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MODELING THE TRACK WIDTH OF INCONEL ALLOY IN 
LDED USING ARTIFICIAL NEURAL NETWORK 
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Laser-directed energy deposition (LDED) is a kind of additive 
manufacturing. It is hard to understand the deposition process during the yielding of 
track width of Inconel alloy, and many trials are required to obtain the ideal LDED 
settings. In this situation, numerical simulations are helpful since they can forecast 
trends without requiring extensive testing. Artificial neural networks can develop a 
precise prediction model with the help of weight values of the trained network. In 
this research paper, Inconel 718 alloy is deposited using LDED process by varying 
three input parameters which are laser power (P), powder feed rate (PFR), and 
deposition speed (V). The track width of single-track profile of deposited material is 
modeled using an artificial neural network. The model's prediction strength is found 
to be almost equal to actual values, with a difference of less than 5%. The statistical 
errors for quality characteristics are less than 5%, and the regression values for 
training, testing, and validation data are greater than 95%, indicating excellent 
prediction strength. The average percentage error and mean square error of the 
developed network were found less than 5%. 

Keywords: Laser-directed energy; additive manufacturing; Inconel alloy; 
artificial neural network. 

1. Introduction 

Directed Energy Deposition (DED) stands as a pivotal and advanced 
technology within the realm of additive manufacturing, distinguished by its 
capability to not only facilitate the precise repair of fractured or worn metal 
components but also to enable the application of protective or functional coatings 
onto a diverse array of substrates, thereby enhancing material properties and 
extending the lifespan of critical engineering structures [1]. Its growing popularity 
in the industry can be attributed to its ability to significantly minimize material 
waste and control the rising costs associated with precious metal items. This 
process involves the utilization of a high-power laser, which meticulously scans 
the surface of the substrate plate, simultaneously melting the deposited powder 
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and creating a molten pool, thereby facilitating the precise fabrication and repair 
of metal components with minimal resource expenditure [2]. During the process 
stage, the metal, provided in the form of either wire or powder, is meticulously 
supplied and integrated, serving as the foundational material that undergoes 
transformation under precise conditions to achieve the desired structural outcomes 
[3]. Consequently, this technique proves instrumental in restoring defective metal 
parts to their original condition, thereby mitigating the need for component 
disposal. With this objective in focus, the methodology has been rigorously 
evaluated not only on flat surfaces but also under challenging deposition 
conditions, such as the repair of fractured edges and other complex geometries 
[4]. The DED process has great potential for large-scale production of automotive 
and aerospace components [5]. However, several challenges remain, including the 
need to reduce reliance on the experimental trial-and-error approach to optimize 
processing parameters [6]. Experimental optimization is money and time-
consuming because of the numerous operational factors. The LDED-AM process 
is also quite sensitive to disruptions [7]. A small change in the process variables 
(such as the processing speed, laser absorptivity, and initial temperature) may 
result in significant variations in dilution (the percentage of the surface layer made 
up of melted substrate) and in the transient heating/cooling rate and the overall 
shape of the melt pool. These variations may harm the deposited clad layer, which 
in turn affects the physical and mechanical properties, and process stability of the 
fabricated part [8]. To solve these problems, other approaches like artificial neural 
networks are needed. 

To determine the best process parameters setting, it is required many trials 
for each application while limiting the number of passes, which has an impact on 
the cost and overall time. Through numerical models, the number of trials may be 
decreased. For instance, a model may be used to forecast the ideal overlap ratio. It 
would take numerous experiments to do it experimentally. 

The recently developed mathematical models’ Multi-layer Multi-Bead 
(MLMB), which are based on geometrical functions, exhibit high performance 
together with simplicity. As reported by Froend et al. [7] highlights that it 
improves surface quality for optimal bead geometry, eliminating the need for 
complex FEM software. The MLMB models predict individual bead profiles 
based on overlapping layers through modeling and investigations. Ocelik et al. [9] 
developed a recursive model to represent the situation, successfully implementing 
the algorithm in bead formation. However, the model has flaws, notably assuming 
equal material deposition for all beads. In reality, varying amounts of powder 
reach the target, leading to beads with differing cross-sectional areas due to the 
inefficiency of the powder collection system [10]. Maurya et al. [11] optimized 
the track height considering the process parameters such as powder feed rate, laser 
power, and scan speed found the optimized track height, and validated it with the 
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experimental results. To forecast the single-track dimension and the steady-state 
melt pool temperature, Li et al. [12] created a multivariable analytical model. 
Additionally, a feedback system used to control the temperature, and the height of 
the melt pool was accomplished using the created model. Based on the energy 
balances and process mass, Kaplan and Groboth [13] created an analytical process 
model to predict the clad shape geometry and substrate temperature. They point 
out that the powder flux distribution affects the laser energy distribution and 
process powder catchment. Merve et al. [14] deposited the single tracks sectioned 
and performed the experimental work, further developing a numerical model to 
validate the results obtained by experiments. Using regression analysis, 
mathematical formulas were developed to predict several features of the single-
clad track (height, breadth, and depth). The effect of process factors on the 
geometrical properties of the single-clad track was thoroughly investigated using 
analysis of variance (ANOVA). Yuze et al. [15] designed a thorough analytical 
model that takes into account both the geographical distribution of heated powder 
and the attenuated laser power intensity for the catchment efficiency and single-
track dimension prediction. Botez et al. [16] investigated the distinct types of 
defects into the thermally deposited layer using contact and non-contact types of 
inspection techniques which were microhardness and ultrasound, respectively. 
Rontescu et al. [17] synthesized the titanium alloy using direct melting laser 
sintering to investigate the mechanical properties of this alloy. Becherescu et al. 
[18] analysed the characteristics of two different material deposition techniques 
which were pulased laser deposition and high-power impulse magnetron 
sputtering. Costache  et al. [19] used the selective laser sintering technique for 
powder deposition and investigated the mechanical and chemical properties of of 
deposited material.  

