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MODELING THE TRACK WIDTH OF INCONEL ALLOY IN
LDED USING ARTIFICIAL NEURAL NETWORK

Ajay Kumar MAURYA'", Surendra Kumar SAINI?, Amit KUMAR?

Laser-directed energy deposition (LDED) is a kind of additive
manufacturing. It is hard to understand the deposition process during the yielding of
track width of Inconel alloy, and many trials are required to obtain the ideal LDED
settings. In this situation, numerical simulations are helpful since they can forecast
trends without requiring extensive testing. Artificial neural networks can develop a
precise prediction model with the help of weight values of the trained network. In
this research paper, Inconel 718 alloy is deposited using LDED process by varying
three input parameters which are laser power (P), powder feed rate (PFR), and
deposition speed (V). The track width of single-track profile of deposited material is
modeled using an artificial neural network. The model's prediction strength is found
to be almost equal to actual values, with a difference of less than 5%. The statistical
errors for quality characteristics are less than 5%, and the regression values for
training, testing, and validation data are greater than 95%, indicating excellent
prediction strength. The average percentage error and mean square error of the
developed network were found less than 5%.

Keywords: Laser-directed energy; additive manufacturing; Inconel alloy;
artificial neural network.

1. Introduction

Directed Energy Deposition (DED) stands as a pivotal and advanced
technology within the realm of additive manufacturing, distinguished by its
capability to not only facilitate the precise repair of fractured or worn metal
components but also to enable the application of protective or functional coatings
onto a diverse array of substrates, thereby enhancing material properties and
extending the lifespan of critical engineering structures [1]. Its growing popularity
in the industry can be attributed to its ability to significantly minimize material
waste and control the rising costs associated with precious metal items. This
process involves the utilization of a high-power laser, which meticulously scans
the surface of the substrate plate, simultaneously melting the deposited powder
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and creating a molten pool, thereby facilitating the precise fabrication and repair
of metal components with minimal resource expenditure [2]. During the process
stage, the metal, provided in the form of either wire or powder, is meticulously
supplied and integrated, serving as the foundational material that undergoes
transformation under precise conditions to achieve the desired structural outcomes
[3]. Consequently, this technique proves instrumental in restoring defective metal
parts to their original condition, thereby mitigating the need for component
disposal. With this objective in focus, the methodology has been rigorously
evaluated not only on flat surfaces but also under challenging deposition
conditions, such as the repair of fractured edges and other complex geometries
[4]. The DED process has great potential for large-scale production of automotive
and aerospace components [5]. However, several challenges remain, including the
need to reduce reliance on the experimental trial-and-error approach to optimize
processing parameters [6]. Experimental optimization is money and time-
consuming because of the numerous operational factors. The LDED-AM process
is also quite sensitive to disruptions [7]. A small change in the process variables
(such as the processing speed, laser absorptivity, and initial temperature) may
result in significant variations in dilution (the percentage of the surface layer made
up of melted substrate) and in the transient heating/cooling rate and the overall
shape of the melt pool. These variations may harm the deposited clad layer, which
in turn affects the physical and mechanical properties, and process stability of the
fabricated part [8]. To solve these problems, other approaches like artificial neural
networks are needed.

To determine the best process parameters setting, it is required many trials
for each application while limiting the number of passes, which has an impact on
the cost and overall time. Through numerical models, the number of trials may be
decreased. For instance, a model may be used to forecast the ideal overlap ratio. It
would take numerous experiments to do it experimentally.

