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OBSERVABILITY PROPERTIES AND STATISTICAL
ANALYSIS OF A CHAOTIC “JOUNCE” CRYPTOSYSTEM

Octaviana DATCU', Mihai STANCIU?

Hyperchaos is considered to improve security, when compared to chaos, by
providing more complex and less vulnerable temporal signals for secret
communications. One of the simplest jounce hyperchaotic systems is analyzed to
decide upon the possibility to reconstruct all four states, at the receiving end, when
over the communication channel only one of the four states is sent. A very simple
secret communication scheme, with the first state of the transmitter as its output, is
proposed. The distributions of the estimation errors are investigated. The recovery
of the secret message is tested under changes of the secret key.

Keywords: hyperchaos, synchronization, error distribution, cryptosystem,
observer

1. Introduction

Variables such as position, velocity and acceleration are well known in the
study of the dynamics of a point. Less known are the jerk and the jounce, its
changing rate defined by (1), where &,V,d are the acceleration, velocity and
distance. Vectors j and S correspond to the jerk and the jounce, also known as
spasm, sprite, surge or snap [13].
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A chaotic system has one positive Lyapunov exponent, i.e. a direction in
which it obeys a positive reaction, being unstable. It must also possess a null
exponent along the flow and one negative exponent to ensure the evolution of the
solution in a bounded space. Consequently, a continuous chaotic system must
have at least three dimensions [14]. The hyperchaotic behavior is stated as being
the dynamics with at least two positive Lyapunov exponents, thus having at least
four coordinates [12]. This corresponds to the jounce, the fourth derivative of
position, thus being a hyperjerk. One of the simplest hyperjerks is described by
equation (2) [1]:
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X1=X2
4 3 2 2 X, = X
d X+d X+Ad X+(%j +Xx=0—> .2 3 2)
dt*  dt>  di2 \d X3 =X4

X4 =—(X + x% + AX3 +X4)
where x, =dx, (t)/dt,k ={1,2,3,4} and A is the bifurcation parameter of the system.

[1] contains the bifurcation diagram corresponding to the number of solutions the
system (2) has, when varying the parameter A in the interval [3.3;4.6].

Due to their properties, chaotic signals can be used to mask the secret
message in secure communications [9]. Pecora [10] highlighted that the extraction
of the message masked by a chaotic signal pointed out by Pérez and Cerdeira [11]
can be overcome by using hyperchaotic systems, manifesting increased
randomness and higher unpredictability compared to chaos. Hyperchaos improves
security by providing more complex and less vulnerable temporal signals [2].

One of the simplest jounce (hyperjerk) systems is analyzed to decide upon
the possibility to reconstruct all four states, at the receiving end, when a
transmitter sends over the communication channel only one of the four state
variables it possesses. A simple secret communication scheme, with the output of
the transmitter being is its first state, is proposed. This choice leads to an identity
between the original state space and the estimates obtained by a properly tuned
higher order sliding-mode observer, thus the message being easily recovered by
the receiver. The distributions of the estimation errors are taken into account for
identical initialization of the transmitter and the receiver, and for different starting
point for the latter. The recovery of the secret message is tested under changes of
the values of the control parameter and those of the initial conditions. The larger
frame of the present work is defined in [5] and [6].

2. Main results
A. The first state of the hyperjerk as output of an encryption scheme

The transform induced by choosing z; =y =X; as the output of the
transmitter (2), and successively deriving it, to reveal the unknown states, is in:

1 =X
Zy =Xy
3)
13 =X3
Ly =Xy

Following, a secret message is added to the dynamics of the hyperjerk (2)
by using the inclusion method belonging to the third generation of chaotic secure
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communication [15]. Consequently, the unknown message denoted m, is added to

the fourth equation of system (2). The coordinate change (3) becomes (4), a new
derivative of the data series being needed, in order to retrieve the message.

=X

=%

23=X3 “4)
Z4=X%4

Z5 :—(x1+x%+Ax3+x4)+m

To estimate the coordinates 7,k ={1,2,3,4,5}, the receiver uses a high
order sliding-mode observer (HOSMO) [7]:

5 R s Al5 . s

f=vy =25 -8-1"7 |2, - y*"> sign[K - (2) - y)]

By =vy=23-5- 4 |2y [ signlK - (2, - )]

A 5 1 5 2/3 . A

23 =v3=1,-3-1"3 |25 v, sign[K - (23 - v2)] (5)
By =vy=125-15L"2 |2, —v3| "2 sign[K - (24 —v3)]

2.\5 =Vj :—(22 +22223 + A224 + 25)—11 L5|gn[K (25 —V4)]

Once the 7y ,k ={1,2,3,4,5} coordinates are accurately estimated, the states

X,k = {1,2,3,4} and the message M are given by:

=1

Ry =2,

% = 23 (6)
R4 =12,

M =25+ (2 + 23 + AgZy +24)

The Euler method is used in Matlab-Simulink, being the only that is
reliable with sliding-mode simulation, according to [7]. The fixed step used is

Ts =10, The transmitter is initialized with (Xl,xz,x3,x4)|t:0 =

(0.85,0.26,0.48,0.18). Its parameter is A=3.48, for hyperchaotic behavior [1].

