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ACTIVE FLUTTER SUPPRESSION OF A 3D-WING:    
PRELIMINARY DESIGN AND ASSESSMENT 

PART I - PROBLEM STATEMENT & CONTROLLER DESIGN 

 
Ion PREDOIU1, Corneliu BERBENTE2 

The paper presents the problem and techniques of preliminary designing an 
active flutter suppressor, with reference to 3D-wings dynamically controlled 
through conventional trailing-edge flaps. 

Two aspects are essential in such a project: building the wing dynamical 
model and designing the controller itself.  

The present text makes use of standard representations in aeroelasticity and 
modern control theory; for the sake of clarity, explicit formulae are derived and 
numerical results are given for a test-case. 

The validity of the active-flutter-suppression concept is well recognized. 
          The concept's performances will be discussed in Part II of this paper. 
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1. Introduction 

 The term aeroelasticity refers to a class of phenomena specific to 
aircraft constructions that result through an interaction process between the 
deformations of the elastic structure and the aerodynamic forces induced by the 
deformations themselves [1]-[2].  

Flutter, the most significant of these phenomena, describes a self-excited 
oscillation which, by definition, exhibits an explosive behavior with detrimental 
or even catastrophic consequences.  

For a given structure, a flutter speed can be determined that marks the 
flutter onset or, in mathematical terms, separates the stable from the unstable 
condition. The structure must be flutter-free in the entire aircraft's flight envelope. 

 A structure that does not meet this criterion must be re-designed in order 
to completely eliminate any possibility of flutter occurrence or at last to raise the 
flutter speed a certain amount above the aircraft's limit speed. In a traditional 
approach, this objective would be attained through stiffening the structure and/or 
mass adding or redistribution, both leading usually to some extra weight.  

 The active flutter suppression appears as a "modern" alternative to the 
"classical" one described above. It means controlling through some active devices 
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- typically through activated controls - the natural instabilities of the structure, so 
as to make this flutter-free well beyond its "nominal" flutter boundary.  

In must be mentioned, in context, that this concept can be seen as part of a 
rather new technology in aviation, the so-called control-configured-vehicle (CCV)  
[3]-[4] - a term introduced in the last decades of the 20th century - definitely  
determined by the remarkable progress in avionics that initiated in those years. 

The validity of the concept has been proven both theoretically and 
experimentally ([5]-[6], etc.). With all that, it must be said that [14] "…currently 
there is no vehicle in production that uses active flutter suppression" and "…much 
remains to be done before one can consider the routine incorporation of such 
systems in production aircraft". Despite this, the concept is still valuable. One of 
the main reasons is that, within the present-day tendencies in transport aircraft 
design, the wings become more flexible and thus more sensitive to aeroelastic 
effects. For these, apart from possible flutter occurrence, a "much more realistic" 
problem can be considered, namely that of controlling the "conventional" 
aeroelastic structural vibrations which affect both the structure strength and 
durability. Consequently, the active structural control is basically investigated and 
designed both for flutter prevention and structural load alleviation. 

 The active-flutter-suppression concept appears, over the last decades, as 
an attractive research field both for aeroelasticians and automatists. Numerous 
research programs have been conducted worldwide with the aim of demonstrating 
the feasibility of the concept or designing efficient ad-hoc controllers ([7]-[13], 
etc.). An indigenous research program referring to a typical 2D fluttering system 
[15] - which otherwise established a national priority - adds to all these. 

 The present paper approaches the problem of designing a flutter 
suppressor for a conventional 3D-wing. Two are the main objectives of this work: 
firstly, to establish a relatively concise and reliable methodology for the 
preliminary design (Part I) and, secondly, to assess the system performance in the 
critical and in the subcritical domain as well (Part II).  

The proposed techniques are based on the authors' past experience in 
flutter calculation as well as on that gained in the above mentioned program. 

