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INTEGRATED ACTIVE-REACTIVE POWER DISPATCHING
MODEL BASED ON DEEP REINFORCEMENT LEARNING

Zizhao LINY", Xuefei LIU?, Qidong TIAN?®

The integrated active and reactive power dispatching model based on deep
migration reinforcement learning is proposed. Reinforcement learning can guide the
agent to acquire optimal scheduling knowledge in the source task, and the migration
network can realize the application of the knowledge learned in the source task to
new operating scenarios. Through the simulation of IEEE 14 buses, the design
method of key elements of agent is given, including the construction of state, action
and reward function. By calculating the similarity of the scene, the dispatching
strategy under the new scene can be quickly obtained.

Keywords: artificial intelligence; optimal distribution of active power; automatic
voltage control; deep reinforcement learning; DDPG algorithm

1. Introduction

Power system is a nonlinear artificial system with multivariable coupling
and complex operation behavior. Power grid dispatching control center is the
"control center" for safe, reliable and economic operation of power system [1][2].
For a long time, the power grid regulation operation is mainly based on the staff
monitoring the operation state of the power system through equipment to assist in
analysis, and then making dispatching decisions according to personal judgment
[3]. Every link in the decision-making depends more on the knowledge level and
experience of the staff, and the regulators need to participate and lead, which is
subjective and different. At the same time, the power grid structure is becoming
more and more complex due to distributed energy access, expansion and other
factors, the requirements for operation dispatching mode are becoming more and
more strict, and the complexity of multivariable coupling is increasing [4][6]. It is
urgent to find an intelligent method to assist in solving the traditional active and
reactive power integrated dispatching method that depends on Mechanism
Analysis and dispatcher's personal decision-making, so as to support the economic
and safe operation of the power grid.

In the power systems daily operation, there are classical nonlinear
programming methods and heuristic algorithms for the day ahead scheduling
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problem of active power allocation and reactive power allocation [7][10].
However, due to the discreteness of variables, the objective function and
constraint conditions of the power system are discontinuous. At the same time, the
power system is a multivariable coupled nonlinear artificial system. Many local
optimal solutions often exist in the optimization solution. The traditional
optimization methods such as Newton's method and Interior Point Method are
easy to fall into local optimum when solving the day ahead scheduling [11][12].
And the classical mathematical methods are often difficult to solve because of the
optimization model presents the discontinuity, non-derivation, multi extremum
and multi segment constraints of the optimization model presents [13].

On the other hand, traditional heuristic algorithms such as Particle Swarm
optimization, Genetic Algorithm, artificial bee colony algorithm and Gray Wolf
Optimizer rely less on mathematical models than traditional optimization
methods, can solve nonlinear and discontinuous optimization problems, and have
successful application scenarios in various optimization problems of power
system [14]-[17]. However, the solution time of such algorithms is too long to
meet the timeliness of scheduling, especially the real-time optimization task of
short time scale in large-scale power system [18]. In addition, the classical
nonlinear programming methods and heuristic algorithms do not have the ability
of "knowledge learning™ and "migration application” [19]. When optimizing the
scheduling of new scenarios, the solution process must be run from scratch, and
the optimization experience cannot be accumulated from the solution history [20].
As a result, the optimization solution of this kind of algorithm is independent
every time, and it cannot learn quickly according to the past experience, so it is
difficult to move and apply to other scenarios. Not only the solution time is too
long, but also the scope of application is limited by the training set, which is
difficult to meet the optimal scheduling requirements of increasingly complex
power systems.

