
U.P.B. Sci. Bull., Series C, Vol. 87, Iss. 3, 2025 ISSN 2286-3540

SECURITY CHALLENGES IN MICRO FRONTEND

ARCHITECTURE WEB APPLICATIONS

Andrei TĂNASĂ1, Liliana DOBRICĂ2

This paper examines security vulnerabilities inherent to micro frontend

architecture, detailing how these weaknesses function and can be exploited within

web applications. Our research provides an original analysis of specific attack

vectors, demonstrating their operational mechanics and methods of triggering them

from a unique attacker’s perspective. This work contributes to a deeper understanding

of the implications of security flaws and mitigation strategies.

Keywords: security vulnerabilities, micro frontend architecture, software

architecture, web application.

1. Introduction

There has been approximately 35 years since Tim Berners-Lee created the

first website by joining the hypertext with the Internet, resulting in more than 30

years of intensive web development and innovation in which the industry grew

exponentially. Nowadays, when web applications are becoming an important

component of the economy serving as an interface to various business-related

domains, a better knowledge management in web development organizations could

improve collaborative actions between various departments [16]. Similar to how a

piece of machinery can become more complex by adding more moving parts, so is

the web ecosystem in software development. When a lot of layers are involved and

shared across different departments (software architects, developers, DevOps,

quality assurance, security engineers), the flaws have more surface to manifest.

Moreover, software developers are pressured to deliver quickly web applications,

making security an afterthought, especially when tacit or explicit knowledge in

security standards is not well-managed. As attack techniques constantly evolve,

often one step ahead of defense, actions based on appropriate knowledge about

security concerns become an important priority in prevention.

In recent years, web applications development industry started focusing on

enhanced scalability, maintainability, and team autonomy, which guided the

process towards a revolution. The adoption of the emerged architectural style,

1 MSc. Eng., Dept. of Automation and Computer Science, National University of Science and

Technology POLITEHNICA Bucharest, Romania, e-mail: andrei.tanasa3110@stud.electro.upb.ro
2 Professor, Dept. of Automation and Computer Science, National University of Science and

Technology POLITEHNICA Bucharest, Romania, e-mail: liliana.dobrica@upb.ro

134 Andrei Tănasă, Liliana Dobrică

namely, micro frontend (MFE), addresses all these benefits [13][15][19]. However,

at the same time with the gain in architectural flexibility and modular nature it raises

the probability of experiencing a larger set of security vulnerabilities along the way

[14][21]. MFE implies decomposing the application frontend into smaller,

independently deployable units. When more elements are involved, the complexity

grows and the risk to experiment security issues increases.

The novelty of this software architectural style and the limited attention it

has received in the current state-of-the-art motivated our research purpose to

investigate its specific security vulnerabilities and demonstrate how these concerns

can manifest in an implemented demonstrator of a vulnerable web application. To

highlight the effects and push for awareness, a presumed attacker’s perspective has

been used extensively to expose the weaknesses of the experimental web

application. In this article, we first elaborate on the background about the concepts

of the MFE architecture. Next, we describe the most common vulnerabilities

involving frontend development. Then, we present the design decisions and

implementation of the practical MFE web application and we evaluate it

considering some of the most common vulnerabilities and discuss about known

solutions to mitigate them. Finally, we summarize our experiences in conclusions.

2. Background

2.1. Micro frontend architecture

A recent research study revealed that the earliest notable mentions of MFE

architecture had been discussed in blogs and articles by companies’ tech teams [20].

The rationale in the emergency of this architectural paradigm was the need for

innovation in a context characterized by chaos and complexity in the frontend

development of web applications with microservices in the backend.

Over the time software architecture design and analysis methods have

facilitated enhanced quality of the software intensive systems in various domains

spanning from embedded systems [12] to web applications [10]. Automatic

transformation of software architecture models [17] or guided decisions based on

catalogues of known architectural styles [10] empower developers to create well-

designed applications. MFE architecture style offers a solution for technology

independence, code isolation, team integration, preference for native browser APIs

and resilience to faults [14]. Web application development with MFEs decomposes

the frontend into smaller, independent, and self-contained modules. These modules,

called micro frontends (MFEs) themselves, handle specific functionalities within

the application. They rely on several key principles to achieve their benefits [19].

