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THE CLASSIFICATION OF RINGS WITH GENUS TWO
CLASS OF GRAPHS

T. Asir1 and K. Mano2

For any commutative ring R, there is a annihilator graph, de-

noted AG(R), in which the vertices are the nonzero zero-divisors of R,

and two distinct vertices x and y are joined by an edge if and only if

ann(xy) 6= ann(x) ∪ ann(y) where ann(x) = {z ∈ R : xz = 0}. This

paper investigates the genus properties of AG(R). In particular, we de-

termine all isomorphism classes of commutative rings with identity whose

annihilator graph has genus two.

Keywords: Zero divisor of a ring, Annihilator of a ring, Embedding of a
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1. Introduction

The study of the interrelationship between algebra and graph theory by
associating a graph to a ring was initiated, in 1988, by Beck in [9], who devel-
oped the notion of a zero-divisor graph of a commutative ring with identity.
In Beck’s definition the vertices of the graph are the elements of the ring and
two distinct vertices x and y are adjacent if and only if xy = 0. Later, An-
derson and Livingston (1999) slightly modified this idea, considering only the
non-zero zero divisors of ring as vertices of the graph with the same adjacency
condition. Redmond (2001) extended this notion of zero-divisor graph to non-
commutative rings. Since then, a number of authors have studied various forms
of zero-divisor graphs associated to rings and other algebraic structures. For
more details on zero divisor graph, readers may refer to the survey article [2].

The present paper deals with the concept of annihilator graph of a ring
and its genus. The annihilator graph is a another variant to the zero divisor
graph, which was introduced by Badawi in [8]. Let R be a commutative ring
with identity and Z(R) its set of zero-divisors. For x ∈ Z(R), ann(x) =
{z ∈ R : xz = 0}. The annihilator graph of R, denoted by AG(R), is the
undirected simple graph with vertex set Z(R)∗ = Z(R) \ {0} and two distinct
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vertices x and y are adjacent if and only if ann(xy) 6= ann(x)∪ann(y). Several
properties of annihilator graphs of different general classes of rings are studied
in [8], [13], [15] and [19]. It is worth to mention that the zero-divisor graph
is a subgraph of the annihilator graph AG(R). In [8], it has been shown that
for any reduced ring R that is not an integral domain, AG(R) is complete if
and only if zero-divisor graph is complete if and only if R is ring-isomorphic
to Z2 × Z2.

The genus of a graph G, denoted by γ(G), is the smallest nonnegative
integer ℓ such that the graph G can be embedded on the surface obtained by
attaching ℓ handles to a sphere. The graphs of genus 0, 1 and 2 are called
planar, toroidal and double toroidal graphs respectively. A minor of G is a
graph obtained from G by contracting edges in G or deleting edges and isolated
vertices in G. Also if G′ is a minor of G, then γ(G′) ≤ γ(G). For xy ∈ E(G),
we denote the contracted edge by the vertex [x, y]. For details on the notion
of embedding of graphs in a surface, we refer to White [20].

Over past decades, the topological structures were widely investigated.
The planar zero-divisor graphs were first explicitly characterized by Smith in
[17], the characterization of commutative rings with genus one zero-divisor
graph was obtained by Chiang-Hsieh et al. in [12] and Local rings with genus
two zero-divisor graph were characterized by Bloomfied et al. in [10]. Also
many research articles have been published on the genus of graphs constructed
out of rings. For instant, the study on genus of the total graph of a com-
mutative ring was initiated by Maimani et al. in [14] and they classified all
commutative rings with genus one total graphs. Subsequently, Tamizh Chel-
vam et al. in [18], characterized all commutative Artinian rings whose total
graph has genus two. Also Asir et al. in [4], determined all isomorphic classes
of commutative Artinian rings whose ideal based total graph has genus at
most two. Further Azimi et al. [7] characterized all commutative rings whose
Jacobson graphs are planar and Amraei et al. [1] classified all commutative
rings with genus one Jacobson graphs. The genus two Jacobson graphs are
classified by Asir in [3]. Apart from this, Asir et al. in [5, 6] determined all
commutative Artinian rings whose generalized unit and unitary Cayley graphs
have genus either one or two.