With the rapid development of artificial intelligence technology and its
recent success in many fields including autopilot and game, the ability of
autonomous learning and decision making for deep reinforcement learning in
complex dynamic systems is reflected. Experts and scholars in the field of power
have always paid attention to the application of artificial intelligence technology
in power system [21][23]. Artificial intelligence algorithm has been preliminarily
applied to active or reactive power dispatching in power system. In recent years,
some scholars have tried to apply artificial intelligence algorithms such as DQN,
AC, A2C, PG, DDPG to the research of power grid AVC [24], AGC [25] and load
side regulation [26], but they only consider the separate optimization of active or
reactive power. Reference [27] analyzes the current situation and existing
problems of the application of artificial intelligence in power system, gives the
design criteria and general framework of regulation system based on artificial
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intelligence, and expounds the technical difficulties of the application of artificial
intelligence in power grid regulation. Reference [28] proposed an economic
generation scheduling and control framework, which can obtain smaller control
error, smaller total cost and fewer reverse regulation times, so as to solve the
coordination problem of multi-scale economic scheduling and generation control
in power system. Reference [29] takes the prediction mechanism of neural
network as the action selection mechanism of reinforcement learning to solve the
problem of random disturbance caused by large-scale access of distributed energy
to the power grid. The above literatures are all successful scenarios of deep
reinforcement learning in the field of power system, but there are generally low
data utilization efficiency. It is necessary to retrain an agent for different types of
tasks, which often requires a lot of interaction with the environment, which limits
the application of reinforcement learning in some practical scenarios. In addition,
the scheduling optimization algorithm based on reinforcement learning has
insufficient generalization ability in unfamiliar scenes. If it is retrained in new
scenes, it will cost a lot of time. Therefore, how to combine the continuously
developed advanced algorithms with the needs of the power system field and
better solve the practical needs of the energy field based on the advantages of
algorithms is still in a primary exploration stage and quite challenging.

The innovation of this paper is to apply deep reinforcement learning to
improve the DDPG algorithm to solve the problem of active and reactive power
integration and coordinated operation in power dispatching. Different from the
discrete action interval in other articles, the action interval in this paper is mainly
continuous action interval; compared with the traditional DDPG method, the
accuracy of its application in power grid dispatching is improved; compared with
genetic algorithm and other heuristic algorithms, the accuracy of the application
of "knowledge transfer" of the improved DDPG algorithm is confirmed, and it has
significant timeliness.

2. Active and reactive power integrated dispatching framework of
power system

2.1 Basic power system dispatching problems

The basic task of power system dispatching is to control the operation
mode of power system so that it can meet the requirements of safe, economic and
high-quality power supply under normal or accident conditions.

He key problem of traditional power grid optimal dispatching is that the
model solution is complex. Some functional decoupling and model simplification
have to be carried out in order to meet the needs of multi scenario rapid solution.
Therefore, the operation performance of power grid is difficult to be more
optimized. In recent years, artificial intelligence methods represented by deep
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reinforcement learning have made remarkable achievements in solving high-
dimensional nonlinear optimization problems, which makes it possible to train
agents to effectively deal with the scheduling knowledge of various scenarios, and
then use the knowledge for integrated scheduling.

Using the knowledge extraction ability of reinforcement learning method,
this paper regards the optimal dispatching problem of power system as two
optimization objectives considering power grid operation cost and voltage level,
takes the active output of generator, the given voltage of generator and dimmer,
the compensation of transformer tap and reactive power compensation equipment
as control variables, and takes power components and network constraints as basic
constraints, The active and reactive power distribution of power grid is
coordinated and optimized, and the migration learning method is introduced to
deal with the complex and changeable operation scenarios of power grid. Under
this intelligent scheduling architecture, more objectives or complex nonlinear
constraints can be easily considered in combination with engineering
requirements. However, in order to facilitate the comparison of the income
increment brought by intelligent scheduling and traditional scheduling methods,
this paper defines the integrated scheduling problem as above.

2.2 The basic method of applying active and reactive power integrated
dispatching based on reinforcement transfer learning

For the problem of active and reactive power coordination and
optimization, the traditional reinforcement learning usually includes: observing
the power grid environment to determine the state quantity, the content of the
action quantity, designing the corresponding objective function according to the
actual problems to be solved, the agent takes actions according to the state to
interact with the environment to obtain returns, taking different actions and the
obtained returns in the same state to store as experience Apply the learned
experience to practice. When applying transfer reinforcement learning, the
difference lies in the clear division of the scope of the source problem and the
transfer problem, as well as the transfer method. When a new agent obtains a new
scene, it first judges whether it is an "old problem™ under the source problem
domain. If the source problem domain has this problem label, the existing
knowledge is adopted; if the label error exceeds the threshold, it is judged as an
expansion problem and transfer learning is carried out. The whole process is
shown in Fig. 1.
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3. Active and reactive power coordination optimization modeling
based on Reinforcement Learning

3.1 Introduction to deep transfer reinforcement learning

A reinforcement learning solution process can be represented by Markov
decision process. Usually, a Markov decision process includes state matrix, return
matrix, action matrix, P,y. The state matrix consists of all States s in the
environment that affect the decision-making of agent; the action matrix is
composed of a set of decision actions a that can be taken by the agent. The return
matrix is composed of the short-term return r, which return by the environment
according to s and a, to judge the impact on the s; y is uncertainty coefficient of
long-term return, avoid the agent relying too much on future rewards. When the
dimension of state action matrix of reinforcement learning is very large, the
exploration stage of finding the optimal strategy is time-consuming; at the same
time, large data samples for training are often difficult to obtain in practical
problems, and retraining is very time-consuming. Therefore, scholars have studied
the possibility of applying the advantages of transfer learning to reinforcement
learning, hoping to transfer knowledge from source tasks to new tasks to improve
performance. According to the differences of application methods, there are three
kinds of transfer settings in reinforcement learning.

