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ADAPTIVE CUBATURE KALMAN FILTERING WITH NOISE
STATISTIC ESTIMATION BASED ON EXPECTATION-
MAXIMUM ALGORITHM WITH OPTIMIZED MOVING

HORIZON STEPS

Xiaoyi ZHENG?!", Xiaomin FANG?, Peijiang LI?

For noise statistic estimation problem in nonlinear Gaussian systems, an
adaptive Cubature Kalman Filtering (CKF) with noise statistic estimation is
presented in this paper, while the noise statistic estimation is derived by an
expectation-maximum (EM) algorithm with optimized moving horizon steps. Firstly,
we propose a common form of nonlinear Gaussian system that satisfies some
assumptions in order to facilitate further research, and some reasonable assumptions
are presented. Secondly, the maximum likelihood principle (MLP) based noise
statistic estimation model is proposed, then the moving horizon estimation (MHE) is
used to optimize this model. One step further, EM Algorithm is introduced to
iteratively estimate the noise statistics, and the moving horizon steps is optimized by
the given index to reduce the computational cost while maintaining the accuracy of
calculations. Finally, an experiment is implemented and three common situations are
conducted to verify the proposed algorithm from different perspectives, and the
experimental results show the effectiveness of our work product.

Keywords: Noise Statistic Estimation, CKF, MLP, EM Algorithm, MHE
1. Introduction

In recent years, various control scenarios and control systems have
increasingly high requirements for filtering accuracy [1]. Due to its ability to
achieve high filtering accuracy, nonlinear filtering algorithms have received
widespread attention from experts and scholars in related fields [2,3]. The extended
Kalman filter (EKF) is a popular nonlinear filtering algorithm, and it is based on
the idea of performing first-order Taylor expansion on the nonlinear system model
and then using the Kalman filter algorithm for calculation [4]. However, for
strongly nonlinear systems, significant estimation errors or even divergence
occurred when EKF is adopted. Moreover, the complex calculation of Jacobian
matrix also limits the application of EKF in practical problems [5,6].

Based on the above problems, the researchers from McMaster University,
lenkaran Arasaratnam and Simon Haykin [7] proposed a new filtering algorithm

! Associate Prof., Dept. of Information Engineering, Quzhou College of Technology, Quzhou,
China, e-mail: zxy_xmu@163.com.
2 Prof., Dept. of Information Engineering, Quzhou College of Technology, Quzhou, China.



112 Xiaoyi Zheng, Xiaomin Fang, Peijiang Li

named CKF. The detailed description of CKF can be found in literature [7], and it
is omitted here. The same with EKF algorithm, when we use the CKF to solve
nonlinear problems, the prior statistical characteristics of system noise are also
assuming already known. However, the assumption is difficult to satisfy in most
practical situations, leading to a decrease in filtering accuracy or even divergence
[8-10].

Regarding the existing issues, it is necessary to conduct research on
estimating the statistical characteristics of noise, and some related works have been
done in last few years [11-13]. In literature [14], an adaptive SRCKF algorithm with
noise estimator is designed by introducing the principles of strong tracking filter
and maximum a posterior (MAP). In literature [15], a new adaptive UKF based on
MAP and random weighting is proposed. In literature [16], a singular value
decomposition and maximum likelihood criterion combined adaptive CKF
algorithm is presented to apply in integrated navigation systems. In literature [17],
a noise estimation and filtering method is proposed by combining EM algorithm
and suboptimal unbiased MAP to form an adaptive UKF. In literature [18], the
authors present a new adaptive Kalman filter based on moving weighted average
and MLP, and the estimated result is optimized with computationally efficient.
There are also some other results and developments in this domain, see in literatures
[19-21] and the references therein.

From the above literature, we can see the methods of MAP, MLP, EM and
so on are usually used in the problem of noise statistic estimation, but the
calculation complexity are always not considered. In our work, we deal with the
problem of process noises and measurement noises statistic estimation based on
MLP and EM algorithm, and the calculation complexity is considered
simultaneously. The main contributions of this article are as follows. (1) The MHE
concept is introduced to optimize the noise statistic estimation model in order to
reduce the calculation complexity, and the moving horizon steps is calculated by
the index function defined by us. (2) By introducing the EM algorithm, the iterative
calculation process is accomplished to estimate the noise statistics. Therefore, the
computed result can be given step by step with efficiency. In addition, an
experiment with three situations is conducted, and shows the effectiveness of the
scheme we propose clearly.

