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INCOMPLETE GAMMA DISTRIBUTION: A NEW TWO PARAMETER
LIFETIME DISTRIBUTION WITH SURVIVAL REGRESSION MODEL

Aliakbar Rasekhi', Mahdi Rasekhi?, G.G. Hamedani®

We introduce a new two parameter lifetime distribution constructed via
incomplete gamma function which includes exponential distribution as a limiting case.
This distribution is more flexible than most of the two parameter extended exponential
distributions. Various statistical properties such as moments, moment generating func-
tion and certain useful characterizations based on the ratio of two truncated moments
are presented. Mazimum likelihood estimation method is used for estimating parameters
of this distribution and a survival regression model based on the proposed distribution is

presented for fitting breast cancer data set.
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1. Introduction

In recent decades, several new distributions have been introduced based on the expo-
nential distribution, which is a widely used distribution in many survival analysis problems.
The main goal of this paper is to propose a two parameter lifetime distribution which includes
exponential distribution and can accommodate practical applications where the underlying
hazard functions have non-constant monotone shapes. In some real data applications, the
exponential distribution does not provide a reasonable parametric fit, thus some researchers
extend exponential distribution by adding one or more parameters e.g., [10], [12] and [3],
among others.

In what follows, we use exponential integral, which is closely related to the incomplete
gamma function, to introduce our distribution.

Generally,

Er(\) = /1 t~ke Mt = /\’H/A uFe T du = NFTID(1 — k, \), (1)
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where k =0,1,2,... and A > 0; see [1]. We need I'g()) function for normalizing constant of
the proposed distribution and it is obtained by setting £ =1 in (1), i.e.

E1()\) = /:O ute " du =T(0,\) = To(N).

Another result of this paper is the introduction of a new survival regression model. In
the last decades, many survival regression models were studied by many researchers, for
example: [14], [5], [16], [2] etc. The main distributions of these regression models, however,
have more than two parameters and only a few survival regression models exist based on two
parameter lifetime distribution. The Weibull regression model is a well known and powerful
regression model in survival analysis (see [11]) depending on two parameters distribution.
In this paper, we present another survival regression model that is based on a new two
parameters distribution. We show that our proposed regression model is a better fit than
the Weibull regression model for some real data sets.

2. The incomplete gamma distribution

In this section, first we introduce incomplete gamma (ING) distribution and derive
some of its properties.

Definition 2.1. A random variable X has a standard incomplete gamma distribution, if
its pdf is given by

flz) = ﬁ(l) log(z +1)e™®, z>0. (2)

By adding a shape (c¢) and scale (b) parameters to (2), the two parameters ING pdf

is presented as
1 x .
b)) = ——————=1 (f C) b, 0,c>0,b>0. 3
f(z]e,b) 3 o To(e)lh og (4 +e)e x>0,¢c> > (3)

The random variable X with pdf (3) is denoted by X ~ ING(c, b).
Now, we prove that (2) and (3) are proper probability density functions. Using a
change of variables, we have

(o)
/ log(xz 4+ 1)e”*dx = eT'(1),
0
thus the pdf of the standard version is (2). More generally, for ¢ > 0,
/ log(z + €°)e dx = ¢ + e To(e°),
0
and thus, we can write
1

f(zle) = Wlog (x+e)e™™, x>0,c>0. 4)
From (4) and the scale family of densities 1 f(%) for b > 0, the pdf with shape and scale
parameters is obtained (3).

Figure 1 shows the effect of both parameters on the shape of the pdf. This pdf can
model unimodal and decreasing data sets. If 1 < e < L\?\/(l)f1 = 1.7632, then we have a
positive mode given by

T = bLW(1) " — €9),
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where LW (x) = >°°° (_72?71,@" is Lambert function; otherwise the mode is 2, = 0. An

n=1

interesting property is that at x = 0,
f(0le,b) = [b(1+ cflefo(ec))]_l

and so this distribution moves continuously across the vertical axis and can take each value
in [0,b~!) (Figure 1), whereas at x = 0, the density of Gamma (2% 'e~*/%/[b°T'(a)]), takes
zero (if a > 1), b= (if @ = 1) or infinity (if a < 1).

0.3- - parameters
c=0.1, b=1 4

©=0.1, b=1

FIGURE 1. Density with different shape values and scale 1 (left), different
scale values and shape 0.1 (right).