The purpose of this paper is to explore the question of embedding a
annihilator graph on higher genus, the double torus in particular. The genus
properties of annihilator graph was independently studied by Tamizh Chelvam
et al. in [19] and Nikmehr et al. in [15]. In particular, they have characterized
all commutative rings whose annihilator graph has genus either zero or one.
Motivated by these works, we set up our goal to classify all commutative
rings with genus two annihilator graphs. Throughout the paper, R will be a
commutative ring with identity 1 6= 0. We denote the cardinality of the set A
by |A| and the set of all non zero elements of A by A∗. Also R× and Nil(R)
denote the set of all unit elements and nilpotent elements of R, respectively.
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2. Properties of Annihilator graphs

In this section, we state some of the basic properties of the annihilator
graphs that will be used in the proof of the main result. Especially, we state
the results regarding the planar and toroidal annihilator graphs.

The first result is due to Badawi which deals with the subgraph induced
by the set of nilpotent elements of R.

Lemma 2.1. [8, Theorem 3.10] Let R be a non-reduced commutative ring with
|Nil(R)| ≥ 2 and let AGN(R) be the (induced) subgraph of AG(R) with vertices
Nil(R)∗. Then AGN(R) is complete.

The next result is used to identify the adjacency between the vertices of
the annihilator graph. Note that a local ring is a ring with a unique maximal
ideal.

Lemma 2.2. [13, Lemma 2.11] If R is non-local ring with R ∼= R1×R2×· · ·×
Rn, where each Ri are local ring. Then any two distinct elements which has
the same number of non-zero entries but not identical are adjacent in AG(R).

The following theorem provides all commutative rings whose annihilator
graph is planar.

Theorem 2.1. [19, Theorems 14,15] [15, Corollary 10] Let R be a commutative
ring with identity and let R ∼= R1 × . . . × Rn where each Ri is a local. Then
AG(R) is planar if and only if one of the following conditions hold

(i) For n = 1, R is isomorphic to one of the following rings

Z4, Z2[x]/(x2), Z9, Z3[x]/(x2), Z8, Z2[x]/(x3), Z4[x]/(x2 − 2, x3),

Z2[x, y]/(x2, xy, y2), Z4[x]/(2x, x2), F4[x]/(x2), Z4[x]/(x2 + x + 1),

Z25, Z5[x]/(x2);

(ii) For n = 2, R is isomorphic to one of the following rings

Z2 × Fpn , Z3 × Zpn , Z2 × Z4, Z2 × Z2[x]/(x2);

(iii) For n = 3, R ∼= Z2 × Z2 × Z2.

The next theorem gives us all commutative rings with toroidal annihilator
graphs.

Theorem 2.2. [19, Theorems 16,17] [15, Theorems 12,15] Let R be a commu-
tative ring with identity and let R ∼= R1 × . . . × Rn where each Ri is a local.
Then AG(R) is toroidal if and only if
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(i) For n = 1, R is isomorphic to one of the following 22 rings

Z49, Z7[x]/(x2), Z16, Z2[x]/(x4), Z4[x]/(x2 − 2, x4), Z4[x]/(x3 − 2, x4),

Z4[x]/(x3 + x2 − 2, x4), Z2[x, y]/(x3, xy, y2 − x2), Z4[x]/(x3, x2 − 2x),

Z8[x]/(x2 − 4, 2x), Z4[x, y]/(x3, x2 − 2, xy, y2 − 2, y3),

Z4[x, y]/(x2, y2, xy − 2), Z4[x]/(x2), Z2[x, y]/(x2, y2), Z2[x, y]/(x3, xy, y2),

Z4[x]/(x3, 2x), Z4[x, y]/(x3, x2 − 2, xy, y2), Z8[x]/(x2, 2x), F8[x]/(x2),

Z4[x]/(x3 + x + 1), Z4[x, y]/(2x, 2y, x2, xy, y2), Z2[x, y, z]/(x, y, z)2;

(ii) For n = 2, R is isomorphic to one of the following 6 rings

Z5 × Z5, F4 × Z7, F4 × F4, F4 × Z5, Z4 × Z3, Z2[x]/(x2) × Z3;

(iii) For n = 3, R ∼= Z2 × Z2 × Z3.

