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EXTREMAL k-GENERALIZED QUASI TREES FOR GENERAL

SUM-CONNECTIVITY INDEX

Muhammad Kamran Jamil1, Ioan Tomescu2, Muhammad Imran3

For a simple graph G, the general sum-connectivity index is defined as
χα(G) =

∑
uv∈E(G)(d(u) + d(v))α, where d(u) is the degree of the vertex u and α 6= 0

is a real number. The k-generalized quasi tree is a connected graph G with a subset

Vk ⊂ V (G), where |Vk| = k such that G− Vk is a tree, but for any subset Vk−1 ⊂ V (G)

with cardinality k − 1, G − Vk−1 is not a tree. In this paper, we have determined
sharp upper and lower bounds of the general sum-connectivity index for α ≥ 1. The

corresponding extremal k-generalized quasi trees are also characterized in each case.
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1. Introduction

All graphs considered in this paper are undirected, finite, simple and connected. Let
G = (V (G), E(G)) be such a graph, where V (G) is the set of vertices and E(G) the set of
edges. The number of vertices adjacent to a vertex v in graph G is known as the degree
of v, denoted by dG(v). The set of vertices adjacent with v is denoted by N(v). The
distance, denoted by d(u, v), between two vertices u, v ∈ V (G) is the length of a shortest
path between them and the eccentricity of a vertex u, denoted by ecc(u), is the maximum
distance max

v∈V (G)
d(u, v) from u to any other vertex. The diameter of G, denoted by diam(G),

is max
u∈V (G)

ecc(u) = max
u,v∈V (G)

d(u, v).

Sn represents the star of order n also denoted by K1,n−1 and Pn the path with n vertices.
Sa,b denotes the bistar of order a + b, which is a tree consisting of two adjacent vertices
u and v, such that u is adjacent to a − 1 pendant vertices and b is adjacent to b − 1
pendant vertices. Let T be a tree. If diam(T ) = 2 then T is a star; if diam(T ) = 3
then T is a double star. Let G and H be two vertex disjoint graphs. G + H denotes
the join graph of G and H with vertex set V (G + H) = V (G) ∪ V (H) and the edge set
E(G+H) = E(G) ∪ E(H) ∪ {uv|v ∈ V (G), v ∈ V (H)}.

A graph G is called a quasi-tree, if there exists a vertex z ∈ V (G) such that G−z is a
tree and such a vertex is called a quasi vertex. As deletion of any vertex with degree one will
yield another tree it follows that any tree is a quasi tree. A graph G is called k-generalized
quasi tree if there exists a subset Vk ⊂ V (G) with cardinality k such that G − Vk is a tree
but for any subset Vk−1 ⊂ V (G) with cardinality k− 1, G−Vk−1 is not a tree. The vertices
of Vk are also called quasi vertices (or k-quasi vertices). To draw a k-generalized quasi tree
we need at least k + 2 vertices. We call any tree a trivial quasi tree and other quasi trees
are called non-trivial quasi trees. We denote the class of k-generalized quasi trees of order
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n by Tk(n).
For terminology and notation not defined here we refer [2].

The first Zagreb index was introduced by Gutman et al. in 1972 [4] and it is defined
as

M1(G) =
∑

v∈V (G)

d(v)
2
.

A variant of Randić index is known as general sum-connectivity index and was defined
[11] as

χα(G) =
∑

uv∈E(G)

(d(u) + d(v))α.

Note that M1(G) = χ1(G).
The above mentioned topological indices have been closely correlated with many

physical and chemical properties of the molecules such as boiling point, calculated surface,
molecular complexity, heterosystems, chirality, e.g. More information on these indices can
be obtained from [3, 7, 8, 9].
Jamil et al. [6] investigated the extremal k-generalized graphs for zeroth order general Randić
index. Akhter et al. [1] found the extremal first and second Zagreb indices of k-generalized
quasi trees. Qiao [10] determined the extremal k-generalized quasi trees, for k = 1, with the
minimum and maximum values of the zeroth-order general Randić index. In this paper, we
have determined sharp upper and lower bounds of the general sum-connectivity index for
α > 1 and have characterized the corresponding extremal k-generalized quasi trees in each
case, thus extending some results from [1] which hold for α = 1.

2. Main Results

We start this section by some lemmas that will help to prove the main results.

Lemma 2.1. Let u, v ∈ V (G) such that uv /∈ E(G), then

χα(G) < χα(G+ uv).

Lemma 2.2. Let G ∈ Tk(n). If χα(G) is maximum and v is a quasi vertex of G then
d(v) = n− 1.

