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MULTIPLE EQUILIBRIUM STATES DURING THE 
QUASI-STEADY FORMATION OF BUBBLES AND DROPS AT 

A CIRCULAR ORIFICE 

Sanda-Carmen GEORGESCU1, Jean-Luc ACHARD2 

Instabilities occurring during the quasi-steady formation of bubbles and 
drops at a submerged orifice, under constant pressure conditions, have been 
investigated numerically. For different values of the control parameters of the 
problem, namely the Eötvös number Eö, and the excess pressure number Δ, which 
denotes the pressure difference between gas and liquid across the orifice, computed 
interface profiles are characterized by the apex height h, positive for bubbles, and 
negative for drops. At high apex height values, bubbles and drops have an undulate 
structure, with one or two necks. In the three-dimensional space (Eö,Δ,h), the 
equilibrium surface is multifold in both Δ directions, and some singularity lines 
intersect to form higher singularities. The central singularity is a cusp that straddles 
on the flat meniscus, between emerging bubbles and pendant drops profiles. The 
upper cusp sheet corresponds to bubbles, and the lower one corresponds to drops. 
Several fold curves that correspond to the multifold surface delimit stable and 
unstable regions. The first four fold curves are roughly parallel, while the 
following-ones are distorted, and exhibit a sequence of swallowtails. The numerical 
bifurcation set is computed onto the control parameter plane (Eö,Δ), extending in 
particular the analytical bifurcation set that is valid only around the critical point, 
defined at Eö = 5.783186, 0=Δ , and 0=h . 
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1. Introduction 

To enhance the transport rate between gaseous and liquid phases, many 
engineering applications involve formation of gas bubbles and liquid drops. We 
focus here on the quasi-steady formation of bubbles and drops at a submerged 
orifice [1; 2]. Experimental evidence on Newtonian fluids shows that, usually, 
stable bubbles and drops, which form without phase change, have not an undulate 
structure. However, Padday [3] studied the bifurcation and breakage of a pendant 
drop, using an ultra high-speed cine camera. Some of its frames, especially those 
with satellite drop formation, are reminiscent of drop configurations that may be 
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considered as necked. Chains of bubbles connected by thin necks have been 
observed by Kliakhandler [4], but only in concentrated polymeric solutions, 
where bubbles may form a very stable, continuous, and slowly rising bubbles 
sausage. The elastic properties of the liquid prevent the collapse of necks, and 
detachment of rising bubbles from each other. The same author conducted 
additional experiments with bubbling in viscous Newtonian liquids (corn syrup, 
silicon oil), but no undulate bubble structure could be formed. In experimental 
studies about the dynamics associated with a single bubble during nucleate 
boiling on a horizontal surface, necked bubble profiles have been observed by 
Pakleza et al. [5]: vapour bubbles could not be stabilised, but their growth is low 
enough to meet temporarily some undulate steady configurations during their life. 
Note that, in this experiment, the saturated vapour pressure is controlled via the 
temperature. 

We limit our interest to processes without phase change, and select 
systems that contain Newtonian fluids. Each particle (bubble, drop) interface is 
attached to the edge of a circular orifice through a thin plate, which separates an 
upper cylindrical vessel of quiescent liquid, from a lower air chamber maintained 
at constant pressure. Thus, the quasi-steady formation of bubbles and drops 
appears as a process mainly governed by a balance of interfacial tension and 
gravity forces. The analysis performed analytically by Achard and Georgescu [6] 
has brought a unified picture of the quasi-steady formation of bubbles and drops 
under constant pressure conditions, in connection with the Rayleigh-Taylor 
instability. The validity of that analysis is restrained to interface configurations 
that admit a simple (one-to-one) projection onto the orifice plane. The purpose of 
the present paper is to extend the previous theoretical analysis through elementary 
numerical computations, in order to capture the behaviour of interface profiles, 
which start from the flat meniscus, and evolve to some undulate structures. 

