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ACTIVE FLUTTER SUPPRESSION OF A 3D-WING:
PRELIMINARY DESIGN AND ASSESSMENT

PART I - PROBLEM STATEMENT & CONTROLLER DESIGN

Ton PREDOIU', Corneliu BERBENTE?

The paper presents the problem and techniques of preliminary designing an
active flutter suppressor, with reference to 3D-wings dynamically controlled
through conventional trailing-edge flaps.

Two aspects are essential in such a project: building the wing dynamical
model and designing the controller itself.

The present text makes use of standard representations in aeroelasticity and
modern control theory; for the sake of clarity, explicit formulae are derived and
numerical results are given for a test-case.

The validity of the active-flutter-suppression concept is well recognized.

The concept's performances will be discussed in Part II of this paper.

Keywords: aeroelasticity, flutter, active flutter suppression

1. Introduction

= The term aeroelasticity refers to a class of phenomena specific to
aircraft constructions that result through an interaction process between the
deformations of the elastic structure and the aerodynamic forces induced by the
deformations themselves [1]-[2].

Flutter, the most significant of these phenomena, describes a self-excited
oscillation which, by definition, exhibits an explosive behavior with detrimental
or even catastrophic consequences.

For a given structure, a flutter speed can be determined that marks the
flutter omset or, in mathematical terms, separates the stable from the unstable
condition. The structure must be flutter-free in the entire aircraft's flight envelope.

= A structure that does not meet this criterion must be re-designed in order
to completely eliminate any possibility of flutter occurrence or at last to raise the
flutter speed a certain amount above the aircraft's limit speed. In a traditional
approach, this objective would be attained through stiffening the structure and/or
mass adding or redistribution, both leading usually to some extra weight.

» The active flutter suppression appears as a "modern" alternative to the
"classical" one described above. It means controlling through some active devices
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- typically through activated controls - the natural instabilities of the structure, so
as to make this flutter-free well beyond its "nominal" flutter boundary.

In must be mentioned, in context, that this concept can be seen as part of a
rather new technology in aviation, the so-called control-configured-vehicle (CCV)
[3]-[4] - a term introduced in the last decades of the 20 century - definitely
determined by the remarkable progress in avionics that initiated in those years.

The validity of the concept has been proven both theoretically and
experimentally ([5]-[6], etc.). With all that, it must be said that [14] "...currently
there is no vehicle in production that uses active flutter suppression" and "...much
remains to be done before one can consider the routine incorporation of such
systems in production aircraft". Despite this, the concept is still valuable. One of
the main reasons is that, within the present-day tendencies in transport aircraft
design, the wings become more flexible and thus more sensitive to aeroelastic
effects. For these, apart from possible flutter occurrence, a "much more realistic"
problem can be considered, namely that of controlling the "conventional"
aeroelastic structural vibrations which affect both the structure stremgth and
durability. Consequently, the active structural control is basically investigated and
designed both for flutter prevention and structural load alleviation.

= The active-flutter-suppression concept appears, over the last decades, as
an attractive research field both for aeroelasticians and automatists. Numerous
research programs have been conducted worldwide with the aim of demonstrating
the feasibility of the concept or designing efficient ad-hoc controllers ([7]-[13],
etc.). An indigenous research program referring to a typical 2D fluttering system
[15] - which otherwise established a national priority - adds to all these.

» The present paper approaches the problem of designing a flutter
suppressor for a conventional 3D-wing. Two are the main objectives of this work:
firstly, to establish a relatively concise and reliable methodology for the
preliminary design (Part I) and, secondly, to assess the system performance in the
critical and in the subcritical domain as well (Part II).

The proposed techniques are based on the authors' past experience in
flutter calculation as well as on that gained in the above mentioned program.

2. The mathematical model of the aeroelastic wing

* In the present study, the configuration to be analyzed is that of a
typical straight cantilever wing of relatively large aspect ratio with a usual
trailing-edge flap (aileron) serving as control device; further, for convenience,
subsonic incompressible regime will be presumed. The system geometry and
parameters - all in standard notations - are completely defined by Figs. 1 and 2.
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Fig. 2. Detailed wing section with flap: displacements and aerodynamic forces

* For the proposed wing, the engineering beam theory and the method of
assumed modes [1]-[2] will be used for setting-up the equations of motion.

According to these, the deformed state of the wing is completely described
by the bending displacement w(y,t) and the torsional rotation a(y,t) - both
measured in or relative to the local elastic center.

