
U.P.B. Sci. Bull., Series C, Vol. 79, Iss. 1, 2017                                                      ISSN 2286-3540 

COMPACT NODE COUNTING EXPLORATION 

ALGORITHM 

Bogdan-Florin FLOREA1, Ovidiu GRIGORE2, Mihai DATCU3 

In this paper, we propose an exploration algorithm based on a modification 

of the original node counting algorithm which provides compact spatial exploration 

capabilities for reflex agents and it is capable of multi-agent operation by using a 

pheromone map as information storage and exchange medium. The algorithm 

proposed in this paper outperforms in terms of cumulative path length all other 

popular exploration algorithms based on reflex agents that we included in the 

comparison.  

Keywords: autonomous agents, cooperative systems, intelligent agents, mobile 

agents, reflex agents, spatial exploration 

1. Introduction 

There has been interest in the scientific community for efficient self-

healing and self-organizing spatial exploration techniques that can be used for 

spatial exploration, with applications both on Earth and in extraterrestrial 

environments. The exploration algorithm that we propose in this paper builds on 

the NCA (Node Counting Algorithm) [1] by using a different cost structure for 

changing its behavior at the exploration frontier in order to obtain a compact 

exploration pattern, which favors the exploration of unexplored cells which are 

adjacent to the already explored cells. 

The compact exploration approach is interesting for the spatial exploration 

of terrains of unknown and potentially very large size, which are typically 

encountered in extraterrestrial exploration. By using an exploration algorithm 

which produces a compact explored area, it is possible to study the explored area 

more thoroughly and to get relevant information about the explored environment. 

The exploration algorithm proposed in this paper can be used for building 

a resilient self-organizing and self-healing multi-agent exploration system. 

 

                                                           
1 University POLITEHNICA of Bucharest, Bucharest, Romania, e-mail: bogdan.florea@ai.pub.ro  

2 University POLITEHNICA of Bucharest, Bucharest, Romania, e-mail: ovidiu.grigore@ai.pub.ro 
3 University POLITEHNICA of Bucharest, Bucharest, Romania, and Deutsches Zentrum für Luft 

und Raumfahrt, Oberpfaffenhofen, Weßling 82234, Germany, e-mail: mihai.datcu@dlr.de 

mailto:bogdan.florea@ai.pub.ro


114                                Bogdan-Florin Florea, Ovidiu Grigore, Mihai Datcu 

2. Theory 

2.1 The collaborative exploration problem 

For the purpose of our research we have modelled the terrain as an 8-

connected discrete grid (V, E) as shown in Fig. 1. For each intelligent agent, we 

have considered a visibility horizon (sensor range) of one cell as shown in Fig. 2. 

We have used a pheromone map as an information storage and 

communication medium for the agents. For the purpose of this research, we have 

considered that a communication and localization system is already available for 

the agents and that the pheromone map and the discovered obstacle map is shared 

between the agents in the multi-agent exploration scenario. 

 

 
 

Fig. 1. A 5x5 terrain modelled as an 8-connected discrete grid. The vertices corresponding to 

obstacles are coloured in black 

 

 
 

Fig. 2. The visibility horizon of an agent (the agent is marked with black colour) 

   

   

   

 

 

 

    

 

 

 

 

     



Compact node counting exploration algorithm                                    115 

 

The single agent exploration problem for a finite size terrain consists into 

finding a path that visits all the accessible cells with a cost as low as possible: 

 

 

 

 








 




1

1

,1

1,1,1

1,1,

...,,

1

1210

argmin
n

i

iic

nivf

nivv

vvvv

efP

ia

ii

n

, (1) 

 

where: 

n
n VvvvvP   ),,( 1210   is the path 

uv   means that v is adjacent to u 

 iiii vve ,1,1    is the edge connecting the vertex 1iv  to vi 

 iic ef ,1  is the cost function 

         toconnected    ,1
otherwise          ,0

0 vvvf
a

ovf



               

 

 obstaclean  is  if          ,1
otherwise               ,0

  )(
v

vof 
. 
 

 

The collaborative exploration problem for finite terrains consists into 

finding a set of path for the intelligent agents so that the cumulative cost of the 

paths is as low as possible: 

 

 
 
    

 





N

i

ipc
PPP

N PfPPP

NPPPVerticesvafVv
N 1,

2,1

2,11
21

argmin




 , (2) 

 

where: 

   


 
1

1 ,1
n

i iicpc efPf  is the cumulative cost of the path P 

Pi is the path followed by the ith agent from the team 

   i

N

i

N PVerticesPPPVertices 
1

21,



  

 iPVertices  is the set of vertices visited by the path Pi. 