2. The mathematical model of the aeroelastic wing 

 In the present study, the configuration to be analyzed is that of a 
typical straight cantilever wing of relatively large aspect ratio with a usual 
trailing-edge flap (aileron) serving as control device; further, for convenience, 
subsonic incompressible regime will be presumed. The system geometry and 
parameters - all in standard notations - are completely defined by Figs. 1 and 2. 
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Fig. 1. Wing with an active trailing-edge flap: geometry and deformations 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Detailed wing section with flap: displacements and aerodynamic forces 

 
 For the proposed wing, the engineering beam theory and the method of 

assumed modes [1]-[2] will be used for setting-up the equations of motion.  
According to these, the deformed state of the wing is completely described 

by the bending displacement ),( tyw  and the torsional rotation ),( tyα  - both 
measured in or relative to the local elastic center.  

Further, these two last functions will be considered to be of the form  
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where ( ) , ( )i jFw y F yα  are known space functions satisfying the wing boundary 
conditions and ( ) , ( )i jw t tα  are the corresponding generalized displacements 
(NW and NA define the order of the approximation).  
  Note. For dynamical problems, the method of assumed modes usually 
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 The system dynamics can now be set-up through the well-known 
Lagrange equations 

 1, 2, ( )pc
k

k k

EEd Q k NW NA
dt q q

∂⎛ ⎞∂
+ = = +⎜ ⎟∂ ∂⎝ ⎠

 (3) 

in which the kinetic and potential energies cE  and pE  relate to the inertial and 
elastic conservative forces, while all other "exterior" forces - aerodynamic, 
command, perturbations - enter in the system through the generalized forces kQ   
(a structural damping can be included in the system equations if necessary). 

 The detailed derivation of these equations is rather straightforward  
(it can be found in any textbook on aeroelasticity) and will not be shown here; 
some comments will be made instead in view of the actual objective of this work: 

– The equations (3) lead to the following 2nd order differential system 
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in which M and K are the mass and stiffness matrices. 
Their expressions depend on system mass and stiffness distributions like 
 

 0

" "
0

: ( ) ( ) ( ) ; and so on...

: ( ) ( ) ( ) ; and so on...

l
ij i j

l
ij i j

m m y Fw y Fw y dy

k EIx y Fw y Fw y dy

= ⋅ ⋅

= ⋅ ⋅

∫

∫

Mww

Kww
 (5) 

 
 – Alternatively, the equations can be re-written through the use of the 
Laplace transform (symbolized "L ") in a form amenable to subsequent setting-up 
of a control problem; further, for convenience, these can be put in nondimensional 
form. For clarity we show this process explicitly for the generic term in M: 
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In this writing, [kg/m]Rm  is a reference mass (the value of the mass 
distribution ( )m y  at some reference station Ry ) and Rb  is a reference semichord;  

Rω  is a reference frequency while s  denotes a nondimensional Laplace variable 

 
not!

[1/sec]
R R

s js s jσ ω σ ω
ω ω

+
→ = = = +  (7) 

In the same manner, a dimensional factor […] (with ρ the air density) has 
been separated; further, in the final expression a nondimensional mass parameter 

Rμ  has been entered, together with a nondimensional influence coefficient ijFww . 
 The uniform wing. In the following text, the "uniform" or "constant" 

wing will be considered as a test case (Fig. 3). As well known,  such a wing is 
completely described by 4 mechanical parameters: mass (m), static unbalance 
(Sα), mass moment of inertia about the elastic center (Iα), and the ratio of the 
bending and torsional rigidities (EIx/GId); the corresponding nondimensional 
definitions are (for convenience, the 4th parameter has been introduced in accord 
with [16] as was also the reference frequency): 
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(Note that Rω  is a number proportional with the fundamental torsional frequency) 
 The 1×1 approximation. All equations in (4) are treated the same way. 