1. Instance Transfer. The simplest migration algorithm collects samples
from different tasks and reuses them in the learning of target tasks.

2. Representation Transfer. Each RL algorithm uses specific
representations for tasks and solutions, such as neural networks, or a set of basis
functions that approximate the optimal value function.

3. Parameter Transfer. The migration method changes and adjusts the
algorithm parameters according to the source task, so as to speed up the learning
process.

In this paper, in order to speed up the accuracy and timeliness of online
application, the idea of parameter transfer is used to optimize the traditional
reinforcement learning.

3.2 Reward function design

Acrtificial intelligence method is very important for the setting of reward
function. The setting of reward is the driving force for agents to move in a better
direction. Setting a good reward function can make the training converge quickly
and accurately. In this paper, the following objective function is set to solve the
active and reactive power coordination optimization problem:
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The control problem of day ahead scheduling is often the problem of
minimizing the objective function. Reinforcement learning is often trained in the
direction of maximizing the Q value, so the objective function is slightly
processed here to make it more consistent with the reinforcement learning mode
of thinking. The Relu function in equation (1) is a primary function with only a
positive half axis, and the negative half axis is 0. ki, ko, ks, a, b, c1, ¢z, C3, are
constants, ki, ko, ks is the proportion coefficient, which represents the proportion
between different targets, because generally speaking, the economy of generator
cost is more concerned than voltage level. a, b is the base of the exponential
function. The purpose of using the exponential function is to normalize different
objective functions to the interval of [0,1].

Through experiments, it is found that the numerical value is easier to
stabilize and converge than the value return training neural network between cells.
Therefore, in order to map different values to the appropriate interval, this paper
sets the amplification and reduction coefficient c1, c2, c3 to adjust the size of the
interval mapped to the exponential function. If the generator cost and voltage
deviation are used to train the network directly, there is a large gap between the
values of different objective functions, so this paper chooses the form of
exponential function to normalize it.

3.3 Constraint equation of active and reactive power coordination
optimization

Because the environment of agent interaction is power grid, there are
certain constraints. The constraint equations include: power balance equation of
power flow. The upper and lower limits of generator active power and reactive
power, the upper and lower limits of condenser reactive power, transformer
transformation ratio, reactive power compensation capacity, and so on, are
inequality constraints, which are also defined in the action interval.
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Where, i,j is the node number; n, is the number of nodes;Pi, Qi is active
power and reactive power injecting into the node i; vi is the voltage amplitude of
the node.#ij Is the voltage phase angle difference between nodes i and j;Gij and Bij
are the elements in the admittance matrix; Pgm is the active power output of the
generator m; Qgm is the reactive power output of the generator m; kmm is the
selection of tap on load tap changer m; Qcm is the selection of capacity of
capacitor m.

3.4 Network structure design and hyperparametric optimization

In addition to the conventional actor network and Critic network, this
paper also sets up ¢ network to control the variance of action during exploration.
After a large number of experiments and relevant scene references [18], the
parameter is set as: the network input of execution action is Nx1 matrix, the
number of hidden layers is 2, the number of neurons is 1280 and 256 respectively,
and the number of neurons in the output layer is 256. The activation function uses
tanh uses mean square error (MSE), and the optimization algorithm is RMSprop.
The evaluation network consists of s observed by the agent and a taking
corresponding action. The number of hidden layers is the same as that of the
execution network. The number of neurons is 1280 and 256 respectively. After
adding, 128 neurons are connected. The number of neurons in the output layer is
1, which is the Q value obtained by the evaluation network taking a certain a
under this s. The activation function of the output layer is relu, and the other
activation functions use tanh. The network structure diagram is shown in Fig. 2.