 



116                                Bogdan-Florin Florea, Ovidiu Grigore, Mihai Datcu 

Since the algorithm presented in this paper is not optimal, for our 

formalism we have considered the “argmin” operator as a best-effort search for a 

solution, which returns a solution, but not necessarily the optimal one.  

Each agent is capable to perform computations and to take actions by 

taking into account the information from the sensors over the visibility horizon of 

one cell and being able to sense the obstacles (inaccessible cells) and the values 

from the pheromone map. 

When exploring unknown environments, the obstacle information acquired 

from the sensors is used to build a map of the environment, by sensing and 

recording the obstacle cells.
 

2.2 The proposed algorithm  

2.2.1 Using a pheromone map to avoid revisiting cells 

Similarly to the Node Counting Algorithm [1], we have used a pheromone 

map, in which the entry corresponding to each cell from the grid is incremented 

each time the agent visits that location. 

We have used the following cost in order to penalize repeated visits of the 

same cells: 

 

   jij vappheromoneMec 1  ,                                                      (3) 

 

where: 

eij is the edge connecting the vertex vi to the vertex vj 

 jvappheromoneM  is the pheromone value corresponding to the vertex 

vj. 

2.2.2 Modeling the compactness constraints as costs 

For the purpose of this algorithm, we have modelled the compactness cost 

as a local cost which penalizes the actions that lead to a lower compactness of the 

explored area. 

We have defined the compactness cost as follows: 

 

      






uv
Vu

oeij

j

ufufec 222  ,                                                (4) 

 

where: 



Compact node counting exploration algorithm                                    117 

 exploredalready  is  vertex if          ,1
otherwise                     ,0

  )(
v

vef 
.
 

 

This cost also penalizes the agent for exploring areas that are not adjacent 

to obstacles, creating therefore an affinity for expanding the exploration frontier 

towards the areas close to obstacles.  

2.2.3 The exploring algorithm 

The exploration algorithm is based on reflex agents, each agent choosing 

the successor cell that it is going to visit according to the following rule: 

 

   ijci efvsucc  argmin

jv

 , (5) 

 

where: 

 
   
   









0,

1,

2

1

jeij

jeij
ijc vfec

vfec
ef . 

 

Each reflex agent works according to the following algorithm: 

 

 

3. Results and discussion 

For the comparative analysis, we have used the shape factor as a global 

measure of the compactness of the explored area: 

 

2

4

P

A
sf





, (6) 

Initialize appheromoneM  with zeros 

Initialize successor with the starting position 

While exploration not complete do: 

 successorsuccsuccessor :  

Mark successor

 

as visited 

Increment  successorappheromoneM

 End 

 



118                                Bogdan-Florin Florea, Ovidiu Grigore, Mihai Datcu 

 

where: 

A is the area of the explored region (considering the holes that surround 

obstacles to be filled) 

P is the perimeter of the explored region (the frontier). 

 

The value of the shape factor indicates the compactness of the explored 

region. For a circular region it has a value of one and it decreases as the shape 

deviates from circular form. 

 

 
 

Fig. 3. Shape factor comparison. (The shape factor for the compact node counting algorithm is 

represented with continuous line and the shape factor for the original node counting algorithm is 

represented with dashed line) 

 

From Fig. 3, it can be seen that in contrast to the original node counting 

algorithm, the shape factor of the explored area obtained using the algorithm 

proposed in this paper deteriorates significantly less as the exploration continues 

over time. In the following tables we have also shown that our approach oriented 

towards compactness brings a speed benefit. 

 



Compact node counting exploration algorithm                                    119 

 
 

Fig. 4. Typical exploration pattern of the compact node counting exploration algorithm 

 

 
 

Fig. 5. Typical exploration pattern of the original node counting exploration algorithm 

 

In Fig. 4 and 5, it can be observed qualitatively that there is a significant 

difference in terms of the compactness of the explored area between the algorithm 

proposed by us and the original node counting algorithm, resulting into a lower 

number of “holes” in the explored area pattern. Our investigation has shown that 



120                                Bogdan-Florin Florea, Ovidiu Grigore, Mihai Datcu 

this behavior, along with a slight affinity for expanding the exploration frontier 

around the obstacles as imposed by the costs defined at the exploration frontier, 

also brings an improvement in terms of the exploration speed (measures as the 

cumulative path length). 

Besides the shape factor, we have also investigated the exploration speed 

of the algorithm that we have proposed in this paper, comparing it with several 

exploration algorithms from the literature. We have compared it with the original 

node counting algorithm [1], with the exploration algorithm based on Thrun’s rule 

[7], with vertex ant walk [6] and with learning real-time A* algorithm with a 

look-ahead of one cell. 