These are very similar to microservices’ principles, which are separation of

concerns, independent development, loose coupling, and self-contained. Separation

of concerns ensures that each MFE focuses on a specific, well-defined functionality

Security challenges in micro frontend architecture web applications 135

within the application. Independent development states that MFEs need to be

developed, tested, and deployed independently of each other. Loose coupling means

that components rely on minimal dependencies and well-defined interfaces to

interact with each other. Lastly, self-contained refers to the idea that each module

had its own shell, including its own HTML, CSS, and JavaScript code.

While conceptually, MFE architecture can be applied independently of

microservices, this is not a feasible option, mainly because it diminishes the benefits

of a modular design and goes against its core principles. Using both architectures,

each module in frontend would communicate with the counterpart in the backend

using application programming interfaces (APIs) and other methods, which brings

the idea of a micro application, each half with its own codebase. Every micro

application would become a full-stack entity, achieving perfect vertical slicing.

Each structure individually developed and maintained is responsible for a specific

functionality in the application.

Currently there are few research studies on specific vulnerabilities of

applications using MFE paradigm. Existing literature examines benefits, challenges

and performance analysis of a scalable architecture based on MFE [13] or have

realized a catalog of MFEs anti-patterns [10]. Another quality evaluation at the

architectural level using ATAM illustrates scenarios elicitation for a defined quality

tree to uncover risks in the design decisions. A performance comparison between

the monolithic and micro frontend user interfaces using a browser integrated tool

describes specific tests and measurements [14].

2.2. Security challenges involving MFEs architecture development

Web applications with the advancement to MFEs architecture challenges

mostly an increased exposure to cross-site scripting attacks and potential

misconfigurations of cross-origin resource sharing [14]. Other security weaknesses

might include insecure client-side storage, insecure development practices,

component isolation issues and cross-site request forgery [3][22].
Cross-site scripting (XSS). Represents a security vulnerability which

allows an attacker to inject malicious scripts into a web application, which are then

executed in the browsers. These scripts could hijack user session, break websites,

or redirect users to malicious sites as it is mentioned in a recent survey [5]. There

are few methods the XSS can exploit to happen. The most common way is for the

script to be rendered unsanitized (without protection routines) into the document

object model (DOM) [18]. The script can be injected in several ways including via

direct user input, stored in another module, received via a custom event or from a

third-party integration. According to the one of the most used sources for retrieving

malicious XSS payloads, the code injected can have different forms, most common

being JavaScript, but it can also be HTML, CSS, or others [1]. Vulnerabilities in

shared libraries or frameworks can also introduce XSS risks.

136 Andrei Tănasă, Liliana Dobrică

The frequency of XSS in applications is still alarmingly high, even with the

development of IT industry. A parallel can be drawn between the top 10 security

issues [2]. In 2017 and 2021 the XSS was in the ranking, being in a higher spot in

the later year. A new standard awareness document for developers and web

application security, OWASP Top Ten 2025, is expected to be released soon.

Since MFEs involve multiple independently developed components, the

risk of XSS is heightened due to inconsistent security practices across teams. One

compromised MFE could impact others, leading to a cascading effect.

Cross-origin resource sharing (CORS) misconfiguration. CORS is

essentially a security feature part of web browsers that controls how resources on

one side can be accessed by scripts from another. When these policies are

misconfigured headers, it can expose sensitive APIs or promote malicious

interactions between modules. These misconfigurations happen when developers

use overly permissive settings, without verifying where the requests come from, as

well as improper credentials handling. An attacker could exploit these weaknesses

to access protected resources, cause a data leak in the application or a way for an

attacker to overload the system.

Compared to monolithic structures, MFEs are deployed on different

subdomains or domains and communicate with backend services, relying on those

systems to receive information. This functionality introduces the necessity for

CORS policies that allow safe communication between the elements involved.

Insecure client-side storage. Client-side storage refers to ways of

depositing data locally on the user’s device via web browsers. These include local

storage, session storage, indexed databases and cookies. In OWASP top 10 client-

side security risks, the use of client-side storage for any type of sensitive data is a

high-risk practice [4]. Session management flaws are prevalent vulnerability [7].