2. Problem formulation 

The physical system includes an open cylindrical vessel of quiescent 
liquid, over a gas chamber. A thin horizontal plate, which is perforated with one 
small orifice of radius R, separates both fluids. The liquid vessel is assumed large 
enough, to neglect sidewalls effect, and the free surface. Mathematically, the 
liquid above the plate extends at infinity. A meniscus forms at the submerged 
orifice: that meniscus may be flat (the Rayleigh-Taylor case), upward oriented for 
emerging bubbles, or downward oriented for pendant drops. 

The gas pressure Gp  is assumed to be constant. The hydrostatic liquid 
pressure Lp  has the particular value 0Lp  over the plate. The equilibrium interface 
shape depends on R, on the difference between Gp  and 0Lp , on the gravity g, as 
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well as on the liquid density ρ, and surface tension σ. Two independent 
dimensionless parameters control this evolution [6], namely the Eötvös number: 

σρ 2 RgEö = ,      (1) 
and the dimensionless excess pressure across the orifice: 

( ) σΔ Rpp LG 0−= .      (2) 
The flat meniscus corresponds to 0=Δ , while bubbles and drops are defined by 

0>Δ , and 0<Δ  respectively. The cylindrical polar coordinate system ( )zr ,,θ  is 
defined with 0=r  on the orifice axis, and 0=z , the horizontal reference plane, 
at the plate level. The gravity is acting in the negative z-direction. A parametric 
representation of the interface profile is adopted, as ( )tsrr ,= , ( )tszz ,= , and 

( )ts,ψψ = . The curvilinear abscissa s is measured, in a meridian plane, from the 
profile apex ( )0=s , to the orifice edge where Ls = , the maximum arc length. 
The azimuthal angle ψ defines the unit tangent vector ( )ψψ sin,cos=τ  on the 
interface. The sense of τ  is such that: 

( )ψψψψ cos ,sin   and   ,d sin   ,d cos
00

−=−=−= ∫∫ n
ss

szsr .       (3) 

The unit normal n points outward from the liquid phase. 
The appropriate boundary conditions that govern the continuously 

changing contact line, which is attached at time 0=t  to the orifice edge, will be 
simplified. Adopting a macroscopic point of view, the contact line can be 
considered as attached to the seemingly sharp edged orifice. All the detailed local 
physics of contact angles [7] can be by-passed, the studied interface 
configurations being such that ( )acr θπψθ +<< , where cψ  is the azimuthal 
angle at the contact point, rθ  is the limit receding contact angle, and aθ  is the 
limit advancing contact angle. During the quasi-steady interface evolution, the 
slow motion in the incompressible inviscid liquid above the interface is supposed 
to start irrotational and remain so. The velocity potential φ satisfies the Laplace 
equation, 02 =∇ φ , and its evolution is governed by the Bernoulli equation: 

  
2
1

0
2

LL pzgp
t

=++⎟
⎠
⎞

⎜
⎝
⎛ ∇+
∂
∂ ρφφρ .   (4) 

The velocity potential must be finite along the z-axis, 0=∂∂ rφ , and it vanishes 
at infinity. There is a vanishing normal velocity at the impermeable plate: 

0=∂∂ zφ . The normal component of the momentum balance on the interface is 
written as: 

( )21 11 RRpp LG +=− σ ,     (5) 
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where 1R , and 2R  are the local principal radii of curvature. The planar curvature 
is sR dd1 1 ψ−= . The axisymmetric curvature is rR ψsin1 2 =  outside the axis 
of symmetry ( 0≠r ), and it equals the planar curvature on the Oz-axis ( )0=r . 

Combining Bernoulli Equation (4), and momentum balance (5) evaluated 
at the interface, gives the following equation, written in a dimensionless form: 
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where the length scale R, and velocity scale gRU =  have been adopted. The 
dimensionless variables have been taken as: 

( ) RUttURRzz === ∗∗∗      and     ,   , φφ .  (7) 
Further, only dimensionless variables will be considered, so to simplify notations, 
asterisks will be suppressed for convenience in the rest of the paper. 