 
Table 1 

Exploration speed comparison (10000 runs with 1 agent on different  

30x30 maps) 
Algorithm Step count 

(average) 

Step count (standard 

deviation) 

Current algorithm 544.99 309.87 

Node counting algorithm 674.20 351.72 

Thrun’s rule 679.89 354.73 

Vertex ant walk 749.14 410.93 

Learning real-time A* 675.52 354.00 

 
Table 2 

Exploration speed comparison (10000 runs with 3 agents on different  

30x30 maps) 
Algorithm Step count 

(average) 

Step count (standard 

deviation) 

Current algorithm 597.05 314.40 

Node counting algorithm 718.35 361.64 

Thrun’s rule 721.12 362.35 

Vertex ant walk 821.77 436.14 

Learning real-time A* 720.15 364.00 

 
Table 3 

Exploration speed comparison (10000 runs with 6 agents on different  

30x30 maps) 
Algorithm Step count 

(average) 

Step count (standard 

deviation) 

Current algorithm 698.69 352.94 

Node counting algorithm 824.44 426.74 

Thrun’s rule 812.27 409.16 

Vertex ant walk 966.90 503.45 

Learning real-time A* 811.71 411.04 

 

From the table 1, 2 and 3 it can be observed that the proposed algorithm is 

faster than the original node counting algorithm and that it outperforms all other 



Compact node counting exploration algorithm                                    121 

algorithms included in this comparison in terms of speed. These results were 

obtained by running the exploration algorithms on 10000 randomly generated 

maps of size 30x30. 

In order to have a more through comparison, we have also run the 

comparison on a set of 1000 randomly generated maps of size 100x100 and we 

have found that the algorithm proposed in this paper consistently outperforms the 

other algorithms. 

 
Table 4 

Exploration speed comparison (1000 runs with 1 agent on different  

100x100 maps) 
Algorithm Step count 

(average) 

Step count (standard 

deviation) 

Current algorithm 13397.70 8381.30 

Node counting algorithm 15652.30 8991.10 

Thrun’s rule 16009.70 9154.40 

Vertex ant walk 23649.10 14808.80 

Learning real-time A* 15502.40 9414.80 

 
Table 5 

Exploration speed comparison (1000 runs with 3 agents on different  

100x100 maps) 
Algorithm Step count 

(average) 

Step count (standard 

deviation) 

Current algorithm 15765.60 10206.70 

Node counting algorithm 17829.30 10942.50 

Thrun’s rule 18175.90 12040.80 

Vertex ant walk 28781.20 18977.30 

Learning real-time A* 18554.80 11835.60 

 
Table 6 

Exploration speed comparison (1000 runs with 6 agents on different  

100x100 maps) 
Algorithm Step count 

(average) 

Step count (standard 

deviation) 

Current algorithm 19217.90 15631.80 

Node counting algorithm 21037.70 15010.00 

Thrun’s rule 22478.60 17254.10 

Vertex ant walk 35717.70 24838.60 

Learning real-time A* 21736.80 16201.60 

 

From table 4, 5 and 6, it can be observed that the algorithm proposed in 

this paper outperforms the other algorithms included in the comparison on the big 

maps data set, in both the single agent and multi-agent exploration scenarios. This 

shows that the performance advantage over the other algorithms is consistent and 

not limited only to particular scenarios. 



122                                Bogdan-Florin Florea, Ovidiu Grigore, Mihai Datcu 

 

0

200

400

600

800

1000

1200

using 1 agent using 3 agents using 6 agents

Performance Graph

Current Algorithm Node Counting Alg.

Thrun's Rule Vertex Ant Walk

LRTA*

 
Fig. 6. Performance comparison graph plotted using the data presented in table 1, 2 and 3 (lower is 

better) 

 

0

5000

10000

15000

20000

25000

30000

35000

40000

using 1 agent using 3 agents using 6 agents

Performance Graph

Current Algorithm
Node Counting Alg.
Thrun's Rule
Vertex Ant Walk

 
Fig. 7. Performance comparison graph plotted using the data presented in table 4, 5 and 6 (lower is 

better) 

 



Compact node counting exploration algorithm                                    123 

In Fig. 6 and 7 we have presented an overview of the exploration 

performance of the algorithm proposed in this paper, compared with several other 

exploration algorithms from the literature. From these figures it can be observed 

that the algorithm presented in this paper outperformed the other algorithms in all 

scenarios that we have analysed.Since the analysis has been performed on a large 

number of maps and on maps of different dimensions, we conclude that our 

results are statistically relevant. Although there is some overhead in the multi-

agent scenarios for parallel exploration, this parallel overhead can be observed for 

all of the algorithms included in the comparison and it is not specific to our 

algorithm. 