In MFE architecture, each module can independently decide how to handle

and store sensitive information like user preferences and authentication tokens.

Compared to a monolithic approach, the chances for one module to use problematic

storage options are higher, as more elements are involved. The problem with client-

side storage comes from how easily it’s accessible. When insecure client-side

methods of storing data like local storage or session storage are used, the data is

exposed to JavaScript and unauthorized access made by another MFE. If data gets

extracted it can directly harm the user (for example, impersonating the user using

authentication token) or it can affect the application by overridden or leaking data

due to naming conflicts or global access.

Component isolation issues. Component isolation refers to several types

of isolation. While not all can pose a security “hazard”, it’s important that each

aspect is taken into consideration in MFE development. There are multiple types of

isolation including runtime isolation. This refers mainly to the logical separation

between MFEs when code is executed. Without it, a compromised component could

Security challenges in micro frontend architecture web applications 137

affect the behavior or integrity of other independently developed modules. By

default, CSS styling is global in browsers, so careless frontend development may

unintentionally target multiple components, creating inconsistencies. Each

component maintains its own internal states and should not be allowed to share

them or manipulate others directly. And lastly, security isolation should enforce

tight access controls and privilege boundaries to prevent MFEs becoming out of

scope. Failing this could lead to data leaks and compromised logic.

Component isolation is a foundational security concern for MFE

architecture. In monolithic frontends, the application is handled and deployed as a

single unit. In the opposite corner, the MFEs are fragmented and, most of the time,

displayed side-by-side within the same DOM context. Without proper isolation one

module might access or interfere with another’s internal logic or event listeners.

Without strict boundaries, the system is exposed to cross-module attacks,

unauthorized data access or privilege escalation.

Dependency management. According to Black Duck’s annual report [8],

which analyzed 965 commercial codebases within 16 industries, 86% of them had

open source software vulnerabilities, while 81% included at least one high or

critical risk vulnerability. In a similar note, in 2022, the Snyk (a leader in developer

security) and The Linux Foundation (a global nonprofit organization) reported in

[9] that the average development project has 49 vulnerabilities spanning 80 direct

dependencies, and the time it takes to fix something in an open source project has

increased from 49 days in 2018 to 110 days in 2021.

In the MFE architecture, where different teams independently develop and

deploy MFEs, managing dependencies can become a complex task. Each MFE may

use separate versions of the same dependencies, leading to security vulnerabilities

and performance issues if outdated libraries are used. Some older versions of

libraries may contain known security flaws, while others may experience version

conflicts that result in unexpected behavior. Unverified third-party code can also

introduce unknown risks. By comparison, in a monolithic application these types

of conflicts are not a concern, as all files use the same dependencies, but security

risks can still occur. The development of software has improved thanks to the

inclusion of open source packages and libraries that developers can use. In order to

mitigate any of the risks that may appear, a dependency management solution must

be applied to any codebase. Module Federation with shared dependencies with

version alignment is a good start for a safe MFE implementation (or a centralized

dependency management), followed by regular security audits using tools like npm

audit or Snyk and enforcing whitelisting of approved libraries are key strategies to

mitigate these risks, advised in [10].

Cross-site request forgery (CSRF). This is a web vulnerability that causes

authenticated users to perform certain actions on a website after being tricked by

138 Andrei Tănasă, Liliana Dobrică

the attacker. This issue is more complex in MFE architecture, because multiple

components interact with the same authentication system [11].

The attack has a simple structure; the user must first be logged in the web

application. The attacker, using a malicious website or link makes the user send a

state-changing HTTP request (this can be a POST, PUT or DELETE) to the target

application. Because the domain is trusted, the request automatically gets

credentials from the browser and ends up in the hand of the attacker.

This can be caused by different factors, for example if the authentication

tokens are stored in the browser’s cookies and are sent automatically in requests

across components, or if one MFE exposes a critical functionality without

validating the source of the request. As stated in [2], CSRF could be considered a

newer vulnerability, appearing in the most recent top 10 risks of OWASP.

3. Design and implementation of the practical MFE architecture

application

A generic shopping web application was designed and implemented to

provide a testing environment for vulnerabilities. Fig. 1 presents the frontend of the

vulnerable application in browser. This follows a horizontal split micro frontend

architecture model, where the frontend of the system is divided into several smaller,

independently deployable pieces on the same page. These web components are

integrated into a container application that serves as the entry point for the user.