3. Characterization of genus two annihilator graphs

The main result of this paper is Theorem 3.1. There we classifying all
commutative rings whose annihilator graphs have genus two. For the conve-
nience of the reader, we state without proof a few known results in the form
of propositions which will be used in the proof of the main result.

Proposition 3.1. [20] Let n ≥ 3 be positive integers and for real number
x, ⌈x⌉ is the least integer that is greater than or equal to x. Then γ(Kn) =
⌈

(n−3)(n−4)
12

⌉

.

Proposition 3.2. [20] Let m,n be positive integers and for real number x,
⌈x⌉ is the least integer that is greater than or equal to x. Then γ(Km,n) =
⌈

(m−2)(n−2)
4

⌉

if m,n ≥ 2.

Proposition 3.3. [11] If G is a simple bipartite graph with n vertices and e
edges, then

γ(G) ≥
e − 2n + 4

4
.

Proposition 3.4. [21, Proposition 2.1] If G is a graph with n vertices and
genus γ, then

δ(G) ≤ 6 +
12γ − 12

n
.

We are now in the position to provides all commutative rings whose
annihilator graph is double toroidal.

Theorem 3.1. Let R be a commutative ring with identity. Then the genus of
annihilator graph is two if and only if the following conditions hold.
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1. If R is a local, then R is isomorphic to one of the following 8 rings

Z27, Z9[x]/(3x, x2 − 3), Z9[x]/(3x, x2 − 6), Z9[x]/(3, x)2,

Z9[x]/(x2 + 1), F9[x]/(x2), Z3[x]/(x3), Z3[x, y]/(x, y)2.

2. If R is not a local, then R is isomorphic to one of the following 10 rings

Z2 × Z9, Z2 × Z3[x]/(x2), Z4 × F4, Z2[x]/(x2) × F4, Z4 × Z5,

Z2[x]/(x2) × Z5, F4 × F8, F4 × F9, F4 × Z11, Z5 × Z7.

Proof. Assume that γ(AG(R)) = 2.
(1) Let (R,m) be a local ring with maximal ideal m. Then by Lemma 2.1,

the subgraph induced by the vertices Nil(R)∗ in AG(R) is complete. Since R
is local, Z(R) = Nil(R) and so AG(R) is complete. Thus by Proposition 3.1,
we have γ(AG(R)) = 2 if and only if |Z(R)∗| = 8 i.e., |m| = 9. There are eight
local rings with size of the maximal ideal is 9 (refer [16]). They are

Z27, Z9[x]/(3x, x2 − 3), Z9[x]/(3x, x2 − 6), Z9[x]/(3, x)2,

Z3[x]/(x3), Z3[x, y]/(x, y)2, Z9[x]/(x2 + 1), F9[x]/(x2).

(2) Assume that R is not a local ring and written as R ∼= R1×R2×· · ·×
Rn, where each Ri is a local with maximal ideal mi for i = 1, . . . , n.

For 1 ≤ i < j ≤ n, let Aij = {(x1, x2, . . . , xn) ∈ R : xi = 0, xj =
0 and xk 6= 0 for all remaining k’s}. Let A be the set consists of exactly one
element form each Aij for 1 ≤ i < j ≤ n. Now by Lemma 2.2, every element in
A is adjacent to each other. Therefore the subgraph induced by A in AG(R)
is complete. If n ≥ 5, we have |A| ≥ 10 so that AG(R) would contain a copy
of complete subgraph K10. That is, by Proposition 3.1, γ(AG(R)) ≥ 3, a
contradiction. Hence n ≤ 4.

Case (i) Suppose n = 4. Without loss of generality, let us assume that
|Ri| ≤ |Rj| for all 1 ≤ i < j ≤ 4. Let V1 = {0} × {1} × R3 × R4 and
V2 = {1} × {0} × R3 × R4. Then every vertex in V1 is adjacent to V2 and so
AG(R) contains a complete bipartite graph K|V1|,|V2|. If |R4| ≥ 3, then |Vi| ≥ 6
for i = 1, 2 so that, by Proposition 3.2, γ(AG(R)) ≥ 3, a contradiction. Hence
Ri

∼= Z2 for i = 1, 2, 3, 4. Here |V (AG(R))| = 14 and the minimum degree of
AG(R) is seven, which contradicts the fact given in Proposition 3.4.