These results show that the affinity for expanding the exploration frontier 

towards areas occupied by obstacles imposed by the structure of the costs that we 

designed for this algorithm is beneficial in terms of exploration speed. 

This approach, combined with the compactness avoids leaving many 

unexplored gaps in the explored area. The other algorithms that don’t have any 

compactness affinity are prone to leaving “holes” in the explored area, which need 

to be revisited at a later time, therefore decreasing the efficiency of that 

exploration algorithms. 

4. Conclusions 

In this paper, we have introduced an algorithm for compact spatial 

exploration, based on reflex agents and with low computational requirements 

which outperformed all other four exploration algorithms from the literature that 

we included in our comparison. 

The compact exploration algorithm introduced by us is capable to keep the 

compactness of the explored area by using only local costs, which makes it 

computationally efficient. 

We have shown that our exploration approach based on compactness has 

multiple benefits, including an increase in exploration speed, outperforming all 

other algorithms included in the comparison, in both single agent and multi-agent 

exploration scenarios, with a performance gain between 8% and 46%. 

In this paper, we have shown that it is possible to obtain a compact 

exploration pattern while also benefiting from a significant performance gain in 

terms of cumulative path length. This contribution is important for the field of 

artificial intelligence and robotics, because it can be incorporated in autonomous 

robots capable of intelligent spatial exploration with low computational 

requirements. This is important for a wide range of applications, ranging from 

intelligent extraterrestrial spatial exploration to commercial applications like 

autonomous vacuum cleaners. 

 



124                                Bogdan-Florin Florea, Ovidiu Grigore, Mihai Datcu 

Acknowledgements  

The work has been funded by the Sectoral Operational Programme Human 

Resources Development 2007-2013 of the Ministry of European Funds through 

the Financial Agreement POSDRU/159/1.5/S/132397. 

R E F E R E N C E S 

[1]. A. Pirzadeh, W. Snyder, “A unified solution to coverage and search in explored and 

unexplored terrains using indirect control”, in Proceedings of the International Conference 

on Robotics and Automation, 1990, pp. 2113–2119. 

[2]. Sven Koenig, Yaxin Liu, Terrain Coverage with Ant Robots: A Simulation Study, 

AGENTS’01, Montreal, 2011. 

[3]. Sven Koenig, Reid G. Simmons, Easy and Hard Testbeds for Real-Time Search Algorithms, 

AAAI-96 Proceedings, 1996. 

[4]. Richard E. Korf, “Real-Time Heuristic Search”, in Artificial Intelligence, vol. 42, 1990, pp. 

189–211. 

[5]. Sven Koenig, “Agent Centered Search”, in Artificial Intelligence, vol. 22, no. 4, 2001, pp. 

109–131. 

[6]. Israel A. Wagner, Michael Lindenbaum, Alfred M. Bruckstein, “On-Line Graph Searching by a 

Smell-Oriented Vertex Process”, in AAAI Technical Report WS-97-10, 1997. 

[7]. S. Thrun, Efficient Exploration In Reinforcement Learning, Technical Report CMU-CS-92-

102, School of Computer Science, Carnegie-Mellon University, Pittsburgh(Pennsylvania), 

1992. 

[8]. M. Baglietto, M. Paolucci, L. Scardovi, R. Zoppoli, Information-Based Multi-Agent 

Exploration. 

[9]. P. E. Hart, N. J. Nilsson, B. Raphael, “A Formal Basis for the Heuristic Determination of 

Minimum Cost Paths”, in IEEE Transactions on Systems Science and Cybernetics, vol. 

SSC-4, no. 2, 1968, pp. 100–107. 

[10]. J. Ota, “Multi-agent robot systems as distributed autonomous systems”, in Advanced 

Engineering Informatics, vol. 20, 2006, pp. 59–70. 

[11]. R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun, and H. Younes, 

“Coordination for multi-robot exploration and mapping”, in Proc. of the National 

Conference on Artificial Intelligence (AAAI), 2000, pp. 851–858. 

[12]. M. Mataric and G. Sukhatme, “Task-allocation and coordination of multiple robots for 

planetary exploration”, in Proc. of the Int. Conf. on Advanced Robotics, 2001, pp. 61–70. 

[13]. W. Burgard, D. Fox, M. Moors, R. Simmons, and S. Thrun, Collaborative multi-robot 

exploration, 2000. 

[14]. I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein, “Distributed covering by ant-robots 

using evaporating traces”, in IEEE Transactions on Robotics and Automation, vol.15, no. 5, 

1999, pp. 918–933. 

 