For clarity let's show the system for the basic case NW=NA=1 in matrix form  
(the dimensional factors 3 2[ ]Rb lπρ ω ⋅  and 4 2[ ]Rb lπρ ω ⋅  appearing in the first and 
second equation respectively have been discarded…): 
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Fig. 3. The uniform wing: EA-elastic axis; F-aerodynamic center ("focar"); CG-center of gravity 
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 In this last, Fww11,… and Gww11,… denote universal constants depending 
only on the chosen space functions in (1): 

 

1 2
11 1 210 "

11 11 0
11 1 1 20 1 '

11 11 2 0
11 10

( )
( )

( ) ( ) ;
( )

( )

Fww Fw d
Gww Fw d

Fw Fw F d
G F d

F F d

η η
η η

α η α η η
αα α η η

αα α η η

⎧ = ⋅⎪ ⎧ ⎡ ⎤= ⋅⎪ ⎪ ⎣ ⎦⎪ = ⋅⎨ ⎨
⎪ ⎪ ⎡ ⎤= ⋅⎣ ⎦⎩⎪ = ⋅
⎪⎩

∫
∫

∫
∫

∫

 (10) 

 Note. In the "basic" 1×1 case, the space functions are usually chosen as the 
fundamental uncoupled bending and torsion vibration modes of the wing. Further, 
the equations above describe the wing coupled bending/torsion oscillation… 

 The aerodynamics must now be entered in the equations of motion (4) 
through the generalized forces {Q}.  

Within the beam theory adopted in this text, the generalized forces 
associated with the generalized coordinates are determined from the running lift 
and moment in CE (L and M) through known definitions. 

We exemplify for the ( )iw t : 
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(A similar expression can be formulated for , 1,2,...j j NAQα = …) 
The actual derivations depend on the aerodynamic model to be used. 
For control problems, such as flutter suppression is, the aerodynamic loads 

should be entered - in principle - through a model valid for arbitrary motions.  
Unfortunately [1] no simple mathematical expressions exist for this regime; 
therefore, for exploratory investigations one can rely on more simple models. 
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Two of these will be mentioned in this text: 
– In the stationary regime the lift and moment depend only on and are  

in phase with the local angle of attack (strip theory and 2LCα π= …) - see Fig. 2: 
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 Applying the definitions like (11) and the transformations indicated above, 
lead to the following compact expressions (for the "uniform" wing!): 
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 In these formulae "F…" denote nondimensional influence factors like 
those in (6) or (10), while U is the nondimensional speed 
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R

UU U
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 – The quasistationary model offers the simplest way to account for 
nonstationary effects; for this text we propose the formulation given by Fung [17] 
which results from the standard linear profile theory with the "geometric" 
incidence replaced by its "effective" instantaneous value: 
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(Note that the aerodynamic forces depend on the displacements and their 
rates as well...) 

The corresponding generalized forces will then be of the following form: 
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 The "control" terms can be derived in an analogous manner. In a first 
approximation, the flap can be entered through the parameters defined in its mean 
section By ; with standard notations, the associated generalized forces will be (for 
the uniform wing! - where, as in Fig. 3, Bl  is the flap span) 
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 In these last, LCβ  and MCβ  (the lift and moment slopes) are given by the  
well known formulae (in which "T…" denote the so-called Theodorsen functions 
depending on the position of the flap hinge "c" - see Fig. 2): 
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 A structural damping can be introduced for the sake of generality. 
Here we will enter this as fraction of the critical damping in the vibration equation 
like (4) or (9) through a diagonal matrix [ ]C  defined as follows:  
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 The values for lζ  can be set-up through identification with some standard 
recommendations from textbooks like [1] or [2] (see next chapter…). 

 The complete system builds up from the previously derived  entries; the 
most general nondimensional form, in compact notation, is 
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in which, for convenience, the aerodynamic forces associated with the motion QM 
have been introduced according to the quasistationary model mentioned above. 
 Both QM and Qβ depend on the speed U as indicated. 