To tune the HOSMO (5), its parameters K and L should be chosen such
that the estimation is done accurately and subject to as less chattering as possible,
i.e. the effect induced by the high frequency control switching, which can be
dangerous in applications [7]. The observer (5) has initial conditions
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(21’22’23’24’25)|t:0 :((Xl,X2,X3,X4)|t:0,0.63), where Z5li—o was randomly

chosen from a uniform distribution in [0,1]. The parameter Ay, = A=3.48. The
recovery of the states of the transmitter and the secret message, with (5) and (6),

for parameters (K,L)=(1020,200) for the HOSMO are given in Fig. 1. More

details and values can be found at http://www.elcom.pub.ro/~od/.
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Fig. 1. Reconstruction of the states of the transmitter and of the secret message for parameters
(K,L)= (1020,200) and identical initialization of the transmitter and the receiver.
Originals in solid bold line, estimated in dashed line.

The message was chosen to be a sine wave (left), respectively a
rectangular wave (right), both with amplitude A=0.5V and frequency
f =0.5Hz. The maximum error between the estimated message and the original
one, included in the dynamics of the transmitter (2), is about 25 mV, with a very
low probability, as observed from Fig. 1. After applying the formula in the fifth
equation in (6), a first order Butterworth low pass filter with cutting frequency
f_39g =11- f 1is used, to filter high frequency noise from the estimated message.

For better comparison of the signals, the original message was also filtered.
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The states Xj,Xp,X3,X4 are accurately estimated with errors of order

10'16,10'10,10'7,10'3, respectively, as exemplified in Fig. 2, for a rectangular

wave as message.

The recovered message and the probability distribution function of the

estimation error are portrayed in Fig. 3 for different parameters K and L.
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Fig. 2. Estimation errors for parameters (K,L) = (1020

transmitter and the receiver, for rectangular wave as message.
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Fig. 3. Reconstruction of the secret message for parameters (K,L) = (1010 2-10° ) (left) and

(K,L)= (1010,5) (right); identical initialization of the transmitter and the receiver.

Once the observer is tuned, one must verify the sensitivity of
encryption scheme to a change in the key E ={A,(X[,X>,X3,X4) lt=o}. Thus,

the
the

initial conditions for the observer are chosen from random standard normal

distributions, (2y,25, 23,24, Z5) |i=o= (0.54,1.83,-2.26,0.86,0.32), whilst

the

transmitter remains initialized at (X17X29X39X4)‘t:0 =(0.85,0.26,0.48,0.18). The

observer converges to original states and the message is obtained with

out

difficulty, when the receiver has exact knowledge of the transmitter’s parameter,
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A, = A, but with inacceptable error when the receiver introduces a truncated

value of Afor the parameter Ay, as depicted in Fig. 4. The acceptable threshold
for the value of the error is established in the context of the application. If the
communication partners are interested in the absolute values of the secret
message, an error of up to 50mV =10% from its amplitude can be tolerable.
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Fig. 4. Reconstruction of the secret message for parameters (K,L) = (1010,2 103 ) when the
observer is initialized from random standard normal distributions. The parameter of the receiver is
Ay = A=3.48 (left) and Ay = 3.4 (right).
The proposed scheme can be improved with additional operations, for
example taking into account the minimum sampling distance for a chaotic
attractor to obtain statistical independent data [8].
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B. The second state of the hyperjerk transmitted over the communication
channel

If the transmitter chooses the output of (2) to be z; =y =X,, the receiver
has to solve (7). Having the algebraic solution, he is able to reconstruct the
original dynamics, knowing only the output and its successive derivatives.

21 =% X =1

H=X3 X3=12p

Z3 = X4 — X4 =13 (7
2 :—(x1+x§+A2x3+x4) X =—(212+A222+23+24)

Z5 =—(Xo + M+2Xy X3 + AgXy + Z4) M=—(2] +2212y + Ayiz + 24+ i5)

Again, an observer as the one in (5) can be used to estimate the new
coordinates {Z},2,,23,24}. The difference with respect to (5) is represented by

the dynamics in (8). The derivative of the message m was not considered due to
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the appropriate tuning of the afferent observer to overcome the unknown
perturbation.

b5 =—(2y +223 +22,25 + Ay + 25)—1.1- L-sign[K - (25 —v4)] (8)

The message was, this time, added to the evolution of the first state of the

transmitter (2), X; = X, + M. Thus, it appears last in the derivatives of the output
Y = Xy, being the furthest in space from it.

