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We give an example related to certain extensions of the mecessary
conditions in the classical calculus of variations.
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1. Introduction.
In the paper [6], S.J.G. Gift discusses the problem:

b
Minimize{.J — / F(o,y(x), §(x))dz} (1)

a

where a < b are fixed real numbers, y is a continuous function with piecewise
continuous derivative Y(z), y(a) = y, and y(b) = y, are fixed and F(z,y,V)

has continuous partial derivatives up to order three in (z,y, ).

This is known as the simplest problem of the calculus of variations and
the author gives elementary proofs of the wellknown results concerning the
theory of the first and of the second variation. The investigation is continued
in [7] and [8].

In the article [9], a counterexample for the results in [8] is provided,
showing that they are not correct. Here, we extend this discussion to the
results of [6] and [7] via a relevant new example.

For modern presentations of the calculus of variations with various ex-
tensions and relevant applications, we quote [2], [3], [4], [5], [1].

In the next section, we briefly recall several basic elements of this theory,
while the last section is devoted to our comments on the extensions discussed

in [6], [7].
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2. Classical conditions

We give a very short overview of the necessary conditions in the problem (1),

in order to increase the readability of the article. We follow the exposition in [4].

Proposition 2.1. If J has a minimum at y*, piecewise C' function such that

y*(a) = yq and y*(b) =y, then
t . .
_/ Fy(r,y™(7), ¥ 7 (7))dr + Fa (t,y7(1), ¥ 7 (1)) (2)

is constant on [a,b].

The relation (2) says that y* is an extremal for the problem (1). It gives the

Euler - Lagrange equation:

Fy(ty*(00,5°(6) = S Fy (6,57 (1), 3°(1)) n [a, ) Q

(if ¥* has some discontinuity point, then (3) is satisfied by the lateral derivatives).
In particular, we obtain that in any such discontinuity point ¢’ € (a,b), the

Weierstrass - Erdmann corner condition is valid:

Bty (), §(t1)) = Fy(t',y" (), 9 (1) (4)
(with obvious notations for the lateral derivatives).
If the integrand F is regular in the sense that Fg.”./ > 0, situations as in (4)
cannot occur, i.e. any extremal arc y* has no corners (no discontinuity of U *).
Concerning higher order necessary conditions, under supplementary
smoothness (F should be in C*) and the above regularity assumptions, one has

to study second order derivatives of J at extremals y*, for admissible variations.

Proposition 2.2.
S Uy (1™ (0), 57 ()52 (0) 4 2 o (37 (1). 57(2)y(0) §00) +
+Fy oty (0 57(1) §2(8)] > 0

for any admissible variation y.

Using (5) we can introduce the secondary minimum problem (for the corre-

sponding quadratic form) on the space of admissible variations and look for possible
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nonzero secondary minimizers. The points (¢, y*(t')) are called conjugate to (a,y,)
if there is a nonzero secondary extremal z* such that 2*(a) = 2*(t') =0, t' > a (sec-
ondary extremals are defined similarly as extremals, but for the above secondary

minimum problem). The Jacobi condition is:

Proposition 2.3. If J has a minimum at y*, there are no conjugate points to (a,y,)

fora <t <b.

Notice that if y* is the unique minimizer of J (assumed to be strict convex),
then the secondary minimum problem has the unique minimizer z* = 0 and no
conjugate points exist.

Extensions to higher dimension, discussion on the corresponding sufficient
conditions, relaxation of smoothness assumptions are investigated in [4], [3], [5]. A

useful recent account on sufficient conditions may be found in [1].

3. The Example

Theoretical developments on the strong second variation (defined below) are
described in [6] in order to derive new necessary and sufficient conditions for the
problem (1).

