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OBSERVABILITY PROPERTIES AND STATISTICAL 
ANALYSIS OF A CHAOTIC “JOUNCE” CRYPTOSYSTEM 

Octaviana DATCU1, Mihai STANCIU2 

Hyperchaos is considered to improve security, when compared to chaos, by 
providing more complex and less vulnerable temporal signals for secret 
communications. One of the simplest jounce hyperchaotic systems is analyzed to 
decide upon the possibility to reconstruct all four states, at the receiving end, when 
over the communication channel only one of the four states is sent. A very simple 
secret communication scheme, with the first state of the transmitter as its output, is 
proposed. The distributions of the estimation errors are investigated. The recovery 
of the secret message is tested under changes of the secret key. 
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1. Introduction 

Variables such as position, velocity and acceleration are well known in the 
study of the dynamics of a point. Less known are the jerk and the jounce, its 
changing rate defined by (1), where dva ,,  are the acceleration, velocity and 
distance. Vectors j  and s  correspond to the jerk and the jounce, also known as 
spasm, sprite, surge or snap [13].  
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A chaotic system has one positive Lyapunov exponent, i.e. a direction in 
which it obeys a positive reaction, being unstable. It must also possess a null 
exponent along the flow and one negative exponent to ensure the evolution of the 
solution in a bounded space. Consequently, a continuous chaotic system must 
have at least three dimensions [14]. The hyperchaotic behavior is stated as being 
the dynamics with at least two positive Lyapunov exponents, thus having at least 
four coordinates [12]. This corresponds to the jounce, the fourth derivative of 
position, thus being a hyperjerk. One of the simplest hyperjerks is described by 
equation (2) [1]:  
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where }4,3,2,1{,)( == kdttdxx kk  and A  is the bifurcation parameter of the system. 
[1] contains the bifurcation diagram corresponding to the number of solutions the 
system (2) has, when varying the parameter A  in the interval ].6.4;3.3[  

Due to their properties, chaotic signals can be used to mask the secret 
message in secure communications [9]. Pecora [10] highlighted that the extraction 
of the message masked by a chaotic signal pointed out by Pérez and Cerdeira [11] 
can be overcome by using hyperchaotic systems, manifesting increased 
randomness and higher unpredictability compared to chaos. Hyperchaos improves 
security by providing more complex and less vulnerable temporal signals [2]. 

One of the simplest jounce (hyperjerk) systems is analyzed to decide upon 
the possibility to reconstruct all four states, at the receiving end, when a 
transmitter sends over the communication channel only one of the four state 
variables it possesses. A simple secret communication scheme, with the output of 
the transmitter being is its first state, is proposed. This choice leads to an identity 
between the original state space and the estimates obtained by a properly tuned 
higher order sliding-mode observer, thus the message being easily recovered by 
the receiver. The distributions of the estimation errors are taken into account for 
identical initialization of the transmitter and the receiver, and for different starting 
point for the latter. The recovery of the secret message is tested under changes of 
the values of the control parameter and those of the initial conditions. The larger 
frame of the present work is defined in [5] and [6]. 

 
2. Main results 
 

A. The first state of the hyperjerk as output of an encryption scheme 
 
The transform induced by choosing 11 xyz ==  as the output of the 

transmitter (2), and successively deriving it, to reveal the unknown states, is in: 
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Following, a secret message is added to the dynamics of the hyperjerk (2) 
by using the inclusion method belonging to the third generation of chaotic secure 
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communication [15]. Consequently, the unknown message denoted ,m  is added to 
the fourth equation of system (2). The coordinate change (3) becomes (4), a new 
derivative of the data series being needed, in order to retrieve the message.  
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To estimate the coordinates },5,4,3,2,1{,ˆ =kzk  the receiver uses a high 
order sliding-mode observer (HOSMO) [7]: 
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Once the }5,4,3,2,1{,ˆ =kzk  coordinates are accurately estimated, the states 
}4,3,2,1{,ˆ =kxk  and the message m̂  are given by: 
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The Euler method is used in Matlab-Simulink, being the only that is 
reliable with sliding-mode simulation, according to [7]. The fixed step used is 

.10 5−=sT  The transmitter is initialized with ==04321 ),,,( txxxx  
).18.0,48.0,26.0,85.0( Its parameter is ,48.3=A  for hyperchaotic behavior [1]. 