C. The third state of the hyperjerk as its output

When the transmitter chooses the output z3 =Yy =X, the coordinate

change seen by the receiver is the one in (9). Because of the supplementary
difficulty introduced by the singularity of observability manifold, the
reconstruction in (10) refers only to the states of the transmitter. For a more
detailed frame for the singularity of observability manifolds see [3,4].

Z1=X3
Zy = X4
3 =—(X +x§ + ApX3 +Xy4) ©
Z4 =—(Xg +2Xo X3+ ApXq — X| — x% —PApX3 —Xy4)
The solution in (10) can be obtained if and only if 1+27; #0.
X3 =17
X4 =1y

X2 =—(A222+Z3+Z4)/(1+2Zl) (10)

X| = A2y + 25 + 23 +(Agzy + 23 +24) % [(1+22))°]
Consequently, the singularity observability manifold, when the measured
variable is Y = z; = X3, is given by (11). Each time the measured value is in the

vicinity of —0.5, the receiver cannot get the individual values for X; and X,, but

only for the sum x| + X% . The incidence of the singularity of observability for
A=3.63 and (X;, Xy, X3’X4)|t:0 =(0.85,0.26,0.48,0.18) is given in Fig. 5 (left).

S3 = {(X, X2, X3, X4} € R | X3 = 0.5} (11)
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Fig. 5. Transmitter with A=3.63 and (Xlaxz’XS’X4)|t:0 =(0.85,0.26,0.48,0.18). Left: The output

X3 and the singularity of observability (bold line) (top). Distribution of X3 (bottom).

Right: Discriminant of the quadratic equation in X, (13), induced by the measured state Xy4.

D. The fourth state of the hyperjerk measured at the receiver’s end

The output of the transmitter is z4 =Yy =X4, such that the coordinate
change between the transmitter’s state space and the receiver’s is:

1 =Xy4

Zy =—(X1 +X§ + A2X3 + Zl)

(12)

Z3 =—(X2 +2X2X3 + A221 + 22)

Zy = —(X3 +2X221 +2X§ + A222 + 23)
The system (12) can be rewritten as in (13), where the quadratic equation
in X, must have unique solution, as a cryptographic function has to be injective.

21 = X4

X = (2] +25)~ (X3 + AyX3)

Z3X3 = =X X3(14+2X3) = X3(Ag 2 +23)

o (13)

ZyXy = —x3x2(1+2x3)—221x% —X2(ApZy +123)

—>221x% +Xo(AgZy +23+24)—X3(ArZ; +25 +23)=0

To fulfill this requirement, the discriminant A=(Ayz; +23+ 24)2

+821X3(AyZ] + 25 + 73) must be null. In this case, the solution of system (12) is
the one from (14), where the conditions 7; #0 and AyZ; + 2, + 23 # 0 must also
be fulfilled. Still, the discriminant A is rarely zero, as illustrated in Fig. 4 (right)
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for A=3.63 and (X},Xp,X3, X4)|t:0 =(0.85,0.26,0.48,0.18), where the measured

variable is X4.

X
(14)

23 = —(A222 + 23 + 24)2 /[821(A221 + 22 + 23)]

- A A "2 -
X ==(21 +25) = (X5 + A X3)
3. Conclusions

The continuous-time hyperchaotic behavior implies the existence of at
least a fourth dimensional state space. Increased randomness and high
unpredictability makes them suitable for cryptographic applications. One of the
simplest jounce (hyperjerk) system was analyzed to decide upon the possibility to
reconstruct all four states, at the receiving end, when a transmitter sends over the
communication channel only one of the four state variables it possess. The first
and the second states were proved to engender full reconstruction when measured
by the receiver. For the third state of the hyperjerk chosen as its output, the
receiver cannot always recover all the states of the dynamics used to send
information. The incidence of the singularity of observability is given for some
values of the parameter and the initial conditions of the transmitter. When the
fourth state of the hyperjerk is measured at the receiver’s end, the algebraic
system the receiver must solve, in order to get the original states from the
estimates of the changed coordinates, can be restrained to a quadratic equation.
The discriminant must be null, as a cryptographic function has to be injective.
Still, the discriminant A is rarely zero, allowing the estimation of only some
combinations of the unmeasured states, not their individual values.

A simple secret communication scheme, with the output of the transmitter
being is its first state, was proposed. This choice leads to an identity between the
original state space and the estimates obtained by a properly tuned higher order
sliding-mode observer, thus the message being easily recovered by the receiver.
The distributions of the estimation errors were considered for identical
initialization of the transmitter and the receiver, and for different starting point for
the latter. The receiver was shown to be robust to initial conditions change, but
sensitive to parameter mismatch. Future improvements of the proposed scheme
were suggested.
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