We make the arrangements for the rest of our work as follows. In part 2, a
common form of nonlinear Gaussian system is presented, and some reasonable
assumptions are stated. In Part 3, noise statistic estimation model based on MLP is
designed, then the model is optimized by MHE, based on which EM algorithm is
introduced to achieve system noise statistic estimation. In part 4, an illustrated
example is presented to prove the availability of our proposed scheme, and
conclusion is given in part 5.
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2. Problem formulation

Firstly, we consider the following nonlinear Gaussian system:

{xk = f (Xea)+ Vs

z, =h(x)+w, (1)
where x, e R™ denotes the state vector of the system; z, e R™ denotes the
measurement  vector of the  system; f(-):R*xR" —->R™  and

h(-): R™ xR™ — R™ are the nonlinear state function and measurement function,

respectively; v, e R™ and w, e R™ are process noises and measurement noises
satisfy constraints as below:

E 0
E[w,]=0 @)
E

and 3
which means that Q is a non-negative definite symmetric matrix about v, with
n, xn, dimensions, meanwhile R is a positive definite symmetric matrix about w,
with n, xn, dimensions, g, is the Kronecker —¢& function.

For simplicity, the following notations are used:

1) (0 0\ (-1)(O 0
0|1 0|0 |]|-1
[1]: . 1) . 1”‘! . ) E ) . ) ) )
0)l0 1/10 0 -1
m
= [—[1] ,
é:I \/;[ ]|
1
W, =—
m
where 1=1,2,3,------ ,m, m=2n_, m denotes the total number of cubature

points, [1]. is the ith column of [1].
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Remark 1:

The nonlinear Gaussian system (1) describes a common class of system
model with additive noises from both internal and external sources that often be
seen in various domains, such as aerospace, automotive engineering, power system,
manufacturing industry and so on. Our goal is to estimate the additive noises with
three general situations, one of Q and R is unknown and Q and R are both unknown,
respectively.

Remark 2:

The CKF algorithm provides a novel scheme for nonlinear systems to
handle the filtering problems, it’s main core is a spherical-radial cubature rule used
to calculate cubature points. There are two basic steps about the CKF, for the first
step, the history posterior density at previous step is used to calculate the predicted
error covariance, while for the second step, the calculated error covariance at first
step is used to compute the error covariance, and it is obviously an iterative process.

3. Noise Statistic Estimation based on EM Algorithm

From the above, we can see that the effectiveness of CKF is influenced by
noise statistics Q and R, and we introduce a novel adaptive CKF that combines

EM algorithm and MLP approach to estimate Q and R effectively.
3.1 Noise Statistic Estimation Model based on MLP

Let 9={Q,R}, based on the MLP, we can estimate ¢ as follows:

0=arg m‘;alx{ln[L(<9|zlzk,xO:k )]} ()
where L(¢9|zl:k,x0:k) is the likelihood function about &. Then we have:
L(9|ZJ_'k’XO:k): p(XO:k |9) p(zl:k|X0:k79) (5)

On account of the system (1) is a first-order Markov process [10], then (5)
is factorized as:

P (2 %ok [0) = P(%0) pr( i[¥p0,0 )pr(,.\x,.,e) (6)

Provided that the initial state and the noises obey normal distribution, then
(6) can be rewritten as:
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(Xo _XO)T Poil(xo _Xo)

PlZyy s Xox |€) =———-€Xp| —
NPT :
K 1 [ vTle}
[[————exp| - (7)
Mol 2
k 1 I w R™w,
S }

Take the logarithm of (7) both side, we obtain:

A \T ~-1 A
1 Xo—X,) Py (X, —X
In[L(¢9|zrk,x0:k)]:—In(27r)—§|n|P0|—( ) 2° (% =%)
kn, k IS 1A
- In(27z)—§ln|Q|—§jZ_;vJTQ v, (8)
kn, k 13 §
- In(27r)—§In|R|—§jZ=;WJTR W,
According to the above, 8 can be obtained as follows:
0 =arg mglx{ln[L(¢9|zrk,xO:k)}}
o T ~-1 0
in(as) L (R R
2 2
kn, k 1 .
=arg max(—— In(Zﬂ)—EIn|Q|—§JZ;VJTQ v,
kn, k 1& 1o (9)
- In(2ﬂ)—EIn|R|—E;W}R W,
| (1+kgx+k—22jln(2ﬂ)+%ln|Po|+gln|Q|+§In|R|+
=arg min .

o -1 0 k k
X=%) R (XO XO) —l—lZV,TQ_lV,- +£ZWJT R_le
2 24 293
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Remark 3:

According to the above deduction, the summation range is from j=1to k,

and with the calculation process continues, the computational range will continue
to increase as well, this is unrealistic when dealing with practical problems. To
solve this problem, we introduce the MHE as below.