Proof. Let G ∈ Tk(n), χα(G) be maximum and v be a quasi vertex of G. Suppose
on contrary d(v) < n−1, then there is a vertex u ∈ V (G) such that uv /∈ E(G). Now G+uv
is also in Tk(n) and χα(G+ uv) > χα(G), a contradiction, hence d(v) = n− 1.

For α > 1 consider the function S(x1, . . . , xm) =
∑m
i=1 x

α
i defined for (x1, . . . , xm) ∈

Dm,p, where Dm,p is the set of all vectors (x1, . . . , xm) with positive integers coordinates
such that x1 ≥ x2 ≥ . . . xm ≥ 1 and

∑m
i=1 xi = p. If 1 ≤ i < j ≤ m and xj ≥ 2 we replace

(x1, . . . , xm) by (x1, . . . , xi + 1, . . . , xj − 1, . . . , xm). By reordering in decreasing order the
components of this vector we get the vector (x∗1, . . . , x

∗
m) ∈ Dm,p, which will be denoted by

z. This transformation of (x1, . . . , xm) to z will be denoted by M1.
We have S(z)− S(x1, . . . , xm) = (xi + 1)α + (xj − 1)α − xαi − xαj .
The function φ(x) = xα − (1 + x)α is a strictly decreasing function for x > 0 and α > 1.
Since i < j implies xi ≥ xj , it follows that xj − 1 < xi, which implies φ(xj − 1) > φ(xi),
or (xi + 1)α + (xj − 1)α > xαi + xαj . We get S(z) − S(x1, . . . , xm) > 0. This leads to the
following property:

Lemma 2.3. If there exist 2 ≤ j ≤ m with xj ≥ 2 then S(x1, . . . , xm) can be strictly
increased on Dm,p for α > 1.
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Roughly speaking, function S can be strictly increased if we can push one unity to
the left in the degree sequence ordered in decreasing order using M1 transform.

Lemma 2.4. Let k ≥ 1, G ∈ Tk(n). If χα(G) is minimum and v is a quasi vertex, v ∈ Vk,
then d(v) = 2.

Proof. Let G ∈ Tk(n) and χα(G) be as small as possible. If d(v)=1 then v cannot
be a quasi vertex. Suppose that d(v) > 2. Then there exist more than two vertices in G
which are adjacent with v. Therefore, for any edge uv ∈ E(G), χα(G) > χα(G − uv) and
G− uv ∈ Tk(n), which is a contradiction. It follows that d(v) = 2. Note that in this case v
is adjacent to two vertices belonging to V −Vk since otherwise, by denoting Vk−1 = Vk−{v}
we would have that G− Vk−1 is a tree.

Let G be a graph such that every vertex of G has a fixed weight w ≥ 1, then we define

χα,w(G) =
∑

uv∈E(G)

(d(u) + d(v) + 2w)α.

Lemma 2.5. For α > 1 and w ≥ 1, the unique tree of order n with the maximum value of
χα,w(G) is the star Sn.

Proof. Let T be a tree but not a star or a double star and having maximum χα,w(G).
It follows that T has diameter diam(T ) ≥ 4. Consequently, there exist vertices u, t and
v such that ut, tv ∈ E(T ) with dT (u) = a, dT (t) = c and dT (v) = b such that a, b ≥ 2.
Without loss of generality we can suppose that a ≥ b. Let N(u) − t = {u1, u2, · · · , ua−1}
and N(v) − t = {v1, v2, · · · , vb−1}. As in [5] we construct a new graph T ′ by deleting the
edges vv1, vv2, · · · , vvb−1 and inserting the new edges uv1, uv2, · · · , uvb−1. Considering the
values of χα,w for T and T ′, we have

χα,w(T ′)− χα,w(T ) =

a−1∑
i=1

(a+ b+ d(uk) + 2w − 1)α

+

b−1∑
i=1

(a+ b+ d(vk) + 2w − 1)α + (a+ b+ c+ 2w − 1)α

+(c+ 2w + 1)α −
a−1∑
i=1

(a+ d(uk) + 2w)α −
b−1∑
i=1

(b+ d(vk) + 2w)α

−(a+ c+ 2w)α − (b+ c+ 2w)α > (a+ b+ c+ 2w − 1)α + (c+ 2w + 1)α

−(a+ c+ 2w)α − (b+ c+ 2w)α > 0.