The recently developed mathematical models’ Multi-layer Multi-Bead
(MLMB), which are based on geometrical functions, exhibit high performance
together with simplicity. As reported by Froend et al. [7] highlights that it
improves surface quality for optimal bead geometry, eliminating the need for
complex FEM software. The MLMB models predict individual bead profiles
based on overlapping layers through modeling and investigations. Ocelik et al. [9]
developed a recursive model to represent the situation, successfully implementing
the algorithm in bead formation. However, the model has flaws, notably assuming
equal material deposition for all beads. In reality, varying amounts of powder
reach the target, leading to beads with differing cross-sectional areas due to the
inefficiency of the powder collection system [10]. Maurya et al. [11] optimized
the track height considering the process parameters such as powder feed rate, laser
power, and scan speed found the optimized track height, and validated it with the
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experimental results. To forecast the single-track dimension and the steady-state
melt pool temperature, Li et al. [12] created a multivariable analytical model.
Additionally, a feedback system used to control the temperature, and the height of
the melt pool was accomplished using the created model. Based on the energy
balances and process mass, Kaplan and Groboth [13] created an analytical process
model to predict the clad shape geometry and substrate temperature. They point
out that the powder flux distribution affects the laser energy distribution and
process powder catchment. Merve et al. [14] deposited the single tracks sectioned
and performed the experimental work, further developing a numerical model to
validate the results obtained by experiments. Using regression analysis,
mathematical formulas were developed to predict several features of the single-
clad track (height, breadth, and depth). The effect of process factors on the
geometrical properties of the single-clad track was thoroughly investigated using
analysis of variance (ANOVA). Yuze et al. [15] designed a thorough analytical
model that takes into account both the geographical distribution of heated powder
and the attenuated laser power intensity for the catchment efficiency and single-
track dimension prediction. Botez et al. [16] investigated the distinct types of
defects into the thermally deposited layer using contact and non-contact types of
inspection techniques which were microhardness and ultrasound, respectively.
Rontescu et al. [17] synthesized the titanium alloy using direct melting laser
sintering to investigate the mechanical properties of this alloy. Becherescu et al.
[18] analysed the characteristics of two different material deposition techniques
which were pulased laser deposition and high-power impulse magnetron
sputtering. Costache et al. [19] used the selective laser sintering technique for
powder deposition and investigated the mechanical and chemical properties of of
deposited material.

To understand the mechanism of input and output process parameters of
laser directed energy deposition method for a work material; an accurate and
reliable prediction model is required. Therefore, it is attempted to develop an
artificial intelligence-based prediction model for LDED construct track profile,
which was rarely found in the literature review. The goal of this research paper is
to build and verify a reliable artificial neural network model that may be able to
predict the LDED construct single track profile of Inconel alloy.

2. Experimental procedures

In the current investigation, an indigenously built LDED system available at
RRCAT Indore, India, was utilized. The system uses an ytterbium-doped fiber
laser (A=1070 nm) that can operate in continuous-wave mode at 2 kW laser
power.
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Optical systems and collimator lenses help the fiber laser to target the spot
precisely. For powder feed management, a screw-type volumetric feeder was
used. Argon served as both a shielding and a transport gas. The powder delivery
system, gas feeder system, and laser system connected to the deposition head,
which was installed on an overhead gantry system. The substrate plate was
supported by a fixed workstation during the deposition procedure. Fig. 1 depicts
the different aspects of equipment utilized for single-track LDED deposition.
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Fig. 1. L-DED system used for experimental work

For the deposition of single tracks, a gas-atomized powder of Alloy 718
with a nominal chemical composition as standard was used (see Table 1). Fig. 2
(a) depicts an SEM picture of powder particles. According to Fig. 2 (b), the
powder's particle size distribution was found between 40 pm to 110 um, with a
mean particle size of 70 um. Fig. 2 (b) also depicts the particle volume fraction
concerning particle size, with the majority of the volume fraction being seen for
particles with a size of 70 pm.
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Fig. 2. (a) SEM micrograph of powder particles of Inconel 718, (b) Volume fraction of different
particle size
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Table 1
Composition of IN718 powder in % by weight [17]
Element Ni Cr | Nb Mo | Ti Al Co | Cu C Fe
Weight | Min | 50 17 | 4755128 |0.65 |0200 | <1 | <03 |<0.08 | Balan
(%) Max | 55 21 .5 33 | 1.15 | .80 ce

While most process variables remained fixed, several variables, including
laser power (P), powder feed rate (PFR), and deposition speed (V) were adjusted
at three distinct levels. Table 2 contains a list of significant process parameters
that were obtained through early experimental rounds and employed in the current
investigation.