Case (ii) Suppose n = 3. Let us take |R1| ≤ |R2| ≤ |R3|. Note that
the vertex subsets V1 = {0} × {1} × R3 and V2 = {1} × {0} × R3 contains
a complete bipartite graph K|V1|,|V2|. If |R3| ≥ 5, then |Vi| ≥ 5 for i = 1, 2,
we have AG(R) would contains a copy of K5,5 so that γ(AG(R)) ≥ 3. Hence
|R3| ≤ 4. Also every vertex in V3 = {1}×{0}×R3 is adjacent to all the vertex
of V4 = {0}×R∗

2×R∗
3. So if |R2| = 4, then K4,9 is a subgraph of AG(R) so that

γ(AG(R)) ≥ 3. Hence |R2| ≤ 3. Further the vertex subsets V5 = {0}×R∗
2×R∗

3

and V6 = {R∗
1 × {0} × R∗

3} ∪ {R∗
1 × R∗

2 × {0}} contains K|V5|,|V6|. Therefore if
|R1| ≥ 3, then AG(R) would contain a copy of K4,8 so that γ(AG(R)) ≥ 3.
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Thus R1
∼= Z2 and we have the following possible candidates for R:

Z2 × Z2 × Z2, Z2 × Z2 × Z3, Z2 × Z2 × Z4,

Z2 × Z2 × Z2[x]/(x2), Z2 × Z2 × F4, Z2 × Z3 × Z3,

Z2 × Z3 × Z4, Z2 × Z3 × Z2[x]/(x2), Z2 × Z3 × F4.

Note that by Theorem 2.1 and Theorem 2.2, we have AG(Z2 ×Z2 ×Z2)
is planar and AG(Z2 × Z2 × Z3) is toroidal.

Let R ∼= Z2×Z2×Z4. Note that the vertex (1, 0, 1) is adjacent to (0, 1, 0)
and (0, 1, 3) is adjacent to (1, 0, 3) in AG(R). We may now contract the (1, 0, 1)
to (0, 1, 0) and (0, 1, 3) to (1, 0, 3) along the edge between them. Further de-
note the contracted edges as [(1, 0, 1), (0, 1, 0)], [(0, 1, 3), (1, 0, 3)] and call the
resulting minor subgraph of AG(R) as H. Note that in H, every vertex in the
set {(0, 0, 1), (0, 0, 2), (0, 0, 3), [(1, 0, 1), (0, 1, 0)], [(0, 1, 3), (1, 0, 3)]} is adjacent
to each vertex of {(1, 0, 0), (1, 1, 2), (1, 1, 0), (1, 0, 2), (0, 1, 2)} and so K5,5 is a
subgraph of H. Thus γ(AG(R)) ≥ 3. Moreover one may note that AG(Z2 ×
Z2×Z2[x]/(x2)) ∼= AG(Z2×Z2×Z4) and so γ(AG(Z2×Z2×Z2[x]/(x2))) ≥ 3.

Consider R ∼= Z2 × Z2 × F4. Let F4 = {0, 1, ω, ω2} and letting X =
{(0, 1, 0), (0, 1, 1), (0, 1, ω), (0, 1, ω2)} and Y = {(1, 1, 0), (1, 0, 0), (1, 0, 1),
(1, 0, ω), (1, 0, ω2)}. Then every vertex in X is adjacent to all the vertices in Y
except the edge between (0, 1, 0) and (1, 1, 0) in AG(R). Therefore K4,5 \ e is
a subgraph of AG(R), call it as G′. In other way, the subgraph G′ is equiva-
lent to AG(R) \ {v1, v2, v3, e1, e2, e3} where vk = (0, 0, ωk−1) and ek is the edge
between (1, 1, 0) and (1, 0, ωk−1) for k = 1, 2, 3. By Proposition 3.3, γ(G′) = 2
and by Euler characteristic formula, G′ has 8 faces, say F ′

1, . . . , F
′
8. Assume

that |F ′
1| ≤ . . . ≤ |F ′

8|. Let f ′ and f ′
i be the number of faces and the number

of i-gons in G′ respectively. Since G′ is a bipartite graph with 9 vertices, i = 4
or 6 or 8. Then f ′ = f ′