The left-hand side of Equation (6) contains the transient part, while the 
right-hand side contains the steady part. The interface equilibrium profile is 
defined by that steady part: 

21 11 RRzEö +=+Δ .     (8) 
The Equation (8) can be rewritten as a coupled set of three first-order ordinary 
differential equations, by deriving the dimensionless geometric parameters ψ , r 
and z with respect to the curvilinear abscissa s: 

( )

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−=
−=

=+−=
≠+−−=

                                   sindd
                                  cosdd
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ψ

Δψ
ψΔψ
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rzEös
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.   (9) 

The following boundary conditions are available for the interface: 
( ) ( ) ( )
( ) ( ) ( ) 0      ,1      ,

0      ,00         ,0
======
======

LszLsrLs
hszsrs

cψψ
πψ

.  (10) 

where h  denotes the dimensionless profile apex height. 
The nonlinear system (9) with boundary conditions (10) is solved 

numerically as in [8], through a standard shooting method: the integration of the 
system of ordinary differential equations with initial conditions (imposed values 
at 0=s ) is made repetitively by the classical fourth-order Runge-Kutta method, 
to match the boundary conditions at the edge of the orifice ( )Ls = , via a trial and 
error process [9]. The apex height h , the maximum arc length L, and the 
azimuthal angle at the orifice edge cψ  are obtained upon the numerical 
integration of the above system. For a given pair of control parameters { Δ,Eö }, 
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we found several equilibrium interface profiles, which correspond to different h -
values (implicitly to different values of L and cψ ). For drops, the numerical 
procedure follows that of bubbles, with some differences: 0<h , the last equation 
in (9) changes its sign, and ( ) 00 ==sψ  in (10). 

3. Bifurcating solutions 

Within the stability analysis performed by Achard and Georgescu [6], the 
interface profile magnitude is expressed by the amplitude ε (positive for bubbles, 
and negative for drops), defined as: 

( ) ( )
( ) r

J
rJ

rr d ~ 2
1

0 11

10∫=
λ
λ

ξε ,     (11) 

where 40482556.21 =λ . The Equation (11) includes the steady solution ξ~  of the 
interface representation ( ) ( ) ( )trrtrz ,ˆ~, ξξξ +== , which defines only profiles that 
admit a simple projection onto the orifice plane. It follows that the apex height is 
then: ( )0~ξ=h . For small axial disturbances ξ̂  about ξ~  at 0=Δ , the stability of 
the null solution 0~

=ξ  (that is the flat meniscus) has been tested in [6, Section 4], 
together with the stability of the bifurcating solutions, 0~

>ξ  for bubbles, and 
0~

<ξ  for drops [6, Sections 5-6]. The general condition for loss of stability has 
been described for the flat meniscus, 0~

=ξ , by two eigenvalues: 
( )( ) 1
1 mμμσ ±= ,      (12) 

where ( )[ ]( ) 22 
111 λJEöm =  is the added mass coefficient, and μ is defined as: 

5.7831862
1 −=−= EöEö λμ .    (13) 

The flat meniscus is thus stable when 0<μ  (that is when 5.783186<Eö ), and 
unstable when 0≥μ . In the neighbourhood of 0=ε , the subcritical bifurcation 
diagram (in the plane 0=Δ ) has been analytically defined by [6, Equation (49)]: 

2 36.73425 εμ −= .      (14) 
Its upper branch ( 0>ε ) corresponds to bubbles, while its lower one ( 0<ε ) 
corresponds to drops. Those two branches emerge symmetrically from the critical 
point 1P , situated at 0=μ  (that is 5.783186=Eö ), 0=Δ , and 0=ε . For 

