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HYBRID NUMERICAL P SYSTEMS

Ana Brânduşa Pavel1 and Ioan Dumitrache2

We propose a new class of membrane systems, hybrid numeri-
cal P Systems. It has been previously shown that numerical P systems and
their extension, enzymatic numerical P systems, are universal computing
models. Programs can be written by defining a set of rules and a compart-
mental structure inspired by the transport mechanisms of the cell. The rules
and the transport between membranes were originally designed as discrete
components. In this paper, we present a novel class of numerical P systems
in which we integrate continuous rules into the discrete cellular mechanisms
of membrane computing paradigm. Therefore, we define hybrid numerical
P systems, which incorporate both continuous production functions and dis-
crete enzymatic guard conditions. We propose a novel, parallel and flexible
modeling framework for dynamical hybrid systems.

Keywords: Membrane Computing, Numerical P Systems, Enzymatic Nu-
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1. Introduction

P systems represent a computational paradigm inspired by the cell ar-
chitecture and functioning. Several classes of P systems have been introduced
in the framework of membrane computing [14].

Numerical P systems (NP systems) are a type of P systems, inspired by
the cell’s structure, in which numerical variables evolve inside the compart-
ments by means of programs; a program (or rule) is composed of a production
function and a repartition protocol. The variables have a given initial value
and the production function is a multivariate polynomial. The value of the
production function for the current instance is distributed among variables in
certain compartments according to a repartition protocol. The formal defini-
tion of NP systems can be found in [13] where the authors introduce this type
of P systems with applications in economics.
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NP systems were designed both as deterministic and non-deterministic
systems [13], [2]. An extension of NP systems, Enzymatic Numerical P systems
(ENP systems), in which enzyme-like variables allow the existence of more
than one rule in each membrane, while keeping the deterministic nature of the
system, were introduced in [8]. Due to their properties, ENP systems represent
a more powerful modeling tool for robot controllers than classical NP systems
[9], [10], [16]. Previous work has shown that NP and ENP systems are universal
computing models [13], [15]. Moreover, both sequential [16] and parallel [7]
simulators for ENP systems have been developed.

In this paper we propose a new class of ENP systems, hybrid numerical
P systems (HNP systems). A HNP system is an ENP system with continuous
time rules. In order to model the differential equations of a dynamical system,
we modify the mechanism by which the rules are applied and the production
functions are distributed to the variables. The rules model kinetic laws and
dynamical equations. We also present a case study of a biological dynamical
system represented by this new class of P systems.

The authors are aware of other modeling frameworks for dynamical sys-
tems. Systems Biology Markup Language (SBML) is an XML based language
used in systems biology to define dynamical systems. Also, hybrid Petri nets
and hybrid automata are other broadly used modeling paradigms for hybrid
systems. For example, the Alur-Henzinger hybrid automaton was developed
primarily for algorithmic analysis of hybrid systems model checking [4, 1, 6].
However, the main advantages of HNP systems are their compartmental and
naturally parallel structure. We propose HNP systems as a general model-
ing framework for large scale applications of hybrid systems. Such framework
can be used to simulate the evolution of dynamical systems such as cells and
tissues growth, microscopic organisms interaction, regulation of biochemical
pathways, complex ecological systems and cloud computing applications etc.

2. Numerical P systems (NP systems)

Theoretical elements of membrane computing research area are presented
in detail in [11], [12], [14]. Next, we formally introduce numerical P systems
and their enzymatic version.

In order to define numerical P systems we need to define the following
concepts. The basic one is the cell-like membrane structure, with the mem-
branes labeled in a one-to-one manner with elements of an alphabet H. In its
compartments, we have variables; those from region i are written in the form
xj,i, j ≥ 1. The value of xj,i at time t ∈ N is denoted by xj,i(t).

In order to evolve the values of variables, we use programs (rules), com-
posed of two components, a production function and a repartition protocol.
The former can be any function with variables from a given region. Using
such a function we compute a production value of the region at a given time,
depending on the values of variables at that time. This value is distributed



Hybrid Numerical P Systems 141

to variables from the region where the rule resides, and to variables in its up-
per and lower compartments (for a given region i, let v1, . . . , vni

be all these
variables) according to the repartition protocol associated with the used pro-
duction function. The repartition protocols are of the following form:

c1|v1 + c2|v2 + · · ·+ cni
|vni

,

where c1, . . . , cni
are natural numbers. The notation ci|vi suggests that coeffi-

cient ci corresponds to variable vi in the repartition protocol. The idea is that
coefficients c1, . . . , cni

specify the proportion of the current production value
which is distributed to each variable v1, . . . , vni

.
Formally, for a rule:

Fl,i(x1,i, . . . , xki,i)→ cl,1|v1 + cl,2|v2 + · · ·+ cl,ni
|vni

let,

Cl,i =

ni∑
s=1

cl,s; q =
Fl,i(x1,i(t), . . . , xki,i(t))

Cl,i

.