4 + f ′
6 + f ′

8 and 2|E(G′)| = 4f ′
4 + 6f ′

6 + 8f ′
8. By solving

the two equations, we get that either f ′
4 = 5 and f ′

6 = 3 or f ′
4 = 6, f ′

6 = 1 and
f ′

8 = 1. Here we denote any embedding of G′ in S2 as E ′.
Suppose AG(R) = 2. Then one can recover the embedding of AG(R) on

double torus S2 by inserting the vertices v1, v2, v3 with all its incident edges
and the edges e1, e2, e3 into the representation corresponding to F ′

1, · · · , F ′
8.

First let us insert the vertices vk in the embedding of G′ for k = 1, 2, 3. Here
note that the neighborhood set NAG(R)(vk) = {(1, 1, 0), (0, 1, 0), (1, 0, 0)} for
all k. Since the vertex (1, 1, 0) is not adjacent to both (0, 1, 0) and (1, 0, 0)
in G′, there is no 4-gon having all the three vertices of NAG(R)(vk). Further
(0, 1, 0) is adjacent to (1, 0, 0) in G′ and any edge occur exactly in two faces of
an embedding implies that at most two i-gons (i = 6 or 8) of E ′, say F ′

7 and
F ′

8, have all the vertices of NAG(R)(vk). Now one can able to insert v1, v2, v3

along with its edges inside F ′
7 and F ′

8 without any crossing in E ′, refer Figure 1.
Next we try to insert the edges e1, e2 and e3. Here one end of all the three ek’s
is (1, 1, 0). Since the degree of (1, 1, 0) in G′ is three, the number of faces in E ′

containing (1, 1, 0) is three. Let F ′
j (1 ≤ j ≤ 6) be the third face containing the
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vertex (1, 1, 0). Since we have inserted vk’s in faces F ′
7 and F ′

8 of the bipartite
graph G′, it is not possible to embed at least one of the three edges incident
with the three vertices (1, 0, 1), (1, 0, ω), (1, 0, ω2) ∈ Y in the three faces F ′

j , F
′
7

and F ′
8. Thus γ(AG(Z2 × Z2 × F4)) ≥ 3.

b

bb b

bb

b
b v1

v2010

110

100 xi

yi xi

b
b

v3
xi

Figure 1. The faces F ′
7 and F ′

8 along with vk’s of AG(Z2 × Z2 × F4)

If R ∼= Z2×Z3×Z3, then every vertex in the set {(0, 1, 1), (0, 1, 2), (0, 2, 1),
(0, 2, 2), [(0, 1, 0), (0, 0, 1)]} is adjacent to each vertex of the set {(1, 1, 0),
(1, 2, 0), (1, 0, 0), (1, 0, 1), (1, 0, 2)} and so K5,5 is a subgraph of AG(R). There-
fore γ(AG(R)) ≥ 3. Further one may easily verify that the graph AG(Z2 ×
Z3 ×Z3) is a subgraph of AG(Z2 ×Z3 ×F4) so that γ(AG(Z2 ×Z3 ×F4)) ≥ 3.

If R ∼= Z2 × Z3 × Z4, then the vertex subsets {0} × Z∗
3 × Z∗

4 and {Z∗
2 ×

{0}×Z∗
4}∪{Z∗

2×Z∗
3×{0}} induced a subgraph in AG(R) which contains K6,5.

So γ(AG(R)) ≥ 3. In similar way, we get γ(AG(Z2 × Z3 × Z2[x]/(x2))) ≥ 3.
Case (iii) Suppose n = 2.
If both R1 and R2 are fields, then AG(R) is isomorphic to K|R∗

1
|,|R∗

2
|.

Thus, by Proposition 3.2, γ(AG(R)) = 2 if and only if R is isomorphic to one
of F4 × F8, F4 × F9, F4 × Z11 or Z5 × Z7.

If both R1 and R2 are not fields; i.e., |mi| ≥ 2 and |Ri| ≥ 4 for i = 1, 2.
Then every vertex in the set V1 = R∗

1 × m2 is adjacent to each vertex of the
set V2 = {m1 × R∗

2} \ V1. Since |V1| ≥ 6 and |V2| ≥ 5, K6,5 is a subgraph of
AG(R) so that γ(AG(R)) ≥ 3.