Further, these two last functions will be considered to be of the form

NW NA
w(y,0) = D Fwi(»)-wi(t) 5 a(y.t)=) Fa;(y)-a;) (1)
i=1 Jj=1

where Fw,(y), Fa,(y) are known space functions satisfying the wing boundary
conditions and w;(?) , @;(7) are the corresponding generalized displacements

(NW and NA define the order of the approximation).

Note. For dynamical problems, the method of assumed modes usually
takes for the approximating functions in (1) the free (uncoupled) bending and
torsion vibration modes respectively, which leads to significant simplifications...

With the representation above one builds the cumulative vector of
generalized displacement as
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{Wi,i:1,2,~~-NW}
q= {qk,kzl,z,--~(NW+NA)} = (2
{aj,j:1,2,~--NA}

* The system dynamics can now be set-up through the well-known
Lagrange equations

OF
4 81?0 +—L =0, - k=12,---(NW + NA) 3)
dt\ 0q ) Oqy

in which the kinetic and potential energies E, and E,, relate to the inertial and

elastic conservative forces, while all other "exterior" forces - aerodynamic,
command, perturbations - enter in the system through the generalized forces Q,

(a structural damping can be included in the system equations if necessary).
= The detailed derivation of these equations is rather straightforward
(it can be found in any textbook on aeroelasticity) and will not be shown here;
some comments will be made instead in view of the actual objective of this work:
— The equations (3) lead to the following 2" order differential system

= i s -
M K

in which M and K are the mass and stiffness matrices.
Their expressions depend on system mass and stiffness distributions like

/
Mww : m;; = jom(y)~le-(y)ij(y)-dy ; and so on...

6))
l n n
Kww: k; = .[OEIx(y)-le- (»)Fw;(y)-dy ; and so on...

— Alternatively, the equations can be re-written through the use of the
Laplace transform (symbolized "<") in a form amenable to subsequent setting-up
of a control problem; further, for convenience, these can be put in nondimensional
form. For clarity we show this process explicitly for the generic term in M:
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=y 1
n not!

L 1
m;; :jm(y)Fwi(y)ij(y)dy - mRZJ n::?) Fw;(m) Fw;(mdn = mgl - Fww;
0 R
0

2
L not!
. 2 2 N ) —
= my -wj(t)—>m[j -8 wj(s)zml-j - [—] wj(s) = my; - S wj(s):
‘ @R (6)
w.(s) not! w.(s
] POROR TR T R
1
def'! . def! not!
_ s o+ jo m m
s IO = R Py, = Jﬂme)Fw_,-(n)dn
R g by wy mp
0

In this writing, mp[kg/m] is a reference mass (the value of the mass
distribution m(y) at some reference station yp ) and by is a reference semichord,

oy 1s a reference frequency while s denotes a nondimensional Laplace variable

- not!
s[l/sec]—>§=i=a+1w = o+ jo @)

Wp Wp

In the same manner, a dimensional factor [...] (with p the air density) has
been separated; further, in the final expression a nondimensional mass parameter
Hp has been entered, together with a nondimensional influence coefficient Fww; .

* The uniform wing. In the following text, the "uniform" or "constant"
wing will be considered as a test case (Fig. 3). As well known, such a wing is
completely described by 4 mechanical parameters: mass (m), static unbalance
(Sa), mass moment of inertia about the elastic center (/a), and the ratio of the
bending and torsional rigidities (Elx/GId); the corresponding nondimensional
definitions are (for convenience, the 4™ parameter has been introduced in accord
with [16] as was also the reference frequency):

not! ' Sa not! . Ia not!ﬂ ’,2 . pdef! Elx ﬁ
b — T b T YT gt T Gld ? ®)
ety GId
I\ I

(Note that @y 1s a number proportional with the fundamental torsional frequency)

= The 1x1 approximation. All equations in (4) are treated the same way.
For clarity let's show the system for the basic case NW=NA=1 in matrix form

(the dimensional factors [zpb’wj 1] and [zpb*w - 1] appearing in the first and
second equation respectively have been discarded...):
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X

Fig. 3. The uniform wing: EA4-elastic axis; F-aerodynamic center ("focar"); CG-center of gravity

u-Fwwyy = uxg - Fway,

prgp-Gwwy 0

w ()
2 5 2 ; :{QWI} ®
‘—,uxa'Fwa” HTy ~Faa11’ \ 0 M1, .Gaall’ 0!1(5) (24]
M K
In this last, Fwwyi,... and Gwwyy,... denote universal constants depending

only on the chosen space functions in (1):

I
Fwwyy =IOFW12(U)'dU - . -
1 GWW11=IO[FW1(U)] ~dn 10
Fway, = [ Fw(q)Fay(n)-dn (10)

G jl[F ( )]2 d
aoy = o -
Faallzj.;Falz(ﬂ)'dU "L !