At a time t ≥ 0 we compute Fl,i(x1,i(t), . . . , xki,i(t)). The value q represents the
“unitary portion” to be distributed to variables v1, . . . , vni

proportionally with
cl,1, . . . , cl,ni

. Thus, vl,s will receive q · cl,s, 1 ≤ s ≤ ni. The variables involved
in the production function are reset to zero after computing the production; a
variable not involved in a production function retains its value. After reparti-
tion, the quantities assigned to each variable from the repartition protocol are
added to the current value of these variables (starting with 0 for the variables
which were reset by a production function).

Thus, a numerical P system is a construct of the form:

Π = (m,H, µ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0)), xj0,i0),

where m is the degree of the system (the number of membranes), H is an
alphabet of labels for membranes in µ, µ is a membrane structure with m
membranes labeled injectively by elements of H, V ari is the set of variables
from region i, Pri is the set of rules from region i (all sets V ari, P ri are finite),
V ari(0) is the vector of initial values for the variables in region i, and xj0,i0 is
a distinguished variable (from a distinguished region i0), which provides the
result of a computation.

Each rule is of the form specified above: prl,i = (Fl,i(x1,i, . . . , xki,i) →
cl,1|v1 + cl,2|v2 + · · · + cl,ni

|vni
) denotes the l-th rule from region i, where the

set V ari = {x1,i, . . . , xki,i} and v1, . . . , vni
are all variables from region i, the

upper region and the immediately inner regions.
Such a system evolves in the way informally described before. Initially,

the variables have the values specified by V ari(0), 1 ≤ i ≤ m. A transition
from a configuration at time instant t to a configuration at time instant t+ 1
is made by (i) choosing non-deterministically one rule from each region, (ii)
computing the value of the respective production function for the values of
local variables at time t, and then (iii) computing the values of variables at
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time t+1 as indicated by repartition protocols. A sequence of such transitions
forms a computation, with which we associate a set of numbers, namely, those
which occur as values of the variable xj0,i0 ; we consider only the positive values
of xj0,i0 , and their set is denoted by N+(Π).

3. Enzymatic numerical P systems (ENP systems)

An ENP system is defined as an NP system with special enzyme-like
variables which control the execution of the rules, as following:

ΠENP = (m,H, µ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0)), vj0,i0)

where:
• m is the degree of the membrane system (the number of membranes),
m ≥ 1;
• H is an alphabet of membrane labels;
• µ represents the tree structure of the membrane system;
• vj0,i0 is a distinguished variable from a compartment i which provides the

results of the computation;
• Each membrane is defined by a 3-tuple:

(1) V ari is a (finite) set of variables from compartment i;
(2) V ari(0) are the initial values of the variables from compartment i;
(3) Pri is the set of rules from compartment i. Rules have one of the

two following forms:
(a) non-enzymatic form, which functions as like the rules in stan-

dard NP systems

Prj,i = (Fj,i(x1,i, . . . , xki,i), cj,1|v1 + ...+ cj,ni
|vni

)

(b) enzymatic form

Prj,i = (Fj,i(x1,i, . . . , xki,i), et,i, cj,1|v1 + ...+ cj,ni
|vni

)

where et,i is an enzyme-like variable which controls the activa-
tion of the rule.

Like in NP systems, a rule is composed of a production function, a repar-
tition protocol and optionally an enzyme-like variable. Each rule is evaluated
in three steps, activation-production-distribution. First of all, it is established
which rules are active. There can be more than one active rule in a membrane
or none. A rule is active if it is in the non-enzymatic form or if the associated
enzyme has a greater value than one of the variables involved in the production
function. All active rules in the membrane system are executed in parallel in
one computational step.

4. Hybrid numerical P systems (HNP systems)

A HNP system is a ENP system in which the rules model the transfer
rates of differential equations. A production function will now have two com-
ponents, the expression of the function and its transfer rate. The production
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function multiplied with the transfer rate will be distributed to the variables in
the repartition protocol, being multiplied with the corresponding repartition
coefficients. After the rule is applied, the variables in the production function
will not be consumed entirely as in classical NP systems. The production func-
tion value multiplied with the transfer rate will be subtracted from the value
of each variable in the production function. Then the differential equation rule
of each variable will be computed by summing the produced (positive) or con-
sumed (negative) values of that variable from all rules in which it is present.
The enzymatic mechanism will function like it was previously defined in the
ENP systems. Therefore, we combine continuous time rules with enzyme-like
conditions which act as guards controlling the programs flow.