When transfer reinforcement learning is used to train different scenarios,
the "common knowledge™ of active and reactive power integrated scheduling in
historical scenarios is stored in the neural network. In order to transfer the
knowledge learned from the source problem to the expansion problem, this paper
fixes the parameters of the hidden layer in the original Actor and Crtic network
except the last layer, and only updates the gradient of the last hidden layer during
training. The reason for this is that the underlying network of neural network often
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extracts common features, and the knowledge differences with different
characteristics are often reflected in the last layer of neural network. Appendix A
gives some super parameters that usually need to be set in transfer reinforcement
learning network training. The meaning of super parameters is shown in Appendix
Al.
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Fig. 2. Schematic diagram of Actor-Critic network structure
4. Case study

For the problem of active and reactive power integrated dispatching, the
division of source problem and expansion problem is very important.In this
example IEEE-14 node system. The computer configuration used in this
experiment is: CPU: Intel i7-7700hq;GPU:NVDIA GTX 1060Ti;Memory: 8G
DDR4;python 3.6; Tensorflow 1.7.1; Tensorboard 1.7.0;pytorch 1.2.0;pypower
5.1.4. The electrical wiring diagram of IEEE-14 node is shown in Fig. 3. IEEE-14
node system consists of 5 generators, 11 loads, 17 lines and 3 transformers. Node
1 is a balance node, and nodes 3, 6 and 8 are dimmers that only provide reactive
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power.The consumption characteristic curve of nodes 1 and 2 is a quadratic
function curve, and the parameters are shown in the appendix. Continuous
reactive power compensation equipment is set on nodes 1, 2, 3, 6, 8 and 14, and
its value range is shown in Table 1. Refer to the objective function in expression
(1), in this paper k1 = 2, ko= k3 =0.5; a =2, b = 5; ¢ = 8000, c. = c3=100. The
dimensions and descriptions of State and Action are shown in Table 2, and some
parameter settings in DDPG are shown in appendix. In order to verify the
effectiveness and accuracy of the proposed method, in the first experiment, the
results of traditional DDPG algorithm and various heuristic algorithms under 96
loads on the test day are studied. In the second study, the computational effect and
experimental time between DDPG algorithm and DDPG migration algorithm are
compared.
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Fig. 3. IEEE-14 node system electrical diagram

4.1 An example of using DDPG method to solve active and reactive
power integrated dispatching

As shown in Fig. 4, a total of 2880 sets of data of 96 points per day for 30
days in a month are simulated as source problems for training, in which the
maximum value of total load is no more than 220MW and the minimum value is
no less than 160MW. 96 points per day with great differences are used as
migration training and expansion problems for testing during training. As shown
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in Fig. 5, the maximum value of total load is 252MW and the minimum value is
157MW. Fig. 6 shows the load curve of each node on the test day.
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Fig. 5. Test day total load curve
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Fig. 6. Load curve of each bus on the test day

Table 1

Operating range of reactive power compensation equipment

Node number Value range (B) Node number Value range (B)
1 [-10,10] 6 [0,25]
2 [0,20] 13 [0,60]
3 [0,20] 14 [0,100]

Firstly, the traditional DDPG algorithm is used to train on the historical
data set. A total of about 1000 rounds of training are carried out. There are 200
iterations in each round, which is actually equivalent to 2 x 105 iterations. The
setting of super parameters is shown in Appendix B2. The loss function of the
training process is shown in Fig. 7, which shows the last training loss value of
each round. The loss value of actor is the opposite number in the figure.
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Fig. 7. Actor-Critic Loss during source problem training

Input 96 scenarios on the test day into the trained DDPG model to obtain
the generator cost curve and voltage curve under each scenario, as shown in Figs.
8 and 9.
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Fig. 8. DDPG algorithm-based generator cost at each bus in each time period under the test day
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Table 2
State and action design
Dimension Detailed information
[Pe1,Pe2,V1,V2,V3,V4,V5,T1 T2, Ts
State 27 B1,B2,B3,B4,B5,Bs,

PL1, PLo, Pis, Pua, Pis, Pue,PL7, Pus, Pro, PLio, Prai]

[AP 2,AV1,AV2,AV3,AV4,AV5,

Action 15 AT1AT2,AT3 AB1,AB,AB3,AB4,ABs,ABg]
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Fig. 9. DDPG algorithm-based voltages at each bus in each time period under the test day

Table 3
Error of DDPG algorithm
Error name Before migration
Maximum error 239.75%/h
Maximum error rate 2.5154%
Average error 166.7445%/h
Average error rate 2.32%