To understand the mechanism of input and output process parameters of 
laser directed energy deposition method for a work material; an accurate and 
reliable prediction model is required. Therefore, it is attempted to develop an 
artificial intelligence-based prediction model for LDED construct track profile, 
which was rarely found in the literature review. The goal of this research paper is 
to build and verify a reliable artificial neural network model that may be able to 
predict the LDED construct single track profile of Inconel alloy. 

 
2. Experimental procedures 

In the current investigation, an indigenously built LDED system available at 
RRCAT Indore, India, was utilized. The system uses an ytterbium-doped fiber 
laser (λ=1070 nm) that can operate in continuous-wave mode at 2 kW laser 
power.  



322                         Ajay Kumar Maurya, Surendra Kumar Saini, Amit Kumar 

Optical systems and collimator lenses help the fiber laser to target the spot 
precisely. For powder feed management, a screw-type volumetric feeder was 
used. Argon served as both a shielding and a transport gas. The powder delivery 
system, gas feeder system, and laser system connected to the deposition head, 
which was installed on an overhead gantry system. The substrate plate was 
supported by a fixed workstation during the deposition procedure.  Fig. 1 depicts 
the different aspects of equipment utilized for single-track LDED deposition. 

 
Fig. 1. L-DED system used for experimental work 

For the deposition of single tracks, a gas-atomized powder of Alloy 718 
with a nominal chemical composition as standard was used (see Table 1). Fig. 2 
(a) depicts an SEM picture of powder particles. According to Fig. 2 (b), the 
powder's particle size distribution was found between 40 µm to 110 µm, with a 
mean particle size of 70 µm. Fig. 2 (b) also depicts the particle volume fraction 
concerning particle size, with the majority of the volume fraction being seen for 
particles with a size of 70 µm. 

  
(a) (b) 

Fig. 2. (a) SEM micrograph of powder particles of Inconel 718, (b) Volume fraction of different 
particle size 
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Table 1 
Composition of IN718 powder in % by weight [17] 

Element Ni Cr Nb Mo Ti Al Co Cu C Fe 
Weight 
(%) 

Min 50 
55 

17 
21 

4.755
.5 

2.8
3.3 

0.65 
1.15 

0.200
.80 

≤1 ≤0.3 ≤0.08 Balan
ce Max 

 
While most process variables remained fixed, several variables, including 

laser power (P), powder feed rate (PFR), and deposition speed (V) were adjusted 
at three distinct levels. Table 2 contains a list of significant process parameters 
that were obtained through early experimental rounds and employed in the current 
investigation. 

Table 2 
Process parameters used for preliminary iterations 

Process Parameters Related Value 
Deposition speed (m/min) 0.4, 0.6 and 0.8 
Laser power (W) 800, 1000 and 1200  
Feed rate (g/min) 6, 9 and 12 
Laser spot diameter (Ds) (mm) 2 
Laser stand-off distance (mm) 20 
 
Table 3 depicts the whole experimental design data. Tracks of 30 mm in length 
were placed on top of a substrate plate that measured 100 x 100 x 10 mm3. The 
parameter sets associated with 27 single tracks were deposited as seen in Fig. 3. 
To conduct additional experimental research, the tracks were cut using wire EDM 
perpendicular to the direction of deposition. 
 

 
(a)  

 
(b)  

Fig. 3. Photographs of (a) single track deposition and (b) Microscopy image of deposition 
 

Table 3 
Track width corresponds to design factors. 