Note. In the "basic" 1x1 case, the space functions are usually chosen as the
fundamental uncoupled bending and torsion vibration modes of the wing. Further,
the equations above describe the wing coupled bending/torsion oscillation...

* The aerodynamics must now be entered in the equations of motion (4)
through the generalized forces {Q}.

Within the beam theory adopted in this text, the generalized forces
associated with the generalized coordinates are determined from the running /if?
and moment in CE (L and M) through known definitions.

We exemplify for the w;(¢):

Jo L) [Py () - 0w,(0)] - dy

ow; (1)
(A similar expression can be formulated for O; ;15 ng---)

[
OW, i1, = = [, L0 Fwi(3)-dy =--(11)

The actual derivations depend on the aerodynamic model to be used.

For control problems, such as flutter suppression is, the aerodynamic loads
should be entered - in principle - through a model valid for arbitrary motions.
Unfortunately [1] no simple mathematical expressions exist for this regime;
therefore, for exploratory investigations one can rely on more simple models.
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Two of these will be mentioned in this text:
— In the stationary regime the lift and moment depend only on and are

in phase with the local angle of attack (strip theory and C{ =2r ...) - see Fig. 2:

5T (y,0] Nim 1= 24 Ue(y) CF - a(y, 1) = - = 22pbU* - a(y, 1) )
M3 (y,0)[INm/m] = L7 -ep_cp = -+ =27pb* (Y + @) U* - a(p,1)

Applying the definitions like (11) and the transformations indicated above,
lead to the following compact expressions (for the "uniform" wing!):

| a
ow |57 [mp b wp 1] x Oi C—L-Uz-Fwaij {Wi(f)}
{Q } = R PO — e JLas
a - (=
J [7Z',Ob460123[] X O:M._Z.Faai. {0{1(5)}
- ,

In these formulae "F..." denote nondimensional influence factors like

those in (6) or (10), while U is the nondimensional speed

U[m/sec]—)UzL (14)
bwpg
— The quasistationary model offers the simplest way to account for
nonstationary effects; for this text we propose the formulation given by Fung [17]
which results from the standard linear profile theory with the "geometric"
incidence replaced by its "effective" instantaneous value:

JOS-F _ 27prb'[_W+U“+b(%_a)d}
Y —" .I:—%Ubd:|+2ﬂ'pUb2 (%+a)-[—w+Ua+b(%—a)d} (15)

(Note that the aerodynamic forces depend on the displacements and their
rates as well...)
The corresponding generalized forces will then be of the following form:

_ w; (s
Qa; [pbtad 1] x —
J [ P R ] {aj (S )}
= The "control" terms can be derived in an analogous manner. In a first

approximation, the flap can be entered through the parameters defined in its mean
section yp; with standard notations, the associated generalized forces will be (for

the uniform wing! - where, as in Fig. 3, / is the flap span)
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B
ST 3 2 [li} < U Fw;(ng)
{Qwiﬂ} lmpbrop l\LI) B(3) (17)
Oa, [aobted -11x| 1,7 208 _
ip) Lmbiop-l] {TB]TM.Uz.FaJ(nB)

In these last, CLﬁ and CA/; (the lift and moment slopes) are given by the

well known formulae (in which "7" " denote the so-called Theodorsen functions
depending on the position of the flap hinge "c" - see Fig. 2):

Cf =2T;Cly = W[ —(Ty+To) + 205+ a)Ty |; Chiy =+

(18)
T, =—cos ' c+eVl—c? ; VN =cos ' c+1-c?

= A structural damping can be introduced for the sake of generality.
Here we will enter this as fraction of the critical damping in the vibration equation
like (4) or (9) through a diagonal matrix [C] defined as follows:

{Wi(f)}
(M-§2+C-E+K) b =
{25

The values for ¢; can be set-up through identification with some standard

© 5 Cyp =G 2\ myky (19)

recommendations from textbooks like [1] or [2] (see next chapter...).
* The complete system builds up from the previously derived entries; the
most general nondimensional form, in compact notation, is

Wi(E)}
{ b :(M'E2+C-§+K)-q: Qq +Qy 7 [-q+Q7 - B(3) (20)
{3} Q"

in which, for convenience, the aecrodynamic forces associated with the motion QY
have been introduced according to the quasistationary model mentioned above.
Both Q" and Q” depend on the speed U as indicated.
= State-space representation. The system of equations (20) is the starting
point for flutter or flutter suppression analysis. Alternatively, this can be cast into
a state-space form. We choose as "natural" states the generalized displacements q
and their successive "derivatives", that is

def!
¢ { AN

X = } . NWA=NW + NA 1)

S Aywa
From (20) we extract the term having the highest power of 5 to

52-q=-M"'[(K=Qq(D))+(C-Qyu(D))-5 |+M'Q (D) A5) (22)
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With all these, we build the canonic system as
0. | L.