Fig. 1. Web application frontend with 4 MFEs in browser.

Each MFE has a counterpart in the backend side of the application, a

microservice responsible for the logic behind (Fig. 2). The system consists of four

main mini applications (MFE + microservice): Auth, Products, Cart, and Order.

Auth handles user authentication, Products manages product listings and

Security challenges in micro frontend architecture web applications 139

interactions including reviews, Cart handles user selections, and Order manages

order submission and display.

Frontend

Products

MFE 2

Auth

MFE 1
Cart

MFE 3
Order

MFE 4

Backend

Auth

API
Products

API

Cart

API

Order

API

Database

Container App

Fig. 2. Frontend with MFEs and backend sides of the web application

To implement MFEs we used the technique of Modular Federation, that is

realized in a plugin of Webpack 5. We created each separate module representing

each MFE of the web application. The frontend is written in React, a popular

JavaScript library for building user interfaces, styled using Sassy CSS (SCSS) files

(and later with SCSS modules). The MFEs are connected using Module Federation,

each one exposing itself in order to be loaded in the container app (which acts as a

shell) but in separate parts of the page. The backend is written in JavaScript using

Node.js with Express framework, each one having its own server that handles HTTP

requests. SQLite is used for database management, all apps sharing the same

database. The authentication status is recognized using a token created using a

JavaScript object notation (JSON) web token (JWT) package. The application

works as a retail website that sells clothes.

4. Exploiting micro frontends vulnerabilities and mitigation solutions

We investigate in the following attack examples relative to the practical

application introduced previously. We show how security vulnerabilities can be

exploited by the attacker and we propose mitigation solutions.

4.1. Cross-site scripting attack in practice

To perform this attack, the attacker will post a review for a product and use

the input field to inject the script (Fig. 3a). The code presented in Listing 1 is made

140 Andrei Tănasă, Liliana Dobrică

using an HTML tag used to display images (), where the script is hidden in

one of the tag’s attributes (onerror), and is executed every time the user loads

that specific product page. For a non-expert user, this seems like a broken element

in the website. The MFEs application uses React, meaning that by default the code

injection is mitigated thanks to how the framework is designed. On the frontend

side, the code is rendered using a special HTML tag (dangerouslySetInnerHTML)

in order for the script to work in this React application. The attribute is used to

bypass the protection and is used frequently to integrate with legacy code

(something very common when transitioning from monolith to micro frontend) and

to render HTML snippets, as well as raw HTML from external sources. This flaw

in the system represents a mistake a developer could have made in a real production

environment, and it does not mean the attack can only happen this way. The XSS

attack can also happen when JavaScript XML (or JSX) expressions are used, when

direct DOM methods are used (like innerHTML or eval), or can even come from

third-party libraries.

Listing 1. Example XSS atack
<img src=x onerror="

 alert('This is an alert informing you a XSS attack affected you!

You wouldn\'t see this normally!');

 var token = localStorage.getItem('token') || 'none';

 new Image().src = 'https://webhook.site/6a24b347-flyh-4324-

b3d4-5eed3bhecb1b?token=' + encodeURIComponent(token);

 setTimeout(() => location.href = 'https://6a216630-8dfc-42a4-

b095-16af81dee7a1-00-2qyugwsdj5cki.picard.replit.dev', 1500);

">

The script redirects the user to a fake website hosted using a free platform

(Replit in this case) meant to trick the person into giving away login information

for the website (the attacker creating an exact replica to the shopping website),

counting on the user’s lack of experience and attention. If the user is tricked, the

credentials will get in the hands of the attacker. For demonstration purposes, the

script also triggers an alert on the screen to highlight the successful execution of the

script (Fig. 3b). The data entered by the user is collected using a logger application,

available online for free, called webhook.site (Fig. 3c).

Mitigation solution. To mitigate this, the developer must be sure that

everything that gets rendered in the web application and its source that can be

malicious must be sanitized using available tools. Content security policies (CSP)

should be enforced to prevent unauthorized script execution, and proper encoding

must be implemented before displaying dynamic content (the term used is escape).

