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NOVEL APPROACHES IN GENERATING RANDOM
NUMBERS USING GRAPHICS PROCESSING UNIT

Alexandru PIRJAN', Dana PETROSANU?

In this paper, we have researched and developed optimization solutions for
implementing the Sobol random number generator in the Compute Unified Device
Architecture. We have conducted a thorough analysis, using a series of experimental
tests, for studying the solutions’ influence on the execution time, on the number of
generated samples per second and on the energy consumption. Lately, in the
literature, there has been a lot of interest for developing random number generators,
but none of the works so far (to our best knowledge) has developed optimization
solutions targeted towards the Kepler GKI104 architecture, harnessing its novel
technical features.
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random number generator, warp shuffle instruction, thread blocks.

1. Introduction

The random number generation is an essential component in numerous
applications, especially in simulation problems. In particular, a fast parallel
number generation decisively influences the performance of the parallel Monte
Carlo simulations that are frequently needed in countless scientific fields, like
financial management, computational finance, engineering, computational
science, telecommunications, applied statistics, physical sciences, medicine and
computational biology. Traditionally, random number generators process most of
the data in a sequential manner and therefore, their software implementations on
central processing units often face significant computational limitations. The
Compute Unified Device Architecture (CUDA) offers a potential solution to
overcome all of these limitations by harnessing the huge parallel computational
power of CUDA-enabled graphic processing units (GPUs).

We have used in our research two of the most powerful and recent
graphics processing cards, from the latest CUDA-enabled architectures: the Fermi
architecture GF100 (from this architecture we have used the GeForce GTX480
reference graphic card) and the Kepler GK104 architecture (in this case we have
used the GeForce GTX680 reference graphic card). We have carefully taken into
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account with utmost importance all of these technical characteristics when
developing and implementing our random number generator solution.

2. The Sobol random number generator algorithm

The Russian mathematician I. M. Sobol has introduced in 1967 the notion
of Sobol sequences, an example of quasi-random, low-discrepancy sequences,
obtained through a standard algorithm for generating uniform numbers in the unit
hypercube [1].

Sobol’s random number generator algorithm, useful in performing
numerical integration in the unit hypercube, constructs a sequence within the
hypercube, filling it regularly. In order to compute the integral, one has to
approximate it using the average of the function values in these points. If we
denote by U™ = [0.1]™ the unit m-dimensional hypercube and f:U™ — R an
integrable function over U™, the Sobol sequence x; € U™ satisfies the equation:

limy, o —ZS“: Cd = [ S (1)
where the left side limit is finite and the convergence must be as fast as possible.

Broadly, the Sobol random number generator algorithm is based on a set
of variables that determines a state, denoted by X, at the n-th step, linked with the
next step’s state by an equation of the type:

Xn+1 = [1(Xn) (2)
that allows the determination of each step’s state, starting from the initial value
X, An output process generates a quasi-random (approximately uniformly
distributed) sequence:

Xn = g(Xn). (3)

The parallelization of this random number generator is achievable taking
into account that a CUDA thread block generates a block of numbers and
therefore it requires the usage of a powerful advanced leaping algorithm that
facilitates bouncing at the block’s start. In this way, the generator can bounce over
a number of points using an algorithm of the type X, = fx(X,), having the
complexity O(logk). In order to perform the bouncing, we have researched the
possibilities and identified three viable solutions:

a) The simple bounce solution: starting from a specified point in the
generator sequence, each CUDA thread performs a bounce and then it generates a
segment of points. These bounces are executed so that the segments do not
overlap and are adjacent.

b) The strided bounce solution: the n-th thread (n < N) generates the
points n,n + N,n + 2N and so on.

c) The hybrid bounce solution: first, at the thread block level, a large
bounce is performed and afterwards, within a block, each thread executes the
strided bounce.
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The Sobol random number generator algorithm discussed in this paper
uses an efficient bouncing method. We have implemented the simple bounce
technique and it proved to be an efficient approach. However, we have obtained
an even more efficient result using the hybrid bounce approach because, when
writing the output data, this solution has the considerable advantage of simple
memory coalescence.

The initial Sobol’s algorithm for obtaining the sequence was later
improved [2]. The main results that we have obtained in this paper are based on
the usage of Gray code and lead us to the conclusion that if the sequence’s points
were being permuted, a recurrence relation can be identified. This relation allows
the simple generation of the (j + 1)-th point directly from the previous one, the j-
th. Starting from this result, one can develop an efficient C algorithm that
generates the Sobol sequences [3]. We have developed our algorithm by
parallelizing and implementing the initial sequential C algorithm in the Compute
Unified Device Architecture.