0=Δ , it was shown that the solution 0~
≠ξ  is unstable as it bifurcates at the 

critical point [6, Section 6]. In Figure 1 we plot the bifurcation diagram in the 
plane (Eö,ε). The analytical curve of Equation (14) is transformed as ( )ε EöEö =  
due to Equation (13). In Fig. 1 we also plot numerical results obtained within this 
paper from Equations (9-10), and transformed then in terms of ε through Eq. (11). 
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Fig. 1. Subcritical bifurcation diagram ( )0=Δ : analytical curves, together with numerical results 

plotted by star marks. Stable parts are plotted in solid line, while unstable parts are dashed 
 

 

Fig. 2. Left: complete bifurcation diagram obtained numerically ( )0=Δ . Stable parts are plotted 

in solid line, while unstable parts are dashed. Right: typical profiles of bubbles in +
2P  

( )996.0=Eö , +
3P  ( )990.2=Eö , +

4P  ( )286.1=Eö , +
5P  ( )560.2=Eö , +

6P  ( )348.1=Eö , and 

the flat meniscus in 1P  ( )5.783186=Eö  
 

We extend here the above stability analysis far from the flat meniscus, to 
interface configurations that have an undulate structure (with one, or two necks). 
The parametric representation is convenient. The representative interface 
magnitude in the present paper is the apex height h (positive for bubbles, and 
negative for drops), which results upon numerical integration of Equations (9-10). 
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In Figure 2, we present the complete bifurcation diagram (in the plane 0=Δ ), 
obtained numerically far from 0=h . Various turning points have been identified, 
being denoted …… ,P,,P,P 532

+++  when referring to bubbles, and …… ,P,,P,P 532
−−−  

when referring to drops. Typical profiles are plotted for bubbles corresponding to 
the turning points ++

62 P,,P … , together with the critical flat meniscus situated in 

1P . The drops profiles at −−
62 P,,P …  are just symmetrical to the corresponding 

bubble profiles, with respect to the orifice. The stability of the bifurcating 
solutions far from the flat meniscus will be discussed upon an extended 
eigenvalue problem [6, Equation (53)], modified here by introducing the 
representation ( )tzr ,η=  for necking interfaces (within the analytical study, the 
parametric representation is not convenient). The dependant variable varies 
between 0 and h . The apex height must be immobilized by introducing a change 
of coordinates. Nevertheless the resulting eigenvalue problem has the same 
structure as [6, Eq. (53)], and proceeding formally by using the Factorisation 
Theorem proposed by Iooss and Joseph [10], we also find two eigenvalues: 

( )( ) ( ) ( )hMhh hμσ ±=1 ,     (15) 

where ( ) 1>hM  is proportional to the added mass of the liquid. Note that ( )( )h1σ  
as given by Equation (15) is not symmetric in h  due to ( )hM , the added mass 
effects being different for bubbles and drops. Thus, starting from the critical flat 
profile, the equilibrium bubble and drop configurations at 0=Δ  are unstable 
before reaching the left-hand side turning points, and stable after that. The reverse 
is true on the right-hand side turning points. In the typical one-sided subcritical 
bifurcation plotted in Figure 2, the turning points limit thus zones where stable 
bubbles, or drops should be observed. Profiles have one neck on the stable 
branches }P,P{ 32

++  and }P,P{ 32
−− , and two necks on the stable branches }P,P{ 54

++  

and }P,P{ 54
−− . 

4. Isolated solutions that break bifurcation 

For small axial disturbances ξ̂  about ξ~  at 0≠Δ , the stability of isolated 
solutions 0~

≠ξ  has been analysed in [6, Section 7], near the critical point 1P . In 
the space ( )εΔμ  , , , steady solutions ξ~  define an equilibrium surface, which is a 
cusp described analytically by [6, Equation (79)]: 

( ) 3 4652862700461 , εμεεμΔ .. −−= .   (16) 
The upper cusp sheet corresponds to bubbles, and the lower one corresponds to 
drops. The turning points +

1P  and −
1P  extend into 0>Δ , and 0<Δ  regions as 
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singularity lines (fold curves) of that cusp. The intermediate sheet of the cusp, 
which is bordered by +