The cumulative distribution function (cdf) is
1

c a X x
pr— _—_—— € - ¢ - ¢ T > .
F() =1 = ey [ Tl + ) +los(5 +e9e7F ] a0 (5)

As ¢ — 00, we have X 3 E(b), since lim,_,o0 f(z]c,b) = te~%/*. If A(c) = [c+e* To(e®)] 71,
then the first four moments are:

E(X) =bA(c)[c + (1 — e%)e® To(e®) + 1],
E(X?) = b®A(c)[2¢ + (2 — 2¢° + €2%)e Ty (e®) 4+ 3 — €],
E(X?) =03 A(c)[6c + (6 — 6e° + 3e2° — 3¢)e Ty (e°) + 11 — 4e° + €],
and
E(X*) = b A(c)[23¢ + (23 — 24e° + 12e% — 4€3° + *)e® Ty (e°) + 50 — 18¢° + 5e2¢ — €37,

respectively. The mean and variance are increasing when ¢ decreases and b increases and the
skewness and kurtosis are increasing when c¢ increases. After some calculations, the moment
generating function is

¢+ Tolec(1 — bt)]ec (10t ‘< 1
et e To(—b) ° "%

M(t) =

3. Characterizations

This section deals with the characterizations of the ING distribution based on the
ratio of two truncated moments. Note that our characterizations can be employed also
when the cdf does not have a closed form. We would also like to mention that due to the
nature of ING distribution, our characterizations may be the only possible ones. Our first
characterization employs a theorem due to [7], see Theorem 1 of Appendix A. The result,
however, holds also when the interval H is not closed, since the condition of the Theorem is
on the interior of H.
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Proposition 3.1 Let X : Q — (0,00) be a continuous random variable and let ¢ (z) =
[log (£ + ec)]f1 and qo (z) = q1 (x)e~% for z > 0. The random variable X has pdf (3) if
and only if the function 7 defined in Theorem 1 is of the form

n(z) = e o >0.

Proof. Suppose the random variable X has pdf (3), then
1

1-F E XV | X>zl=—— 7% 0
(1= F@)Ela (X) | X 2] = erse w0
and .
2z
1-F E X) | X>zl=———€" % 0.
( (7)) Eg2 (X) | X > 2] et Ty (ec”e . x>
Further,
n(@)q (z) — g (z) = _q12(x)67% <0, for x>0.
Conversely, if 7 is of the above form, then
/
SI(ZL'): 77(@‘11(@ :1 $>07

n(@)a(z) —g(x) b
and consequently s(z) = z/b for x > 0.
Now, according to Theorem 1, X has density (3).
Corollary 3.1 Let X : Q — (0,00) be a continuous random variable and let ¢; (x) be as in
Proposition 3.1 The random variable X has pdf (3) if and only if there exist functions ¢o
and 7 defined in Theorem 1 satisfying the following differential equation

n (v)qi () 1

=—-, x=>0.

n(x)q (r) — g2 (v) b

Corollary 3.2 The general solution of the differential equation in Corollary 3.1 is

N i[ /b i g (x)dz+ D],

where D is a constant. We like to point out that one set of functions satisfying the above

differential equation is given in Proposition 3.1 with D = 0. Clearly, there are other triplets
(q1,42,n) which satisfy conditions of Theorem 1.

4. Estimation

Let x1,...,x, be n observed values of a random sample from the ING(¢, b) distribution
and 6 = (¢,b)”. The log-likelihood function is given by

10y = =t (f o))+ 3t e (3 )) - 305

and so the maximum likelihood estimations (MLEs) of the parameters, 9, are obtained by
solving the the following nonlinear equations simultaneously,

dc ¢+ e¢“Ty(ec) P ¢) log (%t + €¢)

b

deo) e“te T (ef) - e¢
-n Z
xl _"_ e

de) " x; - Ti
db _n+¥b(17+e)log(“7+ef Zb

i=1
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This work can be performed by a numerical method such as the Newton-Raphson type

procedure. Under standard regularity conditions when n — oo, the distribution of 6 can
220
. R or 0s
for r,s = ¢,b and J(0) is the observed information matrix evaluated at §. In practice, e.g.

be approximated by a bivariate normal distribution, N(0,.J(6)~1), where J(8) =

for interval estimation of the parameters, the observed information matrix can be obtained
by Hessian option in optim function of R statistical program. Our simulations show that
this procedure works well and we applied it to the real data sets in [8] and the second
real data set in [3]. The results show that ING is better than some other two parameter
generalizations of the exponential distribution (exponential geometric, exponential Poisson
and complementary exponential geometric distributions) based on the AIC criterion.