To tune the HOSMO (5), its parameters K  and L  should be chosen such 
that the estimation is done accurately and subject to as less chattering as possible, 
i.e. the effect induced by the high frequency control switching, which can be 
dangerous in applications [7]. The observer (5) has initial conditions 
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054321 ),,,,( =tzzzzz  ),63.0,),,,(( 04321 == txxxx  where 05 | =tz  was randomly 

chosen from a uniform distribution in ].1,0[  The parameter .48.32 == AA  The 
recovery of the states of the transmitter and the secret message, with (5) and (6), 
for parameters )200,10(),( 20=LK  for the HOSMO are given in Fig. 1. More 
details and values can be found at http://www.elcom.pub.ro/~od/. 

 

 
Fig. 1. Reconstruction of the states of the transmitter and of the secret message for parameters 

)200,10(),( 20=LK  and identical initialization of the transmitter and the receiver.  
Originals in solid bold line, estimated in dashed line. 

The message was chosen to be a sine wave (left), respectively a 
rectangular wave (right), both with amplitude VA 5.0=  and frequency 

.5.0 Hzf =  The maximum error between the estimated message and the original 
one, included in the dynamics of the transmitter (2), is about 25 mV, with a very 
low probability, as observed from Fig. 1. After applying the formula in the fifth 
equation in (6), a first order Butterworth low pass filter with cutting frequency 

ff dB ⋅=− 113  is used, to filter high frequency noise from the estimated message. 
For better comparison of the signals, the original message was also filtered. 
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The states 4321 ,,, xxxx  are accurately estimated with errors of order 

,,1010 ,10 ,10 -3-7-10-16  respectively, as exemplified in Fig. 2, for a rectangular 
wave as message. 

The recovered message and the probability distribution function of the 
estimation error are portrayed in Fig. 3 for different parameters K  and .L  

 
Fig. 2. Estimation errors for parameters )102,10(),( 320 ⋅=LK  and identical initialization of the 

transmitter and the receiver, for rectangular wave as message. 
     

 
Fig. 3. Reconstruction of the secret message for parameters )102,10(),( 310 ⋅=LK (left) and 

)5,10(),( 10=LK (right); identical initialization of the transmitter and the receiver.  
 

Once the observer is tuned, one must verify the sensitivity of the 
encryption scheme to a change in the key }.|),,,(,{ 04321 == txxxxAE  Thus, the 
initial conditions for the observer are chosen from random standard normal 
distributions, ),32.0,86.0,26.2,83.1,54.0(|),,,,( 054321 −==tzzzzz  whilst the 
transmitter remains initialized at ).18.0,48.0,26.0,85.0(),,,( 04321 ==txxxx  The 
observer converges to original states and the message is obtained without 
difficulty, when the receiver has exact knowledge of the transmitter’s parameter, 
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,2 AA =  but with inacceptable error when the receiver introduces a truncated 
value of A for the parameter ,2A  as depicted in Fig. 4. The acceptable threshold 
for the value of the error is established in the context of the application. If the 
communication partners are interested in the absolute values of the secret 
message, an error of up to %1050 =mV  from its amplitude can be tolerable.  

 
Fig. 4. Reconstruction of the secret message for parameters )102,10(),( 310 ⋅=LK  when the 

observer is initialized from random standard normal distributions. The parameter of the receiver is 
48.32 == AA  (left) and 4.32 =A (right). 

The proposed scheme can be improved with additional operations, for 
example taking into account the minimum sampling distance for a chaotic 
attractor to obtain statistical independent data [8].  

 
B. The second state of the hyperjerk transmitted over the communication 

channel 
 
If the transmitter chooses the output of (2) to be ,21 xyz ==  the receiver 

has to solve (7). Having the algebraic solution, he is able to reconstruct the 
original dynamics, knowing only the output and its successive derivatives. 
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Again, an observer as the one in (5) can be used to estimate the new 
coordinates }.ˆ,ˆ,ˆ,ˆ{ 4321 zzzz  The difference with respect to (5) is represented by 
the dynamics in  (8). The derivative of the message m  was not considered due to 
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the appropriate tuning of the afferent observer to overcome the unknown 
perturbation. 