Track No. P (W) V (m/min) F (g/min) Track Width (mm) 
1 800 0.4 6 1.936 
2 800 0.4 9 2.081 
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3 800 0.4 12 2.188 
4 800 0.6 6 1.852 
5 800 0.6 9 1.931 
6 800 0.6 12 2.013 
7 800 0.8 6 1.784 
8 800 0.8 9 1.802 
9 800 0.8 12 1.817 
10 1000 0.4 6 2.258 
11 1000 0.4 9 2.328 
12 1000 0.4 12 2.403 
13 1000 0.6 6 1.912 
14 1000 0.6 9 2.054 
15 1000 0.6 12 2.128 
16 1000 0.8 6 1.832 
17 1000 0.8 9 1.914 
18 1000 0.8 12 2.012 
19 1200 0.4 6 2.426 
20 1200 0.4 9 2.534 
21 1200 0.4 12 2.612 
22 1200 0.6 6 2.322 
23 1200 0.6 9 2.458 
24 1200 0.6 12 2.533 
25 1200 0.8 6 2.012 
26 1200 0.8 9 2.336 
27 1200 0.8 12 2.422 

 
3. Artificial Neural Network Modeling 

To enhance the capability of the LDED process, secure liaison between 
input and output parameters of this process is essential.  Artificial neural network 
(ANN) is a promising modeling technique that consists of three important layers 
which are input, hidden and output [20,21]. In the present study, ANN tool of 
MATLAB® software is used to develop feed forward back propagation-based 
ANN architecture for track width. To predict the output parameter i.e. track width 
value from the neural network model it initially requires training. In this study, 
Levenberg-Marquardt algorithm is used to train the neural network model. And 
momentum based gradient decent method converges the learning of network 
whereas performance of the network is evaluated using mean square error. Fitness 
of data into neural network is performed using regression analysis as shown in 
Fig.4. Regression correlation coefficient (R) values for training data, testing data, 
and validation data are found as 0.99397, 0.99199 and 0.9981, respectively as 
exposed by Fig. 4. These correlation coefficient values are closer to one that 
confirms the prediction strength of the developed model. Fig. 4 consists of four 
regression plots comparing the target values to the output values for different 
phases of a neural network model: training, validation, testing, and overall 
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performance. Each plot also includes a fit line and the R-value, indicating the 
correlation between the output and the target. In the top left of Fig. 4; training plot 
shows the linear relationship between the output and the target values. The 
regression values (R = 0.99397) of training data indicates a very high correlation 
between the output and the target. Likewise strong trends between output and 
target data are found for validation (R =0.99199) and test date (R = 0.9981). 
Therefore, the overall model reveals compelling performance between the output 
and the target. The high R-values in all plots indicate that the neural network 
model has performed exceptionally well in predicting the target values across 
training, validation, and testing phases. Slight deviations in the fit line slopes and 
intercepts indicate minor differences in model performance across different data 
sets, but overall, the model has a strong predictive capability. Table 4 shows the 
comparative values between ANN predicted and experimental values. The errors 
between actual experimental and predicted values were found almost equal and 
less than 5%. It shows the strength of the developed model is adequate for the 
prediction of track width.  

 

 
Fig. 4. Regression plots for track width  
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Fig. 5 compares the actual and predicted values of Track Width (TW) over 
number of tests. The x-axis is labelled with number of testing values and ranges 
from 1 to 9, indicating the sequence of test values while the y-axis is labelled with 
Track Width (TW) values (mm) and ranges from 1.9 to 2.4 mm that indicating the 
measurements of track width. In Fig. 5 predicted values follow the trend of actual 
experimental values of TW hence the developed model is reliable and accurate.  

 

 

Fig. 5. Comparison between actual and predicted values of track width. 
 

Table 4 
Values of artificial neural network model for track width 

Values Track Width (mm) 
Average experimental values of testing 1.9275 
Average prediction values  1.8358 
Mean absolute percentage error (%) 4.77 
Mean squared error 0.302 
Mean absolute deviation 0.091  
Root mean square error 0.54 
Average percentage prediction error (%) 4.98 

3. Conclusion 

Experiments are conducted to measure the track width of Inconel alloy 
using laser directed energy deposition method at RRCAT Indore, (India). Three 
design factors, viz. power, feed rate, and speed are elected for the 
experimentation. Experiments are designed using an L27 orthogonal array and 
then measure the track width. Artificial neural network technique is used to 
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develop the prediction model for the track width of Inconel alloy. The statistical 
errors for quality characteristics are less than 5%, and the regression values for 
training, testing, and validation data are greater than 95%, indicating excellent 
prediction strength. The average percentage error and mean square error of the 
developed model are less than 5%. Hence, it shows that the developed model 
prediction strength is accurate and reliable. 
 
Future research direction, perspectives, limitations: This study has 
successfully developed a robust artificial neural network (ANN) model for 
predicting the track width of Inconel alloy in laser-directed energy deposition 
(LDED) process. Expanding the model to predict the track width for other 
emerging materials can validate its versatility and applicability across different 
metals. 
Further optimization of the process parameters, including but not limited to laser 
power, powder feed rate, and deposition speed, can lead to improved quality and 
consistency of the deposited tracks. Other artificial intelligence-based modeling 
methods can also be used for the present work.   
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