3.2 Noise Statistic Estimation Model Optimized by MHE
Denote the moving horizon steps as N, let
Xy ={%;:j=k=N+L-k}, Zy ={z;: j=k=N+1---- k|, then ¢ can be
rewritten as:
0 =arg max{ln{L(9|ZN,XN)}} (10)
where L(6?|ZN , Xy )can be calculated as follows:
L(6|Zy. Xy )=p(Zy. X\ |0)

P(%n]0)x ﬁ p(xj‘xH,&)x ﬁ p(zi‘xiﬁ)

jok-N+1 j=k-N+1

To simplify the analysis, assume that p(X,_y|0)0 N(&_y.P._y) is the

(11)

common practice, then (11) can be further rewritten as:

L(9|ZN Xy ) - - J/z'EXp{_ (Ken =R )T Rk (Xen =R )}
(27)|Re 2
k F VOl
X n]/-z 77 EXp L, (12)
j:k—N+1(27Z’) " |Q| i 2
3 1 i w R™w,
X exp| —
jﬂﬂ(zﬂ)”z/z R 2
Take the logarithm of (12) both sides, we obtain:
1 (Xk—N - )zk—N )T Pk:lN (Xk—N - )A(k—N )
|n[L(9|zN,xN)]z-ln(zn)—§|n|Pk,N|— ;
Nn, N 1 < .
- In(27z)—EIn|Q|—Ej_kZ;l lVJTQ v, (13)
Kk
M 2n)-Ninr-L > wirw
2 2 2 i Na
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According to the above, 6 can be obtained as follows:

1+%+%}n(zﬁ) Lol S nfl+ N«
(14)

0 = argmin
o (% v =R ) PA (n —%ey) 1 zk 1 Zk
+ k—N k—N k—N k—N k—N 4= VTQ71V-+— WTRilW-
J J J J
2 2 j=k-N+1 2 j=k—N+1

3.3 Noise Statistic Estimation with EM Algorithm

Based on the above-mentioned analyses, then the EM algorithm is
introduced to iteratively estimate the noise statistics.

(1) E step:
Firstly, we calculate the expectation of log-likelihood function:

Eln[-L(0|Z,, X )]:[ NZ”X nn, jln(Z;r)+—In|Pk N|+—In|Q|+—In|R|+
%E{tr[PkT—N (Xk—N _)’zk—N )(Xk—N _)A(k-N) :|}+ (15)
%E{ Zk: tr(leJij)}+%E{ Zk: tr (R™w]w; )}
Then ignoring the constant term of (15), let:
3 = I[Py [+ NInjQl+ N n|R[+ E ftr[ BL, (% =X ) 05w~ ) 1+
K K (16)
E{ > tr(Q‘lvjvJT)}+E{ > tr(R‘leWJT)}
j=k—-N+1 j=k—-N+1
(2) M step:
0J 0J . : .
Let —on and — =0 respectively, system noise estimator can be

obtained as follows:

O = > (1] =, 1 ()= F () + F(x) (%)) )

N j=k—-N+1

A1 &
R, N kZ'; l(zszT —z,h" (xj)—h(xj)zJT +h(xj)hT (xj )) (18)
j=k=N+
Substituting the filter estimate into the above equations (17) and (18), sub-
optimal noise estimator is concluded:

and
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1 k RJ\J AI\J + P ZX, i1 ( i JJH)_
A~y §+1 Lo (19)
a Ezf( i ujfl) it Zf( i 1) (XLHH)

i=1

/\

(20)

Zm:h( 'J|J )hT( IJIH)

1
m =
Remark 4:

From (19) and (20), we can see that the calculate of the obtained sub-optimal
noise estimator is a process of iterative summation, and the summation range is
from k—N +1 to k. In order to reduce computational complexity, when we design
program code to calculate the noise at time k, the previous calculation result at
time k—1 can be used, so the summation from k—N +1 to k—1 is omitted, this
operation can significantly reduce the computational burden.