1P  and −
1P  singularity lines, is stable. The upper and lower 

sheets of the cusp (that is above +
1P , and below −

1P  lines) are unstable. Those 
singularity lines are defined by the following system [6, Equation (81)]: 

⎪⎩

⎪
⎨
⎧

−=
=

2

3

 20302.110
    93056.124
εμ

εΔ ,     (17) 

and represent the analytical bifurcation curve near the critical point. Upon 
combining Equations (13) and (17), the analytical bifurcation curve is plotted in 
Figure 3 onto the control parameter plane (Eö,Δ), together with the numerical 
results obtained in this paper through Equations (9-11). Far from the critical point 

1P , the equilibrium surface can be found via the numerical approach. 

 
Fig. 3. Analytical (solid line), and numerical (star marks) bifurcation set near the critical point 1P . 

The upper branch is the projection of the +
1P  singularity line of the bubbles cusp sheet onto the 

plane (Eö,Δ); the lower branch is the projection of the −
1P  singularity line of the drops cusp sheet 

 

Equations (9-10) give the steady interface profiles that correspond to each 
point of the equilibrium surface in the whole space (Eö,Δ,h). The equilibrium 
surface is very complex at very low Eötvös numbers, say 045.0<Eö , as well as 
at large Eö, say 5.6>Eö . We will restrict our numerical investigation mainly 
between these limits, which cover a very large spectrum of physically interesting 
cases. The 3D shape of the equilibrium surface is difficult to be plotted entirely: it 
is a cusp at low h-values, and it becomes multifold when increasing apex height 
(the surface zigzags away from the 0=h  plane, and is antisymmetric in Δ ); at 
high apex height values, the multifold surface exhibits even a sequence of 
swallowtails. The equilibrium surface intersects the plane 0=Δ  according to the 
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curve given in Figure 2. The turning points +
jP  ( )6,,2 …=j  for bubbles, and their 

counterparts −
jP  for drops, form singularity lines (fold curves) when extending 

into 0>Δ , and 0<Δ  regions of the space (Eö,Δ,h); those fold curves will be 
denoted by the same symbols as their turning points, i.e. +

jP  and −
jP . 

To understand better the configuration of the equilibrium surface, we plot 
in Figure 4 complete cross sections of the equilibrium surface, for some typical 
Eö-values. For 8.2=Eö , a cross section of the 3D surface restricted mainly to the 
upper (bubble) part, is plotted in Figure 5, together with some typical stable 
configurations of the interface profiles, at the same Δ-value (i.e., 4.0−=Δ ). 

 

 

Fig. 4. Dependence ( )Δhh =  for bubbles and 
drops, at: 14.0=Eö  (upper left); 0.1=Eö  (upper 

right); 2.8=Eö  (lower left); 7.5=Eö  (lower 
right) 

Fig. 5. Dependence ( )Δhh =  for 2.8=Eö , 
restricted mainly to the bubbles part (left); 

typical stable profile configurations for 
4.0−=Δ , at 1B  (drop), 2B & 3B  (bubbles)

 

For bubbles, the singularity lines +
jP  ( )4,,1…=j  are projected onto the 

control parameter plane (Eö,Δ) in Figure 6. The singularity lines −
jP  for drops are 

also drawn in this figure; they are symmetrical to +
jP  with respect to the 0=Δ  

plane. For j  up to 4, the fold curves are roughly parallel, so a 3D graphical 
representation can be plotted. Consider firstly the cusp that straddles on the flat 
meniscus. The bifurcation curve, which is the projection of the first singularity 
lines +

1P  and −
1P  onto the plane (Eö,Δ), follows the path of numerical star marks 

plotted in Fig. 3. The upper cusp sheet, and the lower one are bordered by the 
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second singularity lines, defined by the turning points +
2P  and −

2P . Over the entire 
cusp surface, interface profiles are not necked. In Figure 7 (left), we plot the cusp 
that we computed numerically, together with the bifurcation curve. Consider next 
the multifold part of the equilibrium surface. It is plotted in Fig. 7 (right side), for 
a restrained Eö range, starting from the flat meniscus up to the fifth fold curve. 