The following notations are used (see [6]):

b
57 = / (Fyby + Fy3 )da. (6)

a

where Fy,Fé are evaluated along the admissible arc (a:,gj(a:),g.j(x)) and
(0y(x),0¥Y(x)) is an admissible variation, i.e. dy(a) = dy(b) = 0; the curves y
satisfying d.J = 0 are the extremals for the problem (1).
We recall more notation:

AJ = J(y) - J(@), (7)

where y(x) = §(x) + dy(x);

§2J = AJ — §J, that is (8)
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b
1 = = ° = °
27 _ = 2 2
J = 2/( w0y’ +2F s0y5y+F gady?)du (9)

a

and the two overbars on the derivatives of F' indicate evaluation along

Sol

(x,y + 957;,5—!— 04 Z./) with 6 € (0,1) obtained from a Taylor series expansion and
depending on x, dy:

b
2= / (Fyu” + 2F 553+ Fy 56 5%)d, (10)
a
where the overbar on the derivatives of F' indicates evaluation along (z, 7, é +66 &),
0 as above.

We remark that this definition of §2J (the strong second variation), given as
formula (29) in [6], is unclear since 6 obtained in (9) may be not unique (for all fixed
0y or x).

The fact that § which appears in (10) should be precised in more detail is
shown by Example 3.1 below, which contradicts the statement of Theorem 4.6
from [6]: A necessary condition for a strong relative minimum along an extremal
y(x) is 82J > 0 for all admissible y in a sufficiently restricted strong neighbourhood
of §.

Here the strong neighbourhood of y is defined by the topology of C(a,b).

Example 3.1. We take a =0,b=1,

1
J = /f(y+1~./)d:v (11)
0
and f: R — R is the C* mapping given by:

2
e@-D*-1 (< x <2,
f(z) =
0 otherwise.
It has two inflexion points in #1 = 1 —1/+v/3 and 29 = 14+1/+/3, suppf = [0, 2]

and f is positive. We have f” < 0 for x € (z1,22), f” > 0 for z € (0,21) U (x2,2).
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If we fix y, = 5o = y(0) = 1 and vy, = y1 = y(1) = e}, then one (global)
solution of the problem (11) is obtained by
y+I=0,y(0) =1, y1) =¢ ", (12)

that is y(z) = e %, x € [0, 1].

1
We consider the following strong admissible variation §y, > >A>0

—3z x € [0, )],
dy =< —6A+3x x€[\2)],
0 otherwise.

Obviously, for A — 0, ¥ + dy enters any strong neighbourhood of y. By a

Taylor expansion around ¥ + g.j = 0 we have

F(By +88) = (62009 + 5 )Gy + 55, (13)

where 6, € (0,1) is as in (9). We remark that

0 z € (2\,1],
Sy+ou=14 348y xe(\2)N), (14)
340y z€][0,N).
Then f(dy + (M./) = 0 on [0,1], except at x = A\, x = 2\, since 3 + dy > 2 for
1 .
A< 3 By (13) and the properties of f”, we can choose 0, (dy+0Y) = x1, x € (X, 2X)

and arbitrary in (0, 1) otherwise.

We infer from (10) and this choice that

1
_ 1 ° °
2= / F1(0,59)(5y + 5 9)>da =
0

2
_ 1 n( 3T T ..CL‘ 2dx
—2[f (5527 ) Gvte) + 630 Pas <.

3%1

m < x9 for x € ()\,2)\), A small.

because r1 <
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Remark 3.1. The gap in the proof of Theorem 4.6, consists in an inconsistent
continuity argument. Namely since 62.J is not fixed when &y varies, it is possible
that EQJ > 0 and 62J < 0 and 62J < 0, although EQJ —62J — 0 when 6y — 0 in
C(a,b).

We note that in this proof 8 € (0,1) may be arbitrary, therefore Example
3.1 also contradicts the proof of Theorem 4.6.

So it is not possible to "adapt” the statement of the result and to preserve

proof.

Remark 3.2. The same argument appears in the proofs given by the author to the

wellknown results from Theorem 3.1, Theorem 4.1 on necessary conditions.

Remark 3.3. In the proofs of sufficient conditions, another vicious continuity ar-
gument is used. There are two small parameters, 1’ and e7, and e7 is made small
enough such that ' —ep > 0 (see (46) in [6]). However, this may be impossible

since the two parameters are not independent.

Remark 3.4. Similar considerations may be done in connection with the work [7]

by the same author.
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