3.4 Calculation of Optimized Moving Horizon Steps

Both considering the accuracy and speed of noise estimation, we need to
choose the optimized steps of moving horizon.
Provided that the minimum steps of moving horizon is p, and the

maximum steps is g, then we should initialize some related parameters in time
domain from first step to q'" step. The initializing method is presented as follows.

We define the index function f (-)=Tt, +T,l,, where t_is the elapsed
time of the estimation algorithm at sampling time k, |, is the accuracy index of the
algorithm defined as (37). I'; and I', are two known constant represent the weight
value of accuracy and speed and satisfy that I', +I", =1.

l, :{zk —%gh(xm“)}T {zk —%Z:‘,h(xi,ukl)} (21)

Then the calculation of optimized moving horizon steps can be described as
follows:
min It +1,l,

22
subjecttop<k<gandkeN" (22)
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Remark 5:

In order to keep the validity of the optimal steps in the moving horizon
estimation, while reduce the computational cost, it is suggested to update the
optimal steps every certain number of steps.

4. Performance Evaluation and Discussions

At last, an experiment is implemented to prove the availability of the scheme
we propose. The following nonlinear Gaussian system is given, and satisfies
constraints (2) and (3):

0.2x
X =0.5x_, +——E+v, (23)
k-1

z, =10x, +:—€+vk (24)
Here, the theoretical initial state of the systems are set as x, =1, while the
Kalman filter initial parameters are setas X, =1.1 and P, =0.01. The variances of
v, and w, are Q=0.6 and R =0.8, respectively.

On the basis of above given parameters, we present three simulation results
corresponding to three situations, separately.

4.1 Situation A: Q known, R unknown

In this situation, we assume that the variance of v, Q=0.6 is known, while
the variance of w, R =0.8 is unknown, simulation results are displayed as follows.
Fig. 1 shows the system state x,, Fig. 2 shows the measurement noise variance R,
Fig. 3 shows the estimated error of system state.
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true value
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variance of measurement noise
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time(s) time(s)

Fig. 1 system state and its estimated value(situation A) Fig. 2 variance of measurement noise(situation A)
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Fig. 3 estimated error of system state(situation A)

4.2 Situation B: Q unknown, R known

In this situation, we assume that the variance of v, Q=0.6 is unknown,
while the variance of w, R=0.8 is known, simulation results are displayed as
follows. Fig. 4 shows the system state x,, Fig. 5 shows the process noise variance
Q, Fig. 6 shows the estimated error of system state.
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3 true value 9t
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Fig. 4. system state and its estimated value (situation B) Fig. 5. variance of process noise (situation B)
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Fig. 6 estimated error of system state(situation B)

4.3 Situation C: Q unknown, R unknown

In this situation, we assume that the variance of v, Q =0.6 and the variance

of w, R=0.8 are all unknown, simulation results are displayed as follows. Fig. 7

shows the system state x,, Fig. 8 shows process noise variance Q, Fig. 9 shows
the measurement noise variance R, Fig. 10 shows the estimated error of system

state.
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Fig. 7 system state and its estimated value (situation C) Fig. 8 variance of process noise(situation C)
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Remark 6:

On the above, we design three situations to test the validity of the algorithm
we propose. The test results indicate that in all three situations, the noises can be
quickly estimated in a relative small error, and the calculated state value can track

the actual state well.

Remark 7:

At the same time, we should also recognize the limitations of the scheme
we propose. Firstly, I'; and T, in the index function f (-)=T"t, +T,l, are assumed

to be known, therefore the selection of I', and I', values will affect the

experimental results. Secondly, the experiment we designed only consider the first-
order scenario, while higher-order scenarios are more common in reality.

5. Conclusions

The problem of adaptive CKF with noise statistic estimator based on MLP
and EM algorithm is investigated in this paper. In order to reduce the calculation
complexity, the moving horizon steps is introduced and optimized by the given
index function. The scheme is verified by an illustrative example with three
situations, and the noise statistic estimator can estimate the noises well, meanwhile
the adaptive CKF with the noise statistic estimator give a good performance to
estimate the system state. Our next step of work is how to calculate the moving
horizon steps by using neural network algorithms, such as Genetic Algorithm to
improve the steps calculation.
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