Security challenges in micro frontend architecture web applications 141

a) Sequence diagram of an XSS attack

b) The alert of the simulated XSS attack

c) The fake website the user is being

redirected to

d) Result of sanitizing the user input (the

function removed the script’s effect)

Fig. 3. Detailed example XSS attack in practice and results.

Also, it’s important to stick to strict HTML templating, following only the

best practices. For the practice application, the JavaScript library called DOMPurify

was used to sanitize all the user input that gets rendered in the micro frontends,

blocking the effects of the script. A content security policy was also set up to add

another layer of protection using Helmet, which is a middleware that sets security

headers in Express.js backends. The review ends up displayed as a harmless broken

image as seen in Fig. 3d.

4.2. Insecure client-side storage in practice

The MFE application was designed to use a flawed authentication token

handling process. In the service responsible for authentication, the user receives a

token to acknowledge his successful logging in the application across all other

services. The main problem arises when this token is stored in the browser’s local

storage, making it vulnerable to XSS attacks and malicious browser extensions (Fig.

4). On the browser side, the information can be accessed using the inspect element

menu available for each browser. In the storage menu, the token will appear in local

142 Andrei Tănasă, Liliana Dobrică

storage section. During the XSS attack from previous section, among the data stolen

was also the user’s authentication token.

Depending on how it was created, the token will expire after some time. For

the MFE application, the token is valid for 24 hours, meaning that the attacker can

hijack the account as long as it is valid. The method, in this case, involves creating

a variable (or changing it if already exists) in the local storage of the browser with

the value equal to the stolen token. After a page refresh, the account is hijacked,

and for a limited time the attacker has access to every action as the owner.

Fig. 4. A view on the authentication token stored in browser’s local storage

Mitigation solution. To mitigate the risks of sensitive data being leaked,

secure storage solutions should be used, like HTTP-only cookies. It provides

security if done correctly, which includes setting up a series of tags when creating

the cookies: HttpOnly (blocks JS from accessing the data), Secure (to be sent only

via HTTPS) and SameSite (to prevent CSRF attacks discussed later).

Moreover, for authentication, centralized modules that abstract token

handling can be used, preventing components from accessing credentials directly.

There are third-party options like OAuth2 service which simplify the authentication

process and enhance security by leveraging well-established and secure

mechanisms. Using a third-party solution with PKCE (proof of ownership) helps to

protect against authorization code interception, while enforcing role-based access

control to ensure that each MFE can only accesses the data when it needs it.

4.3. Cross-origin resource sharing misconfiguration in practice

By design, the CORS configuration in the backend for the order service was

set up to be very simplistic, lacking a polished set of rules to limit unauthorized

access. This means an attacker can send POST requests using a third-party scripting

tool and affect the application and users in different ways (Fig. 5). The attacker,

who has in possession authorization tokens from other users obtained during the

XSS attack, could fill the accounts of respective users with fake orders, essentially

Security challenges in micro frontend architecture web applications 143

making the order history feature unusable, for both the user and the store. The same

script can be used to overload the system with many requests, crashing the website.

Mitigation solution. To avoid this risk explicit policies on the server-side

need to be enforced. All backends involved should only whitelist specific origins

(in this case the MFEs) so that any external or unnecessary access is blocked. It is

also essential to restrict HTTP methods and headers in cross-origin requests and

monitor API activity for any suspicious behavior.

Fig. 5. Sequence diagram for CORS misconfiguration exploit

4.4. Component isolation vulnerability in practice

When all MFEs are rendered in the same DOM (which acts like a container),

one compromised area will affect to the whole application.

Listing 2. Script that affect all the MFEs

<img src=x onerror="

 document.body.innerHTML =

 '<h1 style=\'color:red; text-align:center;\'>UI

disabled</h1>'

">

An attacker could use the same CORS misconfiguration or the XSS

injection to break the user interface (UI) for the users. In this case, knowing the

review section’s input field is not sanitized, the attacker will post another review

(in the same way and format like in XSS case) for a different product which will

disable the whole interface. This time, the script in Listing 2 will replace the entire

body contents of the current HTML page which will affect all the MFEs. This will

not allow the users to view that specific product page.