Table 2
Process parameters used for preliminary iterations
Process Parameters Related Value
Deposition speed (m/min) 0.4, 0.6 and 0.8
Laser power (W) 800, 1000 and 1200
Feed rate (g/min) 6,9 and 12
Laser spot diameter (Ds) (mm) 2
Laser stand-off distance (mm) 20

Table 3 depicts the whole experimental design data. Tracks of 30 mm in length
were placed on top of a substrate plate that measured 100 x 100 x 10 mm?>. The
parameter sets associated with 27 single tracks were deposited as seen in Fig. 3.
To conduct additional experimental research, the tracks were cut using wire EDM
perpendicular to the direction of deposition.

(b)

Fig. 3. Photographs of (a) single track deposition and (b) Microscopy image of deposition

Table 3
Track width corresponds to design factors.

Track No. P (W) V (m/min) F (g/min) Track Width (mm)

1 800 0.4 6 1.936

2 800 0.4 9 2.081
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3 800 0.4 12 2.188
4 800 0.6 6 1.852
5 800 0.6 9 1.931
6 800 0.6 12 2.013
7 800 0.8 6 1.784
8 800 0.8 9 1.802
9 800 0.8 12 1.817
10 1000 0.4 6 2.258
11 1000 0.4 9 2.328
12 1000 0.4 12 2.403
13 1000 0.6 6 1.912
14 1000 0.6 9 2.054
15 1000 0.6 12 2.128
16 1000 0.8 6 1.832
17 1000 0.8 9 1.914
18 1000 0.8 12 2.012
19 1200 0.4 6 2.426
20 1200 0.4 9 2.534
21 1200 0.4 12 2.612
22 1200 0.6 6 2.322
23 1200 0.6 9 2.458
24 1200 0.6 12 2.533
25 1200 0.8 6 2.012
26 1200 0.8 9 2.336
27 1200 0.8 12 2.422

3. Artificial Neural Network Modeling

To enhance the capability of the LDED process, secure liaison between
input and output parameters of this process is essential. Artificial neural network
(ANN) is a promising modeling technique that consists of three important layers
which are input, hidden and output [20,21]. In the present study, ANN tool of
MATLAB® software is used to develop feed forward back propagation-based
ANN architecture for track width. To predict the output parameter i.e. track width
value from the neural network model it initially requires training. In this study,
Levenberg-Marquardt algorithm is used to train the neural network model. And
momentum based gradient decent method converges the learning of network
whereas performance of the network is evaluated using mean square error. Fitness
of data into neural network is performed using regression analysis as shown in
Fig.4. Regression correlation coefficient (R) values for training data, testing data,
and validation data are found as 0.99397, 0.99199 and 0.9981, respectively as
exposed by Fig. 4. These correlation coefficient values are closer to one that
confirms the prediction strength of the developed model. Fig. 4 consists of four
regression plots comparing the target values to the output values for different
phases of a neural network model: training, validation, testing, and overall
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performance. Each plot also includes a fit line and the R-value, indicating the
correlation between the output and the target. In the top left of Fig. 4; training plot
shows the linear relationship between the output and the target values. The
regression values (R = 0.99397) of training data indicates a very high correlation
between the output and the target. Likewise strong trends between output and
target data are found for validation (R =0.99199) and test date (R = 0.9981).
Therefore, the overall model reveals compelling performance between the output
and the target. The high R-values in all plots indicate that the neural network
model has performed exceptionally well in predicting the target values across
training, validation, and testing phases. Slight deviations in the fit line slopes and
intercepts indicate minor differences in model performance across different data
sets, but overall, the model has a strong predictive capability. Table 4 shows the
comparative values between ANN predicted and experimental values. The errors
between actual experimental and predicted values were found almost equal and
less than 5%. It shows the strength of the developed model is adequate for the
prediction of track width.
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Fig. 4. Regression plots for track width
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Fig. 5 compares the actual and predicted values of Track Width (TW) over
number of tests. The x-axis is labelled with number of testing values and ranges
from 1 to 9, indicating the sequence of test values while the y-axis is labelled with
Track Width (TW) values (mm) and ranges from 1.9 to 2.4 mm that indicating the
measurements of track width. In Fig. 5 predicted values follow the trend of actual
experimental values of TW hence the developed model is reliable and accurate.
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Fig. 5. Comparison between actual and predicted values of track width.