 
Fig. 6. Bifurcation set: singularity lines +

jP  for bubbles (solid lines) and −
jP  for drops (dashed 

lines), for ( )4,,1…=j , projected onto the control parameter plane (Eö,Δ); [ ]5.6 ,045.0∈Eö  
 

Fig. 7. Left: equilibrium surface between +
2P  and −

2P , and bifurcation curve. Numerical 

computations for that cusp correspond to [ ].08 ,4.0∈Eö ; Right: multifold equilibrium surface for 

[ ].664 ,84.2∈Eö  
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The stability study of isolated solutions ( )0≠Δ , which perturb bifurcating 
solutions ( )0=Δ , will be based on the stability study of the latter, presented in [6, 
Section 6]. The relations ( )εμμ = , and ( )εξξ ~~

=  for 0=Δ  will be replaced by 
the relations ( )εμΔΔ ,= , and ( )εμξξ ,~~

= , in which μ is a fixed parameter such 
as 0<μ . Far from the critical point, the solution magnitude is represented by the 
apex height h , and the Equation (15) has the following analogue: 

( )( ) ( ) ( )hMhh h ,,,1 μμμσ Δ±= ,    (18) 
where ( )hh ,μΔ  changes the sign as h  is varied at each regular turning point. 
Likewise in Section 3, at each turning point, the sign of ( )hh ,μΔ  controls whether 

( )1σ  is a couple of real, or purely imaginary eigenvalues. The stability properties 
of that imperfect problem ( )0≠Δ  are consistent with those found for the perfect 
problem ( )0=Δ  treated in Section 3. 

Consider the cross section of the equilibrium surface (Eö,Δ,h) presented in 
Figure 5. The first sheet }P,P{ 11

+−  that crosses the Eö-axis is stable (solid line in 
Figure 5), since precisely this axis has been found to be stable for the flat 
meniscus case (Rayleigh-Taylor problem), as soon as 5.783186<Eö  [6, Section 
4]. The next sheet, e.g. }P,P{ 21

++  for bubbles, is thus unstable (dashed line in 
Figure 5). Observe that it crosses the 0=Δ  plane according to a curve that has 
already been shown to be unstable in the perfect case (line }P,P{ 21

+  in Figure 2). 

The further sheet }P,P{ 32
++  is stable and so on, up to the 6th sheet }P,P{ 65

++ , 
which is unstable. Each time when crossing 0=Δ , we found results consistent 
with those obtained in Section 3. For the particular value of 8.2=Eö , note that 
the 5th sheet no longer crosses the plane 0=Δ . To sum up, pieces of surfaces 
delimited by the couples of fold curves }P,P{ 11

+− , }P,P{ 32
++ , }P,P{ 54

++ , as well as 

by }P,P{ 32
−− , }P,P{ 54

−− , correspond to stable bubbles, or drops configurations. 

Only bubbles and drops corresponding to }P,P{ 11
+−  seem to have been currently 

observed. Bubbles and drops corresponding to }P,P{ 32
++ , and }P,P{ 32

−−  are single 

necked; they appear less common. Profile configurations of }P,P{ 54
++ , and 

}P,P{ 54
−−  have two necks; they haven’t been observed. The reason may be that it 

is difficult to control formation of bubbles and drops close enough to these 
solutions. For 5.783186<Eö , when interfaces are strongly disturbed to make 
them escape from the attraction set of the flat meniscus, they grow into bubbles or 
drops, without being stopped by the nearest unstable sheet. So they absorb more 
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and more transient effects, and the following stable sheet cannot attract and 
stabilise them. Another reason is that the projection of these pieces of surface on 
the plane (Eö,Δ), as seen in the bifurcation set of Figure 6, corresponds to stripes 
that become narrow as the apex height grows. Thus, Δ must be carefully tuned to 
attain say the }P,P{ 32

++  sheet, for a given Eö. 