5. Application in survival analysis

As an application in survival analysis, we consider a data set analyzed in [15] which
is n = 686 patients with primary node positive breast cancer. This data set is available in
the package flexsurv of R software under the name bc; see [11]. The variables are time of
death or censoring in years (y;,i = 1,...,n), censoring (§; = 1 if y; is an observed death
time, or d; = 0 if this is censored), and prognostic group with three levels good, medium
and poor. Let the first level of prognostic group (good) be reference level and z1; and zy; be
indicators of medium and poor prognostic group respectively (that is, for j = 1,2 let z;; =1
if the ith patient is in group j and 0 otherwise).

Suppose that survival times follow an ING distribution such that the scale parameter,
but not the shape parameter, depends on the covariates. Then S(y|c, b(z)) = S([b(2)] " 1yle, 1)
and we have an accelerated failure time (AFT) model. In these models, the effect of the
covariates is to speed or slow the passage of time. The shape may depend on the covariates
through log link, that is

logb; = By + Br21i + Pozei, 1=1,...,n. (6)

We fitted this model to the bc data and obtained the MLEs by the function flexsurvreg()
in the package flexsurv. For this purpose, we used the package expint ([9]) and defined
appropriate functions and supplied the ING as a custom distribution. We compared the
results with the Weibull AFT model presented in [11].

TABLE 1. Comparison of Weibull and ING models. The parentheses denote
standard errors and brackets show p-values.

Model log Shape ,30 31 52 AIC

Weibull  0.3218 (0.04841) 2.4356 (0.1114) —0.6136 (0.1269) —1.2122 (0.1256) 1631.9
[ < .0001] [ < .0001] [ < .0001]

ING —8.3547 (8.5769) 1.7758 (0.0878) —0.5746 (0.1098) —1.1709 (0.1051) 1618.7
[ < .0001] [ < .0001] [ < .0001]

The resutls are in Table 1 which compares these two models and based on the AIC
criterion, the ING shows better fit than Weibull. Figure 2 shows the survival times of three
prognostic group fitted by these two models and also Kaplan-Meier estimate of the survival
function. Based on ING model, the scale parameter of reference group (good) is estimated

as efo = 5.91, while for medium and poor groups this scale reduces to 5.91 e/t = 3.32 and
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FIGURE 2. Survival by prognostic group from the data: Fitted from Weibull
and ING models and Kaplan-Meier estimates.

5.91 ¢ = 1.83, which means the expected survival time of these two groups reduces 44%

and 69% with respect to good group, respectively.
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Appendix A

Theorem 1. Let (2, F,P) be a given probability space and let H = [a,b] be an interval for
some d < b (a = —oc0, b =00 might as well be allowed). Let X : & — H be a continuous
random variable with the distribution function F' and let ¢; and g2 be two real functions
defined on H such that

Elg(X) [ X 2a]=E[q (X) | X >a]n(z), zel,

is defined with some real function n. Assume that q1,¢2 € C* (H), £ € C? (H) and F is twice
continuously differentiable and strictly monotone function on the set H. Finally, assume
that the equation 7¢; = g2 has no real solution in the interior of H. Then F' is uniquely
determined by the functions q1, g2 and 7 , particularly

’ n' (u)
Fx—/C‘ exp (—s(u)) du ,
D=, e - e
where the function s is a solution of the differential equation s’ = 701 and C is the

91 —q2
normalization constant, such that f g dF =1

We like to mention that this kind of characterization based on the ratio of truncated moments
is stable in the sense of weak convergence (see, [7]), in particular, let us assume that there is a
sequence {X,,} of random variables with distribution functions {F,} such that the functions
Gin, G2n and 7, (n € N) satisfy the conditions of Theorem 1 and let ¢1, — ¢1, gan — @2
for some continuously differentiable real functions ¢; and g¢s. Let, finally, X be a random
variable with distribution F. Under the condition that g1, (X) and ga, (X) are uniformly
integrable and the family {F,} is relatively compact, the sequence X,, converges to X in
distribution if and only if #,, converges to 1, where

Elg (X)X > 2]
This stability theorem makes sure that the convergence of distribution functions is reflected

by corresponding convergence of the functions q1, g2 and 7, respectively. It guarantees,
for instance, the ‘convergence’ of characterization of the Wald distribution to that of the
Lévy-Smirnov distribution if o — oo.

A further consequence of the stability property of Theorem 1 is the application of this
theorem to special tasks in statistical practice such as the estimation of the parameters of
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discrete distributions. For such purpose, the functions ¢q1, g2 and, specially, n should be as
simple as possible. Since the function triplet is not uniquely determined it is often possible
to choose 1 as a linear function. Therefore, it is worth analyzing some special cases which
helps to find new characterizations reflecting the relationship between individual continuous
univariate distributions and appropriate in other areas of statistics.