Table 4
Values of artificial neural network model for track width
Values Track Width (mm)
Average experimental values of testing 1.9275
Average prediction values 1.8358
Mean absolute percentage error (%) 4.77
Mean squared error 0.302
Mean absolute deviation 0.091
Root mean square error 0.54
Average percentage prediction error (%) 4.98

3. Conclusion

Experiments are conducted to measure the track width of Inconel alloy
using laser directed energy deposition method at RRCAT Indore, (India). Three
design factors, viz. power, feed rate, and speed are elected for the
experimentation. Experiments are designed using an L27 orthogonal array and
then measure the track width. Artificial neural network technique is used to
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develop the prediction model for the track width of Inconel alloy. The statistical
errors for quality characteristics are less than 5%, and the regression values for
training, testing, and validation data are greater than 95%, indicating excellent
prediction strength. The average percentage error and mean square error of the
developed model are less than 5%. Hence, it shows that the developed model
prediction strength is accurate and reliable.

Future research direction, perspectives, limitations: This study has
successfully developed a robust artificial neural network (ANN) model for
predicting the track width of Inconel alloy in laser-directed energy deposition
(LDED) process. Expanding the model to predict the track width for other
emerging materials can validate its versatility and applicability across different
metals.

Further optimization of the process parameters, including but not limited to laser
power, powder feed rate, and deposition speed, can lead to improved quality and
consistency of the deposited tracks. Other artificial intelligence-based modeling
methods can also be used for the present work.

Acknowledgments
Thanks to RRCAT Indore and NIT Patna for their experimental facilities.

REFERENCES

[11  Maurya AK, Kumar A, Saini SK, Gupta RK. Effect of Scanning Strategy on Surface
Roughness of Directed Energy Deposited Inconel 718 Alloy 2023;71:1205-14.
https://doi.org/10.18311/jmm{/2023/35437.

[2]  Maurya AK, Kumar A. Study the Microhardness and Surface Roughness of As-Built and
Heat-Treated Additive Manufactured in718 Alloy. UPB Sci Bull Ser D Mech Eng
2022;84:211-24.

[31  Graf B, Ammer S, Gumenyuk A, Rethmeier M. Design of experiments for laser metal
deposition in maintenance, repair and overhaul applications. Procedia CIRP 2013;11:245—
8. https://doi.org/10.1016/j.procir.2013.07.031.

[4]  Caiazzo F, Alfieri V. Laser-aided directed energy deposition of steel powder over flat
surfaces and edges. Materials (Basel) 2018;11. https://doi.org/10.3390/mal1030435.

[5] SongJ, Deng Q, Chen C, Hu D, Li Y. Rebuilding of metal components with laser cladding
forming. Appl Surf Sci 2006;252:7934—40. https://doi.org/10.1016/j.apsusc.2005.10.025.

[6] Wang Q, Li J, Gouge M, Nassar AR, Michaleris P, Reutzel EW. Physics-Based
Multivariable Modeling and Feedback Linearization Control of Melt-Pool Geometry and
Temperature in Directed Energy Deposition. J Manuf Sci Eng Trans ASME 2017;139.
https://doi.org/10.1115/1.4034304.