 State-space representation. The system of equations (20) is the starting 
point for flutter or flutter suppression analysis. Alternatively, this can be cast into 
a state-space form. We choose as "natural" states the generalized displacements q 
and their successive "derivatives", that is 
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 From (20) we extract the term having the highest power of s  to 
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 With all these, we build the canonic system as 
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or, compact with generic notations 
 ( ) ( ) ( )⋅ = ⋅ + ⋅X A X Bs U U sβ  (24) 
 Note. The dimension of this system depends on the order of approximation 
NWA NW NA= + ; further, "0…" and "I…" above stand for zero and unity matrices 
of appropriate orders… 

3. Flutter - Numerical investigations 

 The conventional flutter problem is set up by simply discarding the 
inhomogeneous part in (24), that is through building the system's "free dynamics" 
 ( )s U⋅ = ⋅X A X  (25) 

 Relative to the order of approximation in (1) one can prove [18]-[19] 
that, for wings of relatively large aspect ratios, only the first and second vibration 
modes have a significant contribution to flutter, while, for some cases, sufficiently 
accurate results are obtained even with the fundamental modes. In view of this 
reality, the primary model "1×1" can be used for preliminary studies. 

 For the numerical investigations to follow, a uniform wing (Fig. 3) will 
be considered as in [16]. All system parameters are listed in Table 1; the explicit 
approximation functions ( ) and ( )i jFw y F yα  are given at the end of this text. 

Note. The values for the damping factors ,w αζ ζ  have been derived [18] 
through identification from the corresponding standard "complex modulus" 
coefficients , (0.02 0.05)⊂ ÷wg gα  from [1]-[2]; the resulting formulae are  

 11 22

11 22

1 1;
2 2w w

F F

k kg g
s m s mα αζ ζ= = =  (26) 

in which k11, etc. are the mass and stiffness terms in the vibration equation (9) 
and,  consistent with the actual flutter frequency, a value 1Fs ≈  has been used. 

 The standard root-locus method applied on the flutter system (25) is 
fully illustrative for the dynamic characteristics of that system - Figure 4. As well 
known, the flutter onset is associated with the point where one branch of the root-
locus enters the right half-plane… From figure (a) one can "read" this point to 
 5.5 ; 1.2≈ ≈F FU s  (27) 
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Table 1 
System parameters 

Wing overall 
Wing chord c (= 2b) 2 m Reference value 

Wing aspect ratio (semi-span!) λ* = l / c ~ 5 Reference value 
Reference frequency 1/ /=R l GId Iω α  33 rad/s Reference value 

Nondimensional mass and elastic properties
Mass μ 40 

Test case 

Static unbalance xα 0.1 

Mass moment of inertia about EC 2rα  0.25 

Stiffness (modified) ratio 2 2/ /= ×p EIx GId b l  0.04 

Elastic center (EC) location (Fig. 2) a – 0.4 
Flap geometry (Figures 2 & 3) 

Relative span lB / l 0.3 Adopted in design 
→ Mean chord position yB / l ~ 0.85 … 

Relative chord cB / c 0.2 Adopted in design 
→ Hinge position from midchord "c " 0.6 Theodorsen notation 

Aerodynamic coefficients 

LCα  Formula (12) 2π Teoretic 2D… 

MCα  ( )1 1
2 2= + ⋅M LC a Cα α  0.3142 Formula (12) 

LCβ  Formula (18) 3.4546 … 

MCβ  Formula (18) – 0.4673 … 
Structural damping coefficients (fractions of critical damping) 

Bending wζ  0.01 Derived!... 
Torsion αζ  0.05 Derived!... 