M (K-Qq(0)) | -M(C-Quy (D)
or, compact with generic notations

5-X=AU)-X+BU)-B(5) (24)

Note. The dimension of this system depends on the order of approximation

NWA = NW + NA; further, "0 " and "I " above stand for zero and unity matrices
of appropriate orders...

T M’ (@)

0
X+ l:—}-ﬂ(f) (23)

3. Flutter - Numerical investigations

= The conventional flutter problem is set up by simply discarding the

inhomogeneous part in (24), that is through building the system's "free dynamics"
T-X=AU)-X (25)

= Relative to the order of approximation in (1) one can prove [18]-[19]
that, for wings of relatively large aspect ratios, only the first and second vibration
modes have a significant contribution to flutter, while, for some cases, sufficiently
accurate results are obtained even with the fundamental modes. In view of this
reality, the primary model "1x1" can be used for preliminary studies.

= For the numerical investigations to follow, a uniform wing (Fig. 3) will
be considered as in [16]. All system parameters are listed in Table 1; the explicit
approximation functions Fw,(y) and Fa;(y) are given at the end of this text.

Note. The values for the damping factors ¢, ,4, have been derived [18]
through identification from the corresponding standard "complex modulus”
coefficients g,, ,g, < (0.02+0.05) from [1]-[2]; the resulting formulae are

e (26)
25p \'my 25p \'my
in which k;;, etc. are the mass and stiffness terms in the vibration equation (9)
and, consistent with the actual flutter frequency, a value 5 =1 has been used.

= The standard root-locus method applied on the flutter system (25) is
fully illustrative for the dynamic characteristics of that system - Figure 4. As well
known, the flutter onset is associated with the point where one branch of the root-
locus enters the right half-plane... From figure (a) one can "read" this point to

Up =55 ; sp =12 (27)
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System parameters

Table 1

Wing overall

Wing chord c(=2b) 2m Reference value
Wing aspect ratio (semi-span!) A=l/c ~5 Reference value
Reference frequency wp =1/INGId /I 33 rad/s Reference value
Nondimensional mass and elastic properties
Mass U 40
Static unbalance X, 0.1
Mass moment of inertia about EC rj 0.25 Test case
Stiffness (modified) ratio p = EIx/Gld xb* | I? 0.04
Elastic center (EC) location (Fig. 2) a -04
Flap geometry (Figures 2 & 3
Relative span I/l 0.3 Adopted in design
— Mean chord position yell ~0.85
Relative chord cglc 0.2 Adopted in design
— Hinge position from midchord "c" 0.6 Theodorsen notation
Aerodynamic coefficients
Ccy Formula (12) 2n Teoretic 2D...
g Cip =t(+a)-Ccf | 03142 Formula (12)
c’ Formula (18) 3.4546
ct Formula (18) —0.4673
Structural damping coefficients (fractions of critical damping)
Bending - 0.01 Derived!...
Torsion Co 0.05 Derived!...

4. The flutter suppression problem

= The objective of this section is to design a controller that, through the
use of an active flap, eliminates flutter. In mathematical terms this problem reads
(see also Fig. 1 for illustration and Fig. 4 for illumination):

Let'’s denote Ufr the system nominal flutter speed. Given a design speed
Uges =k -Up (k>1), a feed-back command law p(t)= f(w,a,w,a,---) should

be determined that stabilizes the system in the entire interval U € [0,U 4] -

Notes. In this formulation one can readily recognize a standard theme of
the Control theory. In the case of flutter suppression, the problem raises two
distinct questions: the demonstration of the feasibility of the concept and the
determination of the controller itself.
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Fig. 4. System "1x1" - Numerical simulation

In a historical perspective on the subject, one should mention the attempts
made by some authors [5] to assess the efficiency of simple proportional laws in
which the (generic) displacements or accelerations are fed-back to the flap, like

B@) =k, -w(t) 5 p(t) =ky -a(t) ; p(1) =ky - w(1t) 5 p(1) = kg -a()  (28)

(These laws work as simple "mechanical connections" from wing to flap!)