 
Fig. 8. Number of stable solutions in regions bordered by the projection of singularity lines +

jP  

( )6,,1…=j  onto the control parameter plane (Eö,Δ), for 0>Δ  
 

Far from 1P , projections of fold curves corresponding to +
jP  ( )6,,1…=j  

have been plotted in Figure 8, for 0>Δ . In each region bordered by these curves 
projections, the number of stable solutions is indicated. For 4≤j , this figure may 

be compared to Figure 6 (where +
5P , and +

6P  do not appear). For 4>j , the fold 
curves are no longer smooth: they are distorted, and even exhibit swallowtails, 
which are singularities well known in the Catastrophe Theory. A particular 
sequence of such singularities is presented in Figure 9, together with typical 
bubble profiles around a selected swallowtail [8; 11]. At high apex height values, 
corresponding to fold curves +

5P , and +
6P , as well as to swallowtails, bubbles and 

drops have an undulate structure with two necks. Around a selected swallowtail, 
at constant Eö, we did not find significant differences between bubble profiles for 
quite small changes in Δ-values (this last observation is valid for drops too). On 
the left side, and on the right side of a swallowtail, the apex height has different 
sense of variation when Δ-values increase monotonously. In fact, the upper branch 
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of the swallowtail corresponds to the seventh turning point +
7P  (see the bubble 

index s7, or m7 in Figure 9). Usually, the 7th turning point follows closer the 6th 
one (e.g. in Figure 5). The lower left branch of the swallowtail corresponds to +

6P  
(see the bubble index s6, or m6 in Figure 9), and the lower right branch 
corresponds to +

8P  (see s8, or m8 in Figure 9). Because of the complexity of the 
whole sequence of turning points, which appear and disappear at high h-values, 
when increasing Eö, we denoted the whole distorted 6th fold line with its 
swallowtails as the +

6P  fold line. The same apply for denoting the distorted +
5P  

line, where at lower Eö, some swallowtails also appear. 
 

 
Fig. 9. Left: zoomed bifurcation set for bubbles (upper left), showing a sequence of swallowtails 

on +
6P  singularity line, for [ ]5.2,75.0∈Eö , and [ ]3.0,4.0−∈Δ ; selected swallowtail (lower left) 

within the ranges [ ]4.2,9.1∈Eö , and [ ]26.0,34.0 −−∈Δ  (star marks show the position of 3 
profiles at 2=Eö , and 15.2=Eö ); Right: bubble profiles around the selected swallowtail, for 

2=Eö , where 876 sss hhh << , and for 15.2=Eö , where 876 mmm hhh <<  

 
As stated before, stable undulate (necked) structure of bubbles and drops 

were not observed so far in Newtonian liquids. Anyhow, as mentioned in 
Introduction, Kliakhandler reported in [4] that undulate bubble structures may be 
found in concentrated polymeric solutions. To investigate qualitatively the 
existence of such necked bubbles, following [4], some simple experiments were 
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conducted [12]: we present in Figure 10 the experimental results corresponding to 
stable multi-necked bubbles in a polymeric solution, with density of 3kg/m 900 , 
surface tension of N/m 0225.0 , zero shear viscosity of sPa5.7 ⋅ , and time of 
relaxation of s 3.0 , at 20°C. The polymeric solution filled a transparent cylinder 
of 65 mm diameter, open at its upper part. Obviously, due to the liquid elasticity, 
stable undulate interface configurations can be easily found. It must be 
highlighted that the bubbling we performed experimentally, as Kliakhandler does 
[4], corresponds to bubbles attached to a nozzle, the air being injected slowly, 
under constant flow conditions (we used a nozzle with inner radius of 0.45 mm). 
Our numerical study deals with constant pressure conditions. We mention that the 
evolution of the necked interface in polymeric solution is such that some bubbles 
are breathing through their necks (see the two successive sequences from the left 
in Figure 10): the air is supplied through each neck, producing the alternative 
growth, and reduction of each volume that exists between two necks. Obviously, 
the elastic properties are preventing the complete necking of the interface, and the 
bubble detachment. Anyhow, those experimental results allow doing some 
qualitative comparison: the sequence we cut from the undulate bubble in the right 
side of Figure 10, is more like the bubbles we found numerically for +

6P  (Figures 
2 and 9). 