 

4. The flutter suppression problem 

 The objective of this section is to design a controller that, through the 
use of an active flap, eliminates flutter. In mathematical terms this problem reads 
(see also Fig. 1 for illustration and Fig. 4 for illumination): 

Let's denote UF the system nominal flutter speed. Given a design speed    
( 1)= ⋅ >des FU k U k , a feed-back command law ( ) ( , , , , )=t f w wβ α α  should 

be determined that stabilizes the system in the entire interval [ ]0, desU U∈ . 
Notes. In this formulation one can readily recognize a standard theme of 

the Control theory. In the case of flutter suppression, the problem raises two 
distinct questions: the demonstration of the feasibility of the concept and the 
determination of the controller itself. 
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Fig. 4. System "1×1" - Numerical simulation  
 

In a historical perspective on the subject, one should mention the attempts 
made by some authors [5] to assess the efficiency of simple proportional laws in 
which the (generic) displacements or accelerations are fed-back to the flap, like 
 ( ) ( ) ; ( ) ( ) ; ( ) ( ) ; ( ) ( )= ⋅ = ⋅ = ⋅ = ⋅w wt k w t t k t t k w t t k tα αβ β α β β α  (28) 

(These laws work as simple "mechanical connections" from wing to flap!) 
 The modern control theory, due to its power and versatility, has 

become a standard tool to treat active structures; in particular, the LQR regulator 
is an efficient algorithm for solving the problem of stabilizing a dynamic system: 
 – Let's consider the linear system (generic notations!) 
 ;= ⋅ + ⋅ = ⋅x A x B u y C x  (29) 
and introduce a full-state feedback connection, that is 
 ( ) ( ) ( ) ;= − ⋅ ⇒ = − ⋅ ⋅ + ⋅ = ⋅u K x x A B K x B u y C xt t  (30) 

 – The optimal regulator results through minimization of a quadratic index 

 [ ]
0

1( ) ( ) ( ) ( ) ( ) min
2

∞⌠
⎮
⌡

⎡ ⎤
= ⋅ ⋅ + ⋅ ⋅ →⎢ ⎥

⎣ ⎦
u t x Q x u R uT TI t t t t dt  (31) 

 – With Q and R prescribed, the solution to this is the Riccati regulator  

 
not ! def !

1
opt opt opt

1 0

−

−

= − ⋅ → =

+ − + =

u K x K R B P

PA A P PBR B P Q

T

T T
 (32) 
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 – As well known [20] the optimal regulator also stabilizes the system in 
the sense of Lyapunov… 

 The application of this technique to the subject in the present article is 
rather straightforward. For conformity with the LQR algorithm, the system 
equations like (24) - which are formulated in Laplace variable - must first be  
re-written in "physical" time. This is always possible due to the known "duality" 
property (with zero initial conditions presumed...) 
 [ ] ( ) ( )2Let ( ) ( ); then ( ); i.e. ; ;= ⇔ ⋅ ⇔ ⋅ ⇔ ⋅

k
k

k
d ff t F s s F s f s F s f s F s
dt

L  (33) 

 – Since in (21) to (24) the nondimensional variable s  has been used,  
a transformation of the states is introduced as follows 

 
{ } { }

{ }
{ }
{ }

{ }
{ }

[ ] [ ]
[ ] [ ]

{ }
{ }

{ }
{ } { }

def ! def ! ! 2 2 2 2
11 1

2 2 2 2

not! !

0
= =

0

=

× ×

× ×

⎧ ⎫ ⎧ ⎫ ⎡ ⎤⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎢ ⎥⇔ ≡ ⋅ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⋅⋅ ⋅ ⋅⋅ ⎢ ⎥⎩ ⎭ ⎩ ⎭⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎣ ⎦
⎧ ⎫
⋅ ≡ ⋅⎨ ⎬
⎩ ⎭

R Rω ωT T

RR R

Iq qq q
X

Is q qs q q

q
x

q

ωω ω (34) 

in which 
RωT , depending on the reference frequency Rω , is clearly nonsingular.  

 With this transformation, the left-hand side in (24) reads 

 ( ) { }
def ! !