Assume that either R1 or R2 is a field; say R2 is a field. Suppose |m∗
1| ≥ 3,

then |R×
1 | ≥ 4. Let a, b, c ∈ m

∗
1 such that ab = ac = 0 and {u1, u2, u3, u4} ⊆

R×
1 . Consider S1 = {z1, z2, . . . , z7, w1, . . . , w4} ⊆ Z(R)∗, where z1 = (a, 0),

z2 = (b, 0), z3 = (c, 0), z4 = (u1, 0), z5 = (u2, 0), z6 = (u3, 0), z7 = (u4, 0),
w1 = (a, 1), w2 = (b, 1), w3 = (c, 1), w4 = (0, 1). Then the subgraph induced
by S1 of AG(R) contains K4,7 and so γ(AG(R)) ≥ 3. Thus we conclude that
|m∗

1| ≤ 2.
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Figure 2. Embedding of AG(Z4 × Z5) in S2

Suppose |m∗
1| = 1. i.e., R1

∼= Z4 or Z2[x]/(x2). Note that, by Theorems
2.1 and 2.2, R2 ≇ Z2 and Z3. Therefore |R2| ≥ 4. Let us take |R2| ≥ 7.
For a ∈ m

∗
1 with a2 = 0 and u1, u2 ∈ R×

1 , bi ∈ R∗
2, where i = 1, . . . , 6. Let

S2 = {x1, . . . , x15} ⊆ Z(R)∗, where x1 = (a, 0), x2 = (u1, 0), x3 = (u2, 0), x4 =
(a, b1), x5 = (a, b2), x6 = (a, b3), x7 = (a, b4), x8 = (a, b5), x9 = (a, b6), x10 =
(0, b1), x11 = (0, b2), x12 = (0, b3), x13 = (0, b4), x14 = (0, b5), x15 = (0, b6) .
Then the subgraph induced by S2 of AG(R) contains K3,12 so that γ(AG(R)) ≥
3. Hence R2 is isomorphic to F4 or Z5. If R ∼= Z4 × Z5, then by Figure 2,
γ(AG(R)) = 2. Note that in any figure of this paper, an element (x, y) of
R1 × R2 is denoted by xy. By the fact AG(Z2[x]/(x2) × Z5) ∼= AG(Z4 × Z5),
we have γ(AG(Z2[x]/(x2)×Z5)) = 2. Similarly, by Figure 3, γ(AG(Z4×F4)) =
γ(AG(Z2[x]/(x2) × F4)) = 2.

Suppose |m∗
1| = 2; i.e., R1

∼= Z9 or Z3[x]/(x2). Assume |R2| ≥ 3. For
a, c ∈ m

∗
1 with ac = 0, and ui ∈ R×

1 for i = 1, . . . , 6; b1, b2 ∈ R∗
2. Let

S3 = {x1, . . . , x12} ⊆ Z(R)∗, where x1 = (a, 0), x2 = (c, 0), x3 = (u1, 0),
x4 = (u2, 0), x5 = (u3, 0), x6 = (u4, 0), x7 = (u5, 0), x8 = (u6, 0), x9 = (a, b1),
x10 = (a, b2), x11 = (c, b1), x12 = (c, b2) . Then the subgraph induced by S3

of AG(R) contains K4,8 and so γ(AG(R)) ≥ 3. Hence R2 is isomorphic to Z2.
Therefore R ∼= Z9 × Z2 or Z3[x]/(x2) × Z2. Now by Figure 4, γ(AG(R)) = 2.
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Figure 3. Embedding of AG(Z4 × F4) in S2
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Figure 4. Embedding of AG(Z9 × Z2) in S2

Hence, in this case, γ(AG(R)) = 2 if and only if R is isomorphic to one of
Z4×F4, Z2[x]/(x2)×F4, Z4×Z5, Z2[x]/(x2)×Z5, Z9×Z2 or Z3[x]/(x2)×Z2. �

4. Conclusions

We obtained all isomorphism classes of commutative rings with identity
R for which the annihilator graph of R has genus two.
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