)]ˆ([1.1)ˆˆˆˆ2ˆ2ˆ(ˆ 4554231
2
225 ν−⋅⋅⋅−++++−= zKsignLzzAzzzzz          (8) 

The message was, this time, added to the evolution of the first state of the 
transmitter (2), .21 mxx +=  Thus, it appears last in the derivatives of the output 

,2xy =  being the furthest in space from it.  
 

C. The third state of the hyperjerk as its output 
 
When the transmitter chooses the output ,33 xyz ==  the coordinate 

change seen by the receiver is the one in (9). Because of the supplementary 
difficulty introduced by the singularity of observability manifold, the 
reconstruction in (10) refers only to the states of the transmitter. For a more 
detailed frame for the singularity of observability manifolds see [3,4].  
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The solution in (10) can be obtained if and only if .021 1 ≠+ z  
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Consequently, the singularity observability manifold, when the measured 
variable is ,31 xzy ==  is given by (11). Each time the measured value is in the 
vicinity of ,5.0−  the receiver cannot get the individual values for 1x  and ,2x but 

only for the sum .2
21 xx +  The incidence of the singularity of observability for 

63.3=A  and )18.0,48.0,26.0,85.0(),,,( 04321 ==txxxx  is given in Fig. 5 (left). 

}5.0|},,,{( 3
4
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Fig. 5. Transmitter with 63.3=A  and ).18.0,48.0,26.0,85.0(),,,( 04321 ==txxxx  Left: The output 

3x  and the singularity of observability (bold line) (top).  Distribution of  3x  (bottom).  
Right: Discriminant of the quadratic equation in 2x (13), induced by the measured state .4x   

 
D. The fourth state of the hyperjerk measured at the receiver’s end 

 
The output of the transmitter is ,44 xyz ==  such that the coordinate 

change between the transmitter’s state space and the receiver’s is: 
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The system (12) can be rewritten as in (13), where the quadratic equation 
in 2x  must have unique solution, as a cryptographic function has to be injective.     
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To fulfill this requirement, the discriminant 2
4322 )( zzzA ++=Δ  

)(8 321231 zzzAxz +++  must be null. In this case, the solution of system (12) is 
the one from (14), where the conditions 01̂ ≠z  and 0ˆˆˆ 3212 ≠++ zzzA  must also 
be fulfilled. Still, the discriminant Δ  is rarely zero, as illustrated in Fig. 4 (right) 
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for 63.3=A  and ),18.0,48.0,26.0,85.0(),,,( 04321 ==txxxx where the measured 

variable is .4x   
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3. Conclusions 

The continuous-time hyperchaotic behavior implies the existence of at 
least a fourth dimensional state space. Increased randomness and high 
unpredictability makes them suitable for cryptographic applications. One of the 
simplest jounce (hyperjerk) system was analyzed to decide upon the possibility to 
reconstruct all four states, at the receiving end, when a transmitter sends over the 
communication channel only one of the four state variables it possess. The first 
and the second states were proved to engender full reconstruction when measured 
by the receiver. For the third state of the hyperjerk chosen as its output, the 
receiver cannot always recover all the states of the dynamics used to send 
information. The incidence of the singularity of observability is given for some 
values of the parameter and the initial conditions of the transmitter. When the 
fourth state of the hyperjerk is measured at the receiver’s end, the algebraic 
system the receiver must solve, in order to get the original states from the 
estimates of the changed coordinates, can be restrained to a quadratic equation. 
The discriminant must be null, as a cryptographic function has to be injective. 
Still, the discriminant Δ  is rarely zero, allowing the estimation of only some 
combinations of the unmeasured states, not their individual values.  

A simple secret communication scheme, with the output of the transmitter 
being is its first state, was proposed. This choice leads to an identity between the 
original state space and the estimates obtained by a properly tuned higher order 
sliding-mode observer, thus the message being easily recovered by the receiver. 
The distributions of the estimation errors were considered for identical 
initialization of the transmitter and the receiver, and for different starting point for 
the latter. The receiver was shown to be robust to initial conditions change, but 
sensitive to parameter mismatch. Future improvements of the proposed scheme 
were suggested.  
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