1 1 1⋅ = ≡ ⋅ ⇔ ⋅ ⋅ ≈ ⋅ ⋅
R Rω ωX X X T T x

R R R R

ss s xω ω ω ω  (35) 

 By introducing (34) and (35) into (24) one gets 
 ( ) ( )1 ⋅ ⋅ = ⋅ ⋅ + ⋅

R Rω ωT x A T x B
R

U Uω β  (36) 

and, finally 
 ( ) ( )1 1− −⎡ ⎤ ⎡ ⎤= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅⎣ ⎦ ⎣ ⎦R R Rω ω ω

BA

x T A T x T BR RU Uω ω β  (37) 

 – The Riccati regulator optK  can be set-up as in (32) with the matrices  

A  and B  above (and properly selected Q  and R …); the controlled system reads 

 
def !

1
opt opt

− ⎡ ⎤= ⇒ = − ⋅ ⋅⎣ ⎦K R B P x A B K xT  (38) 
 – To assure a consistency of the analysis with the basic system (24), the 
controlled system (38) can be "back"-transformed to the s  variable; thus, through 
simple operations one gets 
 1

reg reg opt, with −⎡ ⎤⋅ = − ⋅ ⋅ = ⋅⎣ ⎦ RωX A B K X K K Ts  (39) 

in which a "regulator matrix" regK  appears, that again depends on Rω . 
 – With this last, the characteristics of the controlled system - through the 
root-locus method - can be directly compared with those of the nominal one. 
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 Reference case study. The LQR technique will be applied to the 
previously proposed test case. The solution obviously depends on the weighting 
matrices Q and R in the quadratic index; in practice these are selected on the basis 
of a "technical-economical" analysis" [20] through which the performances of the 
system can be set to a desired level.  

In this text a special case will be considered, namely the so-called 
minimum energy regulator that results by relieving any conditions on the states, 
that is by putting ( ) =xQ 0 ; in these conditions, the value of ( ) =uR 0  in the 
quadratic index becomes irrelevant and thus can be set simply to "unity": =R I .  

(As known, this particular type of regulator has the remarkable effect of 
reflecting the unstable roots of the system about the imaginary axis while keeping 
the stable ones unaffected). 

For the present analysis a (rather high!) design speed has been selected  
- for evaluation purposes - to 
 ( 1.5 ) 8.3849des FU U≈ × =  (40) 

All the values of interest are summed up in Table 2; the root locus of the 
controlled system is given again in Fig. 4 along with that of the nominal one. It is 
clear that the controlled system remains stable up to (and even beyond!) desU … 

Table 2 
System "1×1" (quasistationary aero) - The flutter suppression controller   

 

.=desU 8 3849 | ζw = 0.01 , ζα = 0.05 | ωR = 33 | QX = 0 , Ru = I 

; ;1 1
1 1u X u K Xβ α α⎢ ⎥= = = ⋅⎢ ⎥⎣ ⎦

T

opt reg
w ws s
b b

 

{ }- . - . . . . - .

. - . . - .

{ - . - . - . . - . - . }

1 1
1 1

1 2620 0 1262 0 3160 0 8692 0 3160 0 8692

XK
0 0728 0 9296 0 3547 1 2832

1 2620 0 1262 0 3160 0 8692 0 3160 0 8692

α α

β

= +

→
=

= +

    

    

des

reg

reg

s i j
w ws s
b b

s i j

 

 

* 
 Note. The approximation functions ( ) and ( ) , /i jFw F y lη α η η =  used in 
this text are (their derivation is also addressed in Part II of this paper): 
 

( )sin sinh sinh sin cosh cos
cosh cos

i i
i i i i i

i i

N NFw N N N N
N N

π π
π η π η π η π η

π π
⎡ ⎤⎛ ⎞−

= − + −⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦
 

N1 = 0.596864… N2 = 1.494175… N3 = 2.500246… N4 = 3.499989… N5 = 4.500000… … 
 

sin(2 1) ( 1,2,3, )
2jF j jπα η= − =  
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