144 Andrei Tănasă, Liliana Dobrică

Another lack of isolation, in terms of styling, can be achieved in the MFE

application by injecting a different script. The common methods of styling a web

application are vulnerable to isolation issues, and our MFE application is no

exception. The script which will alter the look of the website for anyone that comes

across it is in Listing 3. Similar to other XSS attacks, the code will hide in a product

review, and using the document.style.innerHTML tag the script will replace

all the background colors of the website with light pink, white font color, and blur

everything. The !important flag in the script signals the browser to apply the

styling to all instances that it can. It does not cause permanent effects, if previously

the user interface will return to normal after leaving the product page, this time the

user must also reload the website to replace the injected styling with the original.

Listing 3. Script that alter the look of the website
<img src=x onerror="

 const style = document.createElement('style');

 style.innerHTML = `

 div {

 background: hotpink !important;

 color: white !important;

 filter: blur(4px) !important;

 }

 `;

 document.head.appendChild(style);

">

Mitigation solution. Mitigating all the vulnerabilities requires a complex

strategy combining more than one concept. For runtime isolation there are explicit

technologies designed to encapsulate the modules. Web components technology

supports encapsulation using shadow DOM: iframe-based sandboxing offers

isolation at browser level by default, and predefined popular frameworks like

Single-SPA and Module Federation allow controlled loading of micro frontends.

However, the later options do not enforce isolation by default, it requires extra setup

(iframes). For styling conflicts there are several options described in [6]. A simple

option is to use CSS modules. Sharing application states should be avoided, and

instead backend-for-frontend (BFF) APIs should be implemented and used,

according to [7]. And lastly, in order to secure micro frontends, trusted registries

should be used, alongside integrity hashes when loading the modules.

4.5. Cross-site request forgery mitigation strategies

Mitigating strategies applied to our MFE application require a coordinated

effort. Browsers support an attribute for cookies, called SameSite, that limits

cross-site request transmission. Apps could also use a different type of token, called

synchronized token, that gets validated server-side when a request is made, but it

Security challenges in micro frontend architecture web applications 145

should be securely passed between components in the MFEs. Modern frameworks

like React and Angular offer build-in support for CSRF protection. A proper CORS

configuration can also provide security, as it ensures only trusted origins can

interact with backend APIs.

5. Conclusions

This research sets out to explore and analyze MFE architecture specific

security concerns, an area that is still under-examined despite the growing adoption

of this architectural style. A consolidated background with a classification of

security challenges and a demonstrator web application offered valuable insights.

The practical side of this research experiments with a limited number of

methods an attacker can exploit a web application with. While the concepts

presented have a generalized tone and are applicable to the majority of projects, the

tech stack plays an important role in identifying the weak areas in an application.

While MFEs improve autonomy for teams working on different parts of the

application and help scale the system better, they introduce complexity in managing

security control. Vulnerabilities like XSS, insecure client-side storage, cross-origin

resource sharing misconfiguration, component isolation issues, and others, become

harder to detect and solve when too many teams are involved.

Many issues come from inconsistent security practices across the people

involved in development. One mistake could trigger a domino effect and

compromise the entire application, so it is important for all the teams onboard to

have the best practices in mind when they handle security.

The decision to adopt micro frontends should be informed not only by

scalability and team autonomy goals but also by the maturity of the company’s

security knowledge. In an environment without proper tooling, monitoring, and a

developer security knowledge, the risks of misconfiguration and fragmented

security implementation may outweigh the benefits.

Securing a MFE architecture requires more than technical measures, it

demands a certain tacit knowledge. Just as DevOps introduced new cultural and

operational norms, a secure MFEs development calls for something similar, a role

that promotes security-aware design, shares responsibility across teams, and tooling

to support modular yet consistent defenses, a “DevSecFrontendOps”.

R E F E R E N C E S

[1] ***, OWASP cheat sheet series, Cross site scripting prevention cheat sheet,

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_She

et.html (accessed July 2025)

[2] ***, OWASP Top 10: 2021, https://owasp.org/Top10/ (accessed July 2025)

[3] C. He, C. Ding, RASP: Next generation web application security protection methodology and

framework, Computers & Security vol. 154, 104445, 2025

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://owasp.org/Top10/

146 Andrei Tănasă, Liliana Dobrică

[4] ***, OWASP Top 10 client-side security risks. Available: https://owasp.org/www-project-top-

10-client-side-security-risks/ , 21 February 2025.