A HNP system is formally defined as following:

ΠHNP = (m,H, µ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0)), vj0,i0)

where:
• m is the degree of the membrane system (the number of membranes),
m ≥ 1;
• H is an alphabet of membrane labels;
• µ represents the tree structure of the membrane system;
• vj0,i0 is a distinguished variable from a compartment i which provides the

results of the computation;
• Each membrane is defined by a 3-tuple:

(1) V ari is a (finite) set of variables from compartment i;
(2) V ari(0) are the initial values of the variables from compartment i;
(3) Pri is the set of rules from compartment i. Rules have one of the

two following forms:
(a) non-enzymatic form

Prj,i = (Fj,i(x1,i, . . . , xki,i), Kj,i(y1,i, . . . , yqi,i), cj,1|v1 + ...+ cj,ni
|vni

)

(b) enzymatic form

Prj,i = (Fj,i(x1,i, . . . , xki,i), Kj,i(y1,i, . . . , yqi,i), et,i, cj,1|v1 + ...+ cj,ni
|vni

)

where et,i is an enzyme-like variable which controls the activa-
tion of the rule.

For example a simple rule, such as A
K→ 1|B+2|C, produces the following

system of equations:

dA

dt
= −K · A

dB

dt
= K · A

dC

dt
= 2 ·K · A
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In case we want to limit the amount of A that can be transformed, we can

add an enzymatic condition: A|e
K→ 1|B + 2|C. This means that the rule is

executed if and only if min{A} < e⇔ A < e.

5. Case study of a biological dynamical systems modeled using
HNP systems

We will further present a biological dynamical system modeled using
HNP systems. We choose as an example the model proposed by V.A. Kuznetsov
and M.A. Taylor [5], which describes the competition between the tumor and
immune cells. The authors assume that tumor-immune interactions can be
described by Michaelis-Menten equations. The model describes the response
of the immune system’s effector cells (ECs) to the growth of tumor cells (TCs).
The penetration of a TC by an EC forms an EC-TC complex that can either
produce the death of TCs or inactivate the ECs. Figure 1 shows the kinetic
scheme of the interactions between ECs and TCs. E, T, C, E* and T* repre-
sent the concentrations of ECs, TCs, EC-TC complexes, inactivated ECs, and
inactivated TCs. k1 and k1 are the rates of bindings of ECs to TCs and the
detachment of ECs from TCs without deactivating the TCs. k2 is the rate at
which EC-TC interactions produce the death of TCs. k3 is the rate at which
EC-TC interactions inactivate ECs.

Figure 1. Kinetic laws which describe the interactions between
ECs and TCs (figure from [3])

The equations describing the model are the following:

dE

dt
= s+ F (C, T )− d1 · E − k1 · E · T + (k−1 + k2) · C

dT

dt
= a · T · (1− b · T )− k1 · E · T + (k−1 + k3) · C

dC

dt
= k1 · E · T − (k−1 + k2 + k3) · C

dE∗

dt
= k3 · C − d2 · E∗

dT ∗

dt
= k2 · C − d3 · T ∗

where,
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• s is the normal rate of adult ECs into the tumor site (i.e., not increased
by the presence of the tumor);
• F(C, T) is the accumulation of ECs in the tumor site; [5] assumes the

following form for function F: F (C, T ) = F (E, T ) = p·E·T
r+T

;
• d1, d2, and d3 are the coefficients of the processes of inactivation and

migration of E, E* and T*;
• a is the coefficient of maximal growth of the tumor;
• b is the environment’s capacity.

Figure 2a illustrates the membrane system which is equivalent to Kuznetsov
and Taylor dynamical system [5]. To be noticed that the kinetic laws from
figure 1 are naturally described by the rules of membrane M1 and Pr5,2 of
membrane M2. The differential equation law of each variable, X, is obtained
by accumulation of the production functions which generate X, Pj, multiplied
with the transfer rates of the rules (shown above arrows in figure 2a), Kj, and
the corresponding repartition coefficients, cj,X .

Figure 2b presents a similar HNP systems to the one from figure 2a. It
shows how enzyme-like variables can be incorporated in the structure, similarly
to ENP systems. The enzymes act as guards, controlling which rules are active,
based on the enzymatic conditions:
• e1 > min{E0, T 0}, in Pr5,2;
• e2 > C0, in Pr1,1.

(a) HNP system which describes
Kuznetsov and Taylor model [5]

(b) HNP system with enzyme-like vari-
ables

Figure 2. HNP systems

6. Conclusions

In this paper, we propose a novel modeling framework for hybrid sys-
tems using membrane computing paradigm. HNP systems represent a general
framework for modeling and simulation of dynamical systems with applications
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in systems biology, systems engineering, robotics, etc. We show the expres-
siveness and flexibility of HNP systems by modeling a biological dynamical
system. Future work includes applying the framework for more complex mod-
els in systems biology, ecology and robotics and evaluating the advantages
compared to other modeling frameworks for hybrid systems.
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