In order to generate Sobol sequences in the unit cube [3], one must first
notice that a high dimension sequence is composed of more one-dimensional
sequences and therefore it is sufficient to study a one dimensional Sobol
sequence.

Usually, there are generated up to 23? = 4,294,967,296 points. In this
case, we have defined the Sobol sequence using a set of 32-bit integers w,,, 1 <
r < 32, called direction numbers. The sequence y, ¥,, ... is defined by:

Yn = g1W1 @ G2w2 @ g3w3 @ ... = Y1 @ W1y, 4)
where y, = 0. In the equation (4) we have used the following notations:

- @ is the binary “or” operator (exclusive)

- the bits g, are given by the binary expansion of the Gray code

representation of n, namely n @ (n/z) = 030,01

- the function f(n) returns the index of the rightmost zero bit in the binary
expansion of n.

The Sobol sequence is obtained using the sequence y,, using the following
relation:

X, =273y, (5)

When generating multidimensional Sobol sequences, it is recommended to
use different direction numbers for each of the dimensions and to choose these
numbers carefully in order to maintain the multidimensional uniformity properties
of the sequence [4].

After having analysed the equation (4), we have noticed that the first
relation offers a method for bouncing to the point y, as this relation gives the
formula for direct computing y,,, while the second relation represents an algorithm
for computing y,, starting from the value of y, ;. In this second expression, we
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first consider the natural nonzero number n fixed and then we increase it with 8. If
the bit pattern of n is n = --- b3b,b;and we add 8 at n, these last three bits remain
unchanged as 8, = 1000. Computing f(n + i) for each i,1 <i <8, one can
observe that we obtain the result 1 four times, the result 2 twice, the result 3 once
and a result bigger than 3 once. Taking into account the property of the exclusive
or:
a®b®b=a, (6)

we obtain:

Vg =Yn @w Ow; @w; Dw; @ w, Dw, D wz D wy, =¥, D wz D wg, (7)
where a,, > 3. More general, for any power of two, one can obtain:

Yot = Yn D we @ Wa,» (3)
where a,, > t, a, = f(n|2* — 1) and the”|” denotes the bitwise or operator. Thus,
it has been obtained a strided (“leapfrog”) bounce generation [5].

In the following, we present an efficient method that we have developed
and applied for implementing the Sobol pseudorandom number generator
algorithm in the CUDA architecture.

3. The CUDA implementation of the Sobol random numbers
generator algorithm

The implementation of the Sobol random numbers generator algorithm in
the CUDA parallel programming model is facilitated by the fact that CUDA
supports random writes in memory and bitwise arithmetic operations.

In order to develop the CUDA implementation of the above-described
algorithm, we have first computed the values of the direction numbers on the host
and then we have copied them to the device. In order to obtain a 32-bit Sobol
sequence, we needed, for each dimension, at most 32 values for the directions w,.
Taking into account that in a multidimensional Sobol sequence the dimensions are
independent, we have computed each dimension’s points using one (or more)
blocks. When we have used one block per dimension, then for each Sobol
dimension a block of threads was launched, having the dimension 2¢,t > 6. The
32w, values, corresponding to this dimension, are copied in the shared memory.

The k-th thread of the block bounces ahead to the value y;, according to

the first relation from the equation (7). Usually, the bit pattern of k @ (k/z)

contains mostly zero values and therefore, only a few bouncing iterations are
needed. As in equation (8), the thread generates the points iteratively:
Yir Via2tr Yie4o2t+1, ... At each step there are required the previous value of y and
the new value of a,,, while the value of w; is fixed in this iteration. As successive
threads within the same warp generate successive values in the sequence, the write
operations into the global memory are coalesced. When writing data in the global
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memory, we have first stored the numbers corresponding to the first Sobol
dimension, then for the second one and the process has continued until we have
reached the last dimension.

If we consider a Sobol sequence having the dimension D, a total number N
of generated points, x the array that contains the generated points, then for a
dimension 0 < d < D and an index 0 < k < N, the k-th generated value of the d
dimension is located on the position x[d * N + k]. If more blocks of threads were
available, additional parallel thread blocks could be used per each dimension,
considering the fact that the number of blocks must be a power of two. For
example, if the number of parallel thread blocks is 27, then the k-th thread in a
block generates the points Yy, ¥, L ot+8, Y4 pt+8+1, - [3].