[7] Froend M, Riekehr S, Kashaev N, Klusemann B, Enz J. Process development for wire-based
laser metal deposition of 5087 aluminium alloy by using fibre laser. J Manuf Process
2018;34:721-32. https://doi.org/10.1016/j.jmapro.2018.06.033.

[8] Maurya AK, Kumar A, Saini SK, Paul CP. Study of build rate in laser directed energy
deposition. Manuf Technol Today 2023;22:39-44.



328

Ajay Kumar Maurya, Surendra Kumar Saini, Amit Kumar

[15]

[16]

[17]

(18]

https://doi.org/10.58368/mtt.22.1.2023.39-44.

Ocelik V, Nenadl O, Palavra A, De Hosson JTM. On the geometry of coating layers formed
by overlap. Surf Coatings Technol 2014;242:54-61.
https://doi.org/10.1016/j.surfcoat.2014.01.018.

Eisenbarth D, Borges Esteves PM, Wirth F, Wegener K. Spatial powder flow measurement
and efficiency prediction for laser direct metal deposition. Surf Coatings Technol
2019;362:397-408. https://doi.org/10.1016/j.surfcoat.2019.02.009.

A. Maurya, A. Kumar SS et al. Optimization of Track Height of LDED Inconel Alloy-718.
NanoWorld J 2023;9:188-91. https://doi.org/10.17756/nwj.2023-s1-038.

Li J, Wang O, Michaleris P, Reutzel EW, Nassar AR. An Extended Lumped-Parameter
Model of Melt-Pool Geometry to Predict Part Height for Directed Energy Deposition. J
Manuf Sci Eng Trans ASME 2017;139. https://doi.org/10.1115/1.4037235.

Kaplan AFH, Groboth G. Process analysis of laser beam cladding. J Manuf Sci Eng Trans
ASME 2001;123:609-14. https://doi.org/10.1115/1.1344899.

Biyikli M, Karagoz T, Calli M, Muslim T, Ozalp AA, Bayram A. Single Track Geometry
Prediction of Laser Metal Deposited 316L-Si Via Multi-Physics Modelling and Regression
Analysis  with  Experimental = Validation. Met Mater Int 2023;29:807-20.
https://doi.org/10.1007/s12540-022-01243-3.

Huang Y, Khamesee MB, Toyserkani E. A comprehensive analytical model for laser
powder-fed additive manufacturing. Addit Manuf 2016;12:90-9.
https://doi.org/10.1016/j.addma.2016.07.001.

Botez SC, Dina VC, Dumitru GM, Dumitru B, lacobescu G. Characterisation of metallic
layers deposited through thermal spraying. UPB Sci Bull Ser D Mech Eng 2014;76:177-88.
Rontescu C, Pacioga A, lacobescu G, Amza CG. Research on the mechanical properties of
titanium biocompatible alloys obtained by sintering. UPB Sci Bull Ser B Chem Mater Sci
2016;78:195-202.

Becherescu N, Mihailescu I, Tiron V, Luculescu C. Preparation and characterization of
TIO2 thin films by PLD and HIPIMS. UPB Sci Bull Ser A Appl Math Phys 2017;79:203—
12.

Costache AC, Moagar-Poladian G, Obreja CA, Tutunaru O, Radoi A, Pachiu C. Chemical
and physical study of waste PA2200 powder. UPB Sci Bull Ser B Chem Mater Sci
2021;83:175-86.

Khaldi S, Dibi Z. ANN technique for electronic nose based on smart sensors array. UPB Sci
Bull Ser C Electr Eng Comput Sci 2017;79:85-96.

Olteanu EL, Ghencea DP, Bisu CF. The milling moments prediction using a neural
network model. UPB Sci Bull Series D Mech Eng 2015;77:141-50.