 

  
Fig. 10. Undulate bubble structures in polymeric solution, at 079.0=Eö  [12]. Left: two 

successive sequences of the necked interface evolution; each bar is 65 mm height. Right: a 
particular necked interface shape, and its zoomed cutting sequence 
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5. Conclusions 

The stability analysis performed in [6] has brought a unified picture of the 
quasi-steady formation of bubbles and drops at a submerged orifice, under 
constant pressure conditions, in connection with the Rayleigh-Taylor instability. 
This analytical analysis is valid only near the critical point 1P  of the flat 
meniscus, where the Eötvös number has the particular value 783186.5=Eö , and 
the excess pressure number is 0=Δ  (Δ includes the pressure difference between 
gas and liquid across the orifice). In the present paper, the above stability analysis 
has been extended far from 1P , through elementary numerical computations. 

For the interface profiles (bubbles, drops), bifurcating steady solutions 
(corresponding to 0=Δ ), together with isolated solutions ( 0≠Δ ) that perturb the 
former-ones, are provided numerically for a wide range of the control parameters 
(Eö,Δ), by taking the apex height h as the profile magnitude (positive for bubbles, 
and negative for drops). It is shown that h  zigzags away from the 0=h  axis, 
being antisymmetric in Δ; at each turning point ( +

jP  for bubbles, and −
jP  for 

drops, with 1≥j ), solutions change their stability characteristics. 
An explicit picture of the equilibrium surface has been given in [6] near 

the critical point. It corresponds to a cusp, whose intermediate sheet is stable, 
while its two upper and lower sheets are unstable. The bubbles and drops 
configurations corresponding to that cusp are not necked; the profiles onto the 
intermediate sheet of the cusp are the ones that are usually observed. Numerical 
computations provide the complete equilibrium surface in terms of h  for the 
global variation in the controls ( )Δ,Eö , over the half plane 0>Eö . In this three-
dimensional space, the equilibrium surface is multifold in both Δ  directions. 

In fact, the turning points +
jP  and −

jP  extend into 0>Δ , and 0<Δ  
regions as singularity lines (fold curves), which stay roughly parallel for 4≤j  in 
the selected range [ ].56 ,045.0∈Eö . For 4>j , the fold curves are distorted and 

exhibit swallowtails. The fold curves +
jP  and −

jP  border superimposed stripes of 
the equilibrium surface, where solutions are alternatively stable, and unstable. For 
instance, the surface stripes bordered by the couple of fold curves }P,P{ 32

++ , and 

}P,P{ 32
−−  correspond to stable bubble, and drops configurations, which have one 

neck. On the stripes bordered by }P,P{ 54
++ , and }P,P{ 54

−− , stable bubbles, and 
drops have two necks. The experimental study of those stable configurations 
deserves some attention, since the corresponding undulate profiles have not been 
observed so far in Newtonian liquids. Following Kliakhandler [4], it was shown 
experimentally within this paper that stable undulate bubble configurations might 
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exist in concentrated polymeric solutions, due to the liquid elasticity. Anyhow, to 
validate our theoretical results, new designed experiments using highly viscous 
Newtonian liquids are necessary, attempting to damp perturbations, and to obtain 
stable profiles. Perhaps most experiments fall out of the restricted range of 
parameters insuring the existence of a stable solution, as indicated in the 
bifurcation set (Figure 8). 
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