4.2 An example of using DDPG migration method to solve active and
reactive power integrated dispatching

Based on the trained DDPG model in example 1, the migrated DDPG
algorithm is used in example 2 to explore and train the knowledge of integrated
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active and reactive power scheduling under 96 loads in the test day. A total of
about 500 trainings are carried out for 20 iterations each time. The super
parameters of the training are shown in Appendix, and the loss function of the
training is shown in Fig. 10. Fig. 10 shows the last training loss value of each
round. Similarly, the loss value of Actor is the opposite number in the figure.
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Fig. 10. Actor-Critic Loss under Transfer Reinforcement Learning

This paper compares the optimal solutions of the other methods in three
different cases. The comparison of errors before and after transfer learning is
shown in Table 4.The generator cost under 96 loads before and after migration is
shown in Fig. 11, and the voltage level under 96 loads after migration is shown in
Fig. 12.
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Fig. 11. Comparison of generator costs under different scenarios
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Comparison of errors before and after transfer learning

Table 4

Error name Before migration After migration
Maximum error 239.75%/h 98.92%/h
Maximum error rate 2.5154% 1.1325%
Average error 166.7445%/h 38.4160%/h
Average error rate 2.32% 0.5576%
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Fig. 12. Voltage diagrams for each time period at each bus after Transfer Reinforcement Learning

The comparison of cumulative time consumption between migration
DDPG algorithm and genetic algorithm (GA), particle swarm optimization (PSO)
and biogeographic optimization algorithm (BBO) in 96 comparative experiments
is shown in Fig. 13.
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Fig. 13. Comparison of calculation time required for different method experiments
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The migration DDPG algorithm needs 12 minutes and 31 seconds for
offline training under 96 loads, but it has obvious advantages over other
comparison algorithms. When the migration DDPG algorithm is applied online,
the calculation time is less than 1 s. It can be seen that heuristic algorithms such as
genetic algorithm and particle swarm optimization algorithm do not have off-line
training time, but they need to be recalculated to deal with different situations
each time, which takes a lot of time to apply.

Because the parameters of the shallow neural network are fixed, the
unnecessary exploration range is greatly reduced when re exploring different load
levels. It can be considered that the migration training gives a closer initial
solution to the expansion problem on the basis of the source problem, so on the
one hand, the convergence is guaranteed, on the other hand, the calculation time is
shortened. In addition, the results of transfer learning are improved regardless of
generator cost or voltage amplitude. This experiment has good results, and
provides a new idea and research method for active and reactive power integrated
scheduling with a large number of samples.

5. Conclusion

Aiming at the problem of active and reactive power coordination and
Optimization in power system, based on the deep transfer reinforcement learning
algorithm, this paper proposes a scheme architecture that can be quickly applied
online. Because this method can solve high-dimensional, continuous and
nonlinear problems, it is a new idea and a new test in the field of active and
reactive power coordination optimization. Artificial intelligence and
reinforcement learning algorithms accumulate experience on the basis of
experiments. After a period of training, the neural network makes the parameters
of random initialization converge to the feasible region. The requirements of this
method for hardware computing power become more stringent with the increase
of problem dimension. Therefore, it has always been people's desire to speed up
the network convergence speed, reduce the training time and improve the
operation efficiency of intelligent algorithms. This paper provides an integrated
scheduling and migration model of active and reactive power, which provides a
new idea and mode for training in multi load scenario.
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APPENDIX A
Table Al
Improve the hyperparameters and descriptions of DDPG algorithm settings
Parameter Meaning description
Tau Smoothing coefficients of target networks in Actor and Critic networks
o Learning rate of evaluation network in Actor network and Critic network
Batch_size Number of extracts from the experience pool per training
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Capacity Size of experience pool
c Controls the initial value of the variance of the exploration range
Y Discount factor
Episode Rounds of agent training
Step One iteration in each round of agent training
APPENDIX B
Table B1
Related definitions of DDPGC
Node number a b c
1 3 0.043 20
2 3 0.25 20
Table B2
DDPG hyperparameter settings
Parameter Figure
Tau 0.000001
o 0.000001
Batch_size 64
Capacity 100000
c 2
Table B3
Hyperparameter setting of DDPG migration method
Parameter Figure
Tau 0.0001
o 0.0001
Batch_size 16
Capacity 1000
G 1
Y 0.95