We have developed and implemented a suite of optimization solutions for
achieving a high level of performance for our Sobol random number generator’s
CUDA implementation, in a broad range of scenarios and situations that we
present in the following.

Solution 1. Using an efficient hybrid bouncing technique. We have
implemented an efficient hybrid bouncing solution: a large bounce is performed
first at the thread block level and then, within a block, each thread executes a
strided bounce, as we have described in the section 2 of this paper. This solution
has the advantage of simple memory coalescence when writing the output data.

Solution 2. Scaling the number of used thread blocks according to the
number of dimensions and vectors. In order to attain algorithmic and hardware
efficiency for the Sobol random number generator’s implementation in CUDA,
we have used multiple thread blocks, scaled to the number of dimensions and
generated vectors. Thus, we have obtained considerable improvements, regarding
the execution time and number of generated elements per second, compared to the
sequential implementation run on the central processing unit.

Solution 3. Load balancing the parallel computational tasks. As we
have mentioned before, one of the main advantages offered by the CUDA
architecture is the huge amount of parallelism that can be employed through
multiple processing threads [6]. In order to benefit from this advantage, we have
processed multiple parallel instances of the Sobol random number generator’s
implementation, thus optimizing the computational load and benefitting from the
huge computational resources of the CUDA architecture.

Solution 4. Optimal management of the task distribution among the
available threads. Using a single thread for generating one element causes high
memory latency, as it has not been generated an appropriate computational load
for the streaming multiprocessors. The GPU reduces the memory latency by
executing in parallel the concurrent threads, unlike the CPU that hides memory
latency by using extensively cache memory. In order to launch multiple instances
of the Sobol random number generator and to reduce memory latency, we have
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distributed the computational tasks among multiple execution cores, taking into
account that the CUDA architecture offers 1536 cores for the GTX 680 and 480
cores for the GTX 480. After analysing the GPUs’ features and experimenting
with different settings for the resources’ allocation, we have decided to use 256
threads per block for the GTX 480 and 512 threads per block for the GTX 680, as
with these resources we have obtained the best results.

Solution 5. Using the shared memory for storing data. As the GPU’s
shared memory offers an improved memory bandwidth and reduced latency, we
have decided to use shared memory for storing local data, thus obtaining an
improvement in the coherence level and the overall performance of our Sobol
random number generator in CUDA.

Solution 6. Avoiding shared memory banks conflicts. The CUDA
memory banks are shared memory modules, having the same size, each of them
storing a 32-bit value [7]. If the same memory bank receives multiple data
requests from the same memory address or from different ones, a memory bank
conflict could be triggered. In this case, the hardware device serializes the
requests, putting the threads in standby and then processes the memory requests
sequentially. We have avoided this process that creates a time penalty, by assuring
that all the threads of a half warp read the same memory address, thus triggering a
complex distribution mechanism that broadcasts data to many threads
simultaneously.

Solution 7. Saving shared memory by using the warp shuffle
operation. Taking into account that the warp shuffle operation is specific to the
devices that have the compute capability 3.x, we have developed and applied this
solution only for the GTX 680 graphic processing unit from the Kepler
architecture. By using the warp shuffle operation, we have exchanged data
directly between the threads of the same warp, thus managing to save a
considerable amount of shared memory, maintaining the memory latency at a
minimum.

Solution 8. Minimizing the synchronization operations of the parallel
tasks. In order to synchronize the tasks, one must usually define a synchronization
point in the application that prevents a task from continuing its execution until
other tasks have arrived at a certain point. In the case of the Kepler GK104
architecture, we have used the warp shuffle operation described in Solution 7, in
order to reduce the number of necessary synchronization operations. In the case of
the GF100 architecture, we have used the shared memory and processed data in
warps (as the warp shuffle operation is not supported). In this way, we were able
to share data between the threads of the same warp, without having to
synchronize. The only time when we had to synchronize was when sharing data
between the threads of different warps.
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Solution 9. Minimizing the usage of register memory. We had to take
into account the fact that the threads’ number was limited by the register memory
requirements because each thread needs its own private and register memory [8].
In addition, this type of memory is very important in our problem as it is being
used for storing the partial results. Consequently, by reducing the number of
registers, we were able to generate the necessary number of threads.