[5] A. Mannouse, S. Yahiouche, M. C. Nait-Hamoud, Twenty two years since revealing cross-site

scripting attacks: A systematic and a comprehensive survey, Computer Science Review, 52,

100634, 2024.

[6] F. Rappl, The art of micro frontends: build highly scalable, distributed web applications with

multiple teams, Packt Publishing, 2024.

[7] C. Potter, N. Saxena, S. Maity, Clarity: Analysing Security in Web Applications, 15th Int. Conf

on COMmunication Systems & NETworkS (COMSNETS), pg. 522-528, 2023.

[8] J Alger, Open source software vulnerabilities found in 86% of codebases, Security Magazine,

2025. Available: https://www.securitymagazine.com/articles/101420-open-source-software-

vulnerabilities-found-in-86-of-codebases (accessed July 2025)

[9] ***, The Linux Foundation, The state of open source security, The Linux Foundation Press

Release, 2022.

[10] N.P.S. da Silva, E. Rodigues, T. Conte, Catalog of micro frontends anti-patterns, 2025

IEEE/ACM 47th Int. Conf. on Soft. Eng.(ICSE), 2025, DOI 10.1109/ICSE55347.2025.00079.

[11] Cloudflare, Cross-site request forgery (CSRF), Cloudflare Learning Center. Available:

https://www.cloudflare.com/en-gb/learning/security/threats/cross-site-request-forgery/

[12] L. Dobrica, R. Pietraru, Security Analysis at Architectural Level in Embedded Software

Development, CEAI Journal, vol. 11, no. 2, pp. 51-58, 2009

[13] A. Petcu, M. Frunzete, DA Stoichescu, Benefits, Challenges, And Performance Analysis of a

scalable web architecture based on micro-frontends, U.P.B. Sci. Bull., Series C, 85(3), 2023

[14] V. Kunstnar, P. Podhorsky, Micro Frontend Architecture, Zooming Innovation in Customer

Technologies Conference, pg. 124-129, IEEE 2024.

[15] I. Poloskei, Udo Bub, Enterprise-Level Migration to Micro Frontends in a Multi-Vendor

Environment, Acta Polytehnica Hungarica, vol. 18, no. 8, pg. 7-25, 2021

[16] Dobrica L., Knowledge in action towards a better knowledge management in organizations,

Management Research and Practice, vol. 13, no. 2, pg. 41-50, 2021

[17] Dobrica L., Ionita AD, Pietraru R,, Olteanu A., Automatic transformation of software

architecture models, U.P.B. Sci. Bull., Series C, vol. 73, Iss.3, pg. 3-16, 2011

[18] D. Klein, T. Barber, S. Bensalim, B. Stock, M. Johns, Hand Sanitizers in the Wild: A large-scale

study of custom Javascript sanitizer functions, 7th European Symposium on Security and

Privacy (EuroS&P), IEEE, 2022

[19] S. Peltonen, L. Mezzalira, D. Taibi, Motivations, benefits and issues for adopting micro-

frontends: a multivocal literature review, Inf. and Software Tehnology, 136, 106571, 2021

[20] J. Manisto, AP Tuovinen, M. Raatikainen, Experiences on a frameworkless micro-frontend

architecture in a small organization, 20th Int. Conf. on Soft. Arch. Companion, IEEE, 2023

[21] E. Gashi, D. Hyseni, I. Shabani, B. Cico, The advantages of micro-frontend architecture for

developing web application, 13th Mediteranean Conf on Embedded Computing, 2024

[22] S. Alazmi, D.C. de Leon, A systematic literature review on the characteristics and effectiveness

of web application vulnerability scanners, IEEE Access, vol. 10, 33200-33219, 2022.

https://owasp.org/www-project-top-10-client-side-security-risks/
https://owasp.org/www-project-top-10-client-side-security-risks/
https://www.securitymagazine.com/articles/101420-open-source-software-vulnerabilities-found-in-86-of-codebases
https://www.securitymagazine.com/articles/101420-open-source-software-vulnerabilities-found-in-86-of-codebases