= The modern control theory, due to its power and versatility, has
become a standard tool to treat active structures; in particular, the LQR regulator
is an efficient algorithm for solving the problem of stabilizing a dynamic system:

— Let's consider the linear system (generic notations!)

x=A-x+B-u; y=C-x (29)
and introduce a full-state feedback connection, that is
u@)=-K-x(t) = x=(A-B-K)-x+B-u ; y=C-x (30)
— The optimal regulator results through minimization of a quadratic index
1 * T T .
I[u(t)]—E x (6)-Q-x(t)+u’ (#)-R-u(t) |dt —> min (31
0
— With Q and R prescribed, the solution to this is the Riccati regulator
not! def'!
Bon = Ko X > Koy = RTBP (32)

PA+A"P-PBR 'B'P+Q=0
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— As well known [20] the optimal regulator also stabilizes the system in
the sense of Lyapunov...

* The application of this technique to the subject in the present article is
rather straightforward. For conformity with the LQR algorithm, the system
equations like (24) - which are formulated in Laplace variable - must first be
re-written in "physical" time. This is always possible due to the known "duality"
property (with zero initial conditions presumed...)

k o
Let L [ f(t)] = F(s); then %@sk F(s)ie f s F(s); f e s> F(s); (33)

— Since in (21) to (24) the nondimensional variable s has been used,

a transformation of the states is introduced as follows

IR I T S M v O
. T,, {gﬁ} _ T, {x}

in which Ty, » depending on the reference frequency wy, is clearly nonsingular.

With this transformation, the left-hand side in (24) reads

def'! !
§X =X Ei(s-x) @i-TwR {x) = i-TmR X e (35)
By introducing (34) and (35) into (24) one gets
o Top X=A(U) T, x+B(U) -8 (36)
and, finally
X =y -[TU,R*I -A(U)-T(DR]H@)R -[TQ,R*1 -B(U)]ﬂ (37)
A B

— The Riccati regulator Kopt can be set-up as in (32) with the matrices

A and B above (and properly selected Q and R ...); the controlled system reads
def'! -
Ko = R'B'P = x=[A-B-K,, |x (38)
— To assure a consistency of the analysis with the basic system (24), the
controlled system (38) can be "back"-transformed to the 5 variable; thus, through
simple operations one gets

5 X=[ A-B K, | X, with Ko, =Koy, - T,! (39)

opt ~ Tog

in which a "regulator matrix" K., appears, that again depends on wy.

reg
— With this last, the characteristics of the controlled system - through the
root-locus method - can be directly compared with those of the nominal one.
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= Reference case study. The LQR technique will be applied to the
previously proposed test case. The solution obviously depends on the weighting
matrices Q and R in the quadratic index; in practice these are selected on the basis
of a "technical-economical" analysis" [20] through which the performances of the
system can be set to a desired level.

In this text a special case will be considered, namely the so-called
minimum energy regulator that results by relieving any conditions on the states,
that is by putting Q(,) =0; in these conditions, the value of R,y =0 in the

quadratic index becomes irrelevant and thus can be set simply to "unity": R=1.
(As known, this particular type of regulator has the remarkable effect of
reflecting the unstable roots of the system about the imaginary axis while keeping
the stable ones unaffected).
For the present analysis a (rather high!) design speed has been selected
- for evaluation purposes - to
Uy (1.5xUf) =8.3849 (40)
All the values of interest are summed up in Table 2; the root locus of the
controlled system is given again in Fig. 4 along with that of the nominal one. It is
clear that the controlled system remains stable up to (and even beyond!) U, ...
Table 2
System "'1x1" (quasistationary aero) - The flutter suppression controller

Uges = 8.3849| §w=001, {;=0.05| wr=33|Qx=0,Ru=|

: T
wy o wy |
u=ﬁ;X={?1§al;sFlisalJ ; Ugpt =Kreg - X
Sues = | -1.2620 | 01262 | 03160 + 0.8692i | 0.3160 - 0.8692] }
w _w _
X —> 1 a s—L | sa
Kreg b 1 b 1
B 0.0728 | -0.9296 i 0.3547 | -1.2832

*k
Note. The approximation functions Fw;,(n7) and Fa,(n) , n=y/l used in

this text are (their derivation is also addressed in Part II of this paper):
Fw, = sinzN; —sinh 7z N;
coshzN; +coszN;
Ni=0.596864... | N2= 1.494175... | Ns= 2.500246... | Na=3.499989... | Ns= 4.500000... |

J(sinhzzN,-ry —sinzN;n7)+coshwN;n —cos TN;n

Fay=sin(2j -7 (j=1.23:)
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