Solution 10. Using the CPU for generating random numbers until
reaching a certain threshold. After we have analysed the obtained experimental
results, we have concluded that the CPU offers the best results until a certain
threshold is reached. This threshold is influenced by the number of generated
vectors and the vector’s dimension because, until this threshold has been reached,
the computational load is not high enough as to harness the huge processing
power of the GPUs.

We have developed and run a series of benchmark tests for analysing the
efficiency of the developed optimization solutions for our Sobol random number
generator’s CUDA implementation. In the following, we depict and analyse the
obtained experimental results.

4. Experimental results

After having developed and applied the optimization solutions for the
Sobol random number generator’s CUDA implementation, we have analysed their
efficiency through a series of experimental tests that we have developed using
three different processing units, namely: the central processing unit Sandy Bridge
Intel 17-2600K, the graphic processing unit GTX 480 from the CUDA-Fermi
architecture and the GTX 680 from the CUDA-Kepler architecture.

In order to obtain an objective measurement of the energy consumption,
when we have run the tests on the CPU, we have used only the integrated Intel
HD Graphics 3000 graphic core from the i7-2600K CPU and no other discrete
graphic card was installed in the system. Because neither the CPU nor the
integrated graphic core allows the execution of the developed optimized Sobol
CUDA implementation, we have run on the CPU a sequential version of the
generator. In all the three cases, beside the above mentioned software components
we have used the Windows 8 Pro 64-bit operating system, a total amount of
2x4GB of DDR3 random access memory dual channel at 1333MHz, the CUDA
Toolkit 5.0 and the NVIDIA developer driver version 306.97 in order to program
and access the GPUs.

We have benchmarked different allocation settings regarding the GPUs’
thread blocks’ sizes (taking into account the features of each graphic processing
architecture) and we have finally chosen the optimum resources allocation, that
have provided the best level of performance: 256 threads per block for the GTX
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480 and 512 threads per block for the GTX 680. As our random number generator
is designed to be implemented in various GPU applications, having different
computational requirements, complexities and dimensions, we have chosen to
measure within our tests only the execution time of the generator, but not the
transfer times between the CPU and the GPU, as these times are application-
specific.

In our experimental tests, we have successively generated a number of
10,102,103,10%, 10°,10° and 107 vectors of float type elements, ranging from
10 to 10* elements. In order to obtain accurate, reliable results, we have run
1000 iterations for each of the tests and then we have computed their average. We
have computed the execution time (in milliseconds) and the number of generated
samples per second (in millions per second) for each case, when generating the
samples on the 17-2600K CPU and on the GTX 480, GTX 680 GPUs.

After analysing the obtained experimental results, we have concluded that
for a small number of generated vectors and for low dimension vectors, the best
results (the lowest execution time, the highest number of generated samples per
second) have been recorded on the CPU, as it has not been generated a sufficient
computational load that fully employed the huge parallel computing power of the
GPUs. For each number of generated vectors, as the vector’s dimension increases,
the GTX 680 and then the GTX 480 surpass the CPU and obtain the best
performance, starting with a certain threshold that is influenced by the vectors’
number and dimension. We have also noticed that, as the number of generated
vectors has increased, the above mentioned threshold decreased and from a certain
point the threshold does not exist anymore, as the GPU surpasses the CPU in
every case, without being influenced by the number of dimensions. Thus, when
generating a number of 10* vectors or higher, we have noticed that the best
performance has been obtained on the GTX 680 GPU, then on the GTX 480

(Table 1).
Table 1
The threshold from which the CPU’s performance has been surpassed by the GPUs

The number of

The number of

vectors dimensions - threshold
10 2500
102 250
103 50
10* — 107 -

Another aspect worth mentioning is that, starting from a number of 10°
generated vectors and a certain number of dimensions (e.g. 10* when generating
10° vectors, 103 when generating 10° vectors or 10?> when generating 107
vectors), the necessary memory requirements exceeded our system’s available
memory and from this point forward, if we had decided to continue, we would
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have been forced to write the generated data on the disk and generate the rest of
the numbers in partitions that do not exceed the system’s available memory.

For example, when generating a number of n = 10* vectors, with a
dimension ranging from 10 to 10* float type elements, we have obtained in all the
analysed situations the lowest execution time on the GTX 680 and then on the
GTX 480 (Table 2, Fig. 1).

Table 2
Synthetic experimental results — the execution time for n = 10* vectors
No. Dimensions Execution time (ms?

