 112.9 214.1 5.72 7.81 11.39
30 71.3 124.2 203.7 5.28 7.25 11.53

From Table 4, it can be found that the average number of iterations and the
average iteration time of the DACSPSO-based test case generation model are less
than PSO and GA when the number of populations and the number of algorithm
executions are the same, which indicates the search speed of DACSPSO is more
excellent. At the same time, compared with the comparison algorithm, DACSPSO
has stronger stability because of its effective regulation ability.

Finally, in order to fully prove the efficiency of DASPSO here, some
common functions are selected for performance testing. The advantages and
disadvantages of the algorithm can be judged by the process of searching the
extremum of each function. The control algorithms selected in the experiment are
DNSPSO [14], OLPSO [15], and PSO. The population size M is 20, the particle
dimension D is 30, and the maximum iteration number of the algorithm is 1500.
Perform 100 searches and calculate the average and standard deviation of the
optimal fitness value. The specific experimental results are shown in Table 5.

Table 5
Compare search performance of various algorithms

Test _
function Sphere Ackley Rosenbrock Rastrigrin
Average fitness 2.41E-64 5.91E-02 2.57E+04 6.42E+03
PSO Standard 1.72E-59 382E-01 | L74E405 | 2.73E+04

deviation

OLPSO Average fitness 6.25E-69 7.13E-09 5.23E+02 8.25E+02
Standard 9.74E-72 5.36E-07 8.41E+03 3.17E+02

Research on credible software test case generation based on behavior declaration 71

deviation
Average fitness 5.24E-75 3.14E-14 7.36E+02 2.47E+00
DNSPSO Standard 3.82E-72 7.45E-15 2.32E+02 1.85E+00
deviation
Average fitness | 8.39E-113 4.92E-18 3.27E+00 5.63E-04
DACSPSO
Standard 6.15E-108 3.42E-17 5.82E+01 1.57E-02
deviation

It can be concluded from Table 5 that the PSO algorithm has the largest
average fitness value, OLPSO and DNSPSO are smaller than PSO, and the
average value of DASPSO is the smallest, indicating that the convergence
accuracy of DASPSO is the highest. At the same time, the standard deviation of
DASPSO is the smallest among these algorithms, indicating that the stability and
robustness of the algorithm are optimal. In summary, the proposed automatic
generation model of credible test cases based on behavior declaration can verify
the credibility of the software and improve the efficiency of software testing.

6. Conclusions

For software testing, this paper proposes an automatic generation model of
test case based on credible behavior declaration. First, generate a credible
behavior declaration for the software under test and build a test environment
based on the behavior declaration. Then the test case generation algorithm is
improved, and finally the test case generation model is realized. The experimental
results show that the model can improve the testing efficiency of the software
while verifying the credibility of the software.

Acknowledgement

The paper was supported by National Key Research and Development
Plan of China (2017YFF0211801).

REFERENCES

[1]. C. X. Shen, To create a positive cyberspace by safeguarding network security with Active
Immune Trusted Computing 3.0[J]. Information Security Research, vol. 4, no. 4, 2018, pp.
282-302.

[2]. X. Guo, R. G. Dutta, Y. Jin, Eliminating the hardware-software boundary: a proof-carrying
approach for trust evaluation on computer systems[J]. IEEE Transactions on Information
Forensics and Security, vol. 12, no. 2, 2017, pp. 405-417.

[3]. A. Dwarakanath, N.C. Shrikanth, K. Abhinav, A. Kass, Trustworthiness in enterprise
crowdsourcing: A taxonomy & evidence from data. In: Proc. of the ICSE 2016. Companion,
2016, pp. 41-50.

72 Wei Zhuo, Xuejun Yu

[4]. Z.P. Wu, Y. Zhou, Customized cloud service trustworthiness evaluation and comparison using
fuzzy neural networks. In: Proc. of the IEEE 40th Annual Computer Software and
Applications Conf. (COMPSAC 2016), 2016, pp. 433-442.

[5]. L. H. Lian, Research and implementation of software automatic test[J]. IOP Conference
Series: Earth and Environmental Science, vol. 69, no. 1, 2017.

[6]. J. Kennedy, R. C. Eberhart, Particle swarm optimization[C]. Proceedings of IEEE
International Conference on Neural Networks. Piscataway: IEEE Press, 1995, pp. 1492-
1498.

[7]. Z. H. Zhan, J. Zhang, Y. Li, S. H. Chung, Adaptive particle swarm optimization. IEEE
Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 39, no. 6, 2009,
pp. 1362-1381.

[8]. M. Couceiro, S. Sicasundaram, Novel fractional order particle swarm optimization[J]. Applied
Mathematics and Computation, 2016, pp. 36-54.

[9]. S. F. Li, C. Y. Cheng, Particle Swarm Optimization with Fitness Adjustment Parameters[J].
Computers & Industrial Engineering, 2017, pp. 831-841.

[10]. Y. Zheng, Y. Liu, W. Lu, et al. A hybrid PSO-GA method for composing heterogeneous
groups in collaborative learning[C]// International Conference on Computer Science &
Education. IEEE, 2016.

[11]. B.Y. Cheng, H.Y. Lu, Y. Huang, K.B. Xu, An adaptive excellent coefficient particle swarm
optimization algorithm for solving TSP[J]. Journal of Computer Applications, vol. 37, no.
03, 2017, pp. 750-754.

[12]. A. G. Li, Y. L. Zhang, Automatic Generating All-Path Test Data of a Program Based on
PSO[C]//World Congress on Software Engineering. Piscataway, NJ: IEEE Press, 2009, pp.
189-193.

[13]. Wei Zhuo, Xuejun Yu, A Particle Swarm Optimization Algorithm Based on Dynamic
Adaptive and Chaotic Search[C]. IOP Conf. Series: Materials Science and Engineering 612
(2019) 052043 d0i:10.1088/1757-899X/612/5/052043.

[14]. Wang H, Sun H, Li C H, et al. Diversity enhanced particle swarm optimization with
neighborhood search[J]. Information Sciences, 2013, 223(2):119-135.

[15]. Zhan Z H, Li Y, Shi Y H, Orthogonal learning particle swarm optimization[J]. IEEE Trans on
Evol Comput, 2011, 15(6):832-847.