GTX 480 | GTX 680 i7-2600K
1 10 0.208197 0.141573 0.988593
2 102 0.181088 0.158399 9.814390
3 103 0.51001 0.386381 98.743101
4 104 3.64851 2.788590 985.239000

The execution time: 10000 vectors
1000
900
800
00
600

500

400

W —CPUI7 2600K

= GTX 480
—GTX 680

The execution time (ms)

200

100

0

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
Dimensions

Fig. 1. The execution time for n = 10* vectors

Analysing the number of generated samples per second, we have noticed
that the GTX 680 offers the best performance and is succeeded by the GTX 480,
clearly surpassing the CPU’s performance (Table 3, Fig. 2).

Table 3
Synthetic experimental results — the number of generated samples per second for n = 10*
vectors
No. | Dimensions Millions of numbers genefated/s

GTX 480 GTX 680 i7-2600K
1 10 480.314 706.352 101.154
2 10?2 5522.18 6313.171 101.891
3 103 19607.4 25881.201 101.273
4 10* 27408.5 35860.502 101.498
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The number of generated samples
per second: 10000 vectors
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Fig. 2. The number of generated samples per second for n = 10* vectors

Of particular interest in our research was to highlight the energy efficiency
of our Sobol random number generator’s CUDA implementation, comparing it to
the efficiency of the sequential approach, run on the CPU. Therefore, we have
computed the total execution time for all of our analysed situations within the
experimental tests (ie for all the number of vectors, for all their dimensions, for all
the 1000 iterations and for each of the 3 processing units). In order to determine
the system’s power (kW) and the total energy consumption in all of the analysed
cases, we have used the Voltcraft Energy Logger 4000, an energy consumption
meter device (Table 4).

Table 4
The system’s power and the total energy consumption

The processing unit i7-2600K | GTX 480 GTX 680
The total execution 1212 0.006 0.004
time (h)
The system’s power
(kW) 0.198 0.358 0.307
The total energy
consumption (kWh) 0.240 0.002 0.001
The GPU’s consumption compared | 120 times | 240 times
to the CPU’s lower lower

By analysing the above synthesized results, we have noticed that the total
energy consumption is 120 times lower when the Sobol random number generator
is run on the GTX 480 GPU than when it is run on the CPU and 240 times lower
when the Sobol random number generator is run on the GTX 680 GPU than when
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it is run on the CPU. Thus, by using the GTX 680 GPU when running the Sobol
random number generator, we have obtained 240 times lower execution costs then
by using the CPU and 120 times lower when using the GTX 480 GPU.

After analysing the obtained experimental results, we have concluded that
the optimization solutions, that we have developed for improving the performance
of our Sobol random number generator’s CUDA implementation, offer
remarkable results in a wide range of situations and scenarios. Thus, the generator
proves to be a powerful and useful tool in many applications that require
generating random numbers.

5. Conclusions

We have aimed in our research to harness the novel technical features and
the huge parallel computing power offered by the latest generations of CUDA-
enabled graphic processing units (GPUs) from the Fermi GF100 and the Kepler
GK104 architectures. We were able to achieve this by improving continuously
and progressively the optimization solutions.

We have obtained very promising results, the developed solutions offering
a high level of performance and applicability. As we have generated a large
volume of output data on different GPU architectures, using a large number of
tests’ iterations, we have obtained a detailed analysis of our Sobol random number
generator’s characteristics.

Lately, in the literature, the interest in implementing random number
generators on parallel architectures has continued to grow and a series of works
have treated this topic. However, to the best of our knowledge, none of these
works has studied the development of specific solutions for improving the
performance of random number generators using CUDA-enabled GPUs of
compute capability 3.x. By analysing the experimental results, we have noticed
that our optimization solutions applied to the Kepler GK104 architecture achieve
a huge level of performance when generating Sobol random sequences. The
optimization solutions developed within this research prove their effectiveness
and usefulness, the CUDA implementation of the Sobol generator proving to be a
novel approach in generating random numbers using graphics processing units, a
powerful and useful tool in a wide range of applications that require the
generation of random numbers.

Undoubtedly, graphic processing units that support the Compute Unified
Device Architecture have an enormous potential to overcome the performance
limitations of current central processing units’ architectures, offering considerable
advantages in developing solutions that optimize data processing and lead to huge
improvements in energy efficiency and computing performance.
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