The last inequality follows from Lemma 2.3 for m = 2, x1 = a + c + 2w, x2 = b + c + 2w,
p = a + b + 2c + 4w, applying several times transformation M1. This contradicts the
maximality of χα,w(G). It remains to show that for any a, b ≥ 2 and a + b = n we have
χα,w(Sn) > χα,w(Sa,b). We get

χα,w(Sn) = (n− 1)(n+ 2w)α

χα,w(Sa,b) = (a− 1)(a+ 1 + 2w)α + (b− 1)(b+ 1 + 2w)α + (n+ 2w)α.

Their difference is equal to:

χα,w(Sn)− χα,w(Sa,b) = (n− 2)(n+ 2w)α − (a− 1)(a+ 1 + 2w)α

− (b− 1)(b+ 1 + 2w)α > 0

since a < n− 1, b < n− 1 imply a+ 1 + 2w < n+ 2w and b+ 1 + 2w < n+ 2w and α > 1.
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Theorem 2.1. Let G ∈ Tk(n), where k ≥ 1 and n ≥ 5. For α ≥ 1 we have

χα(G) ≤ 2α−1k(k + 1)(n− 1)α + (k + 1)(n− k − 1)(n+ k)α

and the equality holds if and only if G = Kk + Sn−k.

Proof. The case α = 1 was settled in [1], so we will consider α > 1 in what follows.
Suppose that G ∈ Tk(n) has maximum χα(G). Let Vk ⊂ V (G) be the set of quasi vertices.
Then by Lemmas 2.1 and 2.2 we have G = Kk + Tn−k, where Tn−k is a tree with n − k
vertices. We shall prove that Tn−k = Sn−k.
It follows that

χα(G) = χα(Kk + Tn−k)

=
∑

uv∈E(Kk)

(dG(u) + dG(v))α +
∑

u∈V (Kk),v∈V (Tn−k)

(dG(u) + dG(v))α

+
∑

uv∈E(Tn−k)

(dG(u) + dG(v))α

= k(k − 1)2α−1(n− 1)α + k
∑

v∈V (Tn−k)

(dTn−k
(v) + n+ k − 1)α

+
∑

uv∈E(Tn−k)

((dTn−k
(u) + dTn−k

(v) + 2k)α.

By Lemma 2.3 the maximum of the sum
∑
v∈V (Tn−k)

(dTn−k
(v) + n− 1)α is achieved

if and only if the degree sequence of the tree Tn−k is (n− k− 1, 1, . . . , 1), i.e., Tn−k = Sn−k.
Similarly, by Lemma 2.5 the sum

∑
uv∈E(Tn−k)

((dTn−k
(u) + dTn−k

(v) + 2k)α = χα,k(Tn−k)

is maximized only for Tn−k = Sn−k. Consequently, G = Kk + Sn−k and χα(Kk + Sn−k) =
2α−1k(k + 1)(n− 1)α + (k + 1)(n− k − 1)(n+ k)α.

Theorem 2.2. Let α > 1 and G ∈ Tk(n).
(i) If k = 1 and n ≥ 3 then χα(G) ≥ n4α and the equality holds if and only if G is a cycle
with n vertices, i.e., G = Cn.
(ii) If k = 2 and n ≥ 4 then: χα(G) ≥ 4 · 5α+6α for n = 4 and χα(G) ≥ (n− 5)4α + 6 · 5α
for n ≥ 5. Equality holds if and only if G consists of two cycles of length three having a
common edge for n = 4 or two cycles having a common path of length at least two for n ≥ 5
or two cycles joined by a path of length at least two for n ≥ 7.

Proof. Let G ∈ Tk(n) such that χα(G) is as small as possible. If Vk is a set of quasi
vertices of G, G−Vk will be a tree of order n−k and by Lemma 2.4, we deduce that d(x) = 2
for all x ∈ Vk. Moreover, for every vertex x ∈ Vk, x is adjacent to two vertices from V − Vk.
This implies that G is connected and has n+k−1 edges. It follows that G has k cycles. We
shall prove first that G cannot contain pendant vertices. Suppose that G would contain a
vertex z such that d(z) = 1. In this case there exists a path z, y, . . . , w joining z to a vertex
w which belongs to a cycle, denoted by C of G. Suppose that the vertices, different from
z, which are adjacent to y are z1, z2, . . . , zt and their degrees are d(zi) = wi for 1 ≤ i ≤ t.
We have dG(y) = t + 1. It follows that t ≥ 1 and at least one degree wi is greater than
or equal to two. We shall define a new k-cyclic graph of order n, denoted by G1, which is
obtained by deleting the edge zy and inserting z between two consecutive vertices, u and v
of C. Denote dG(u) = a and dG(v) = b, where a, b ≥ 2. We get dG1

(y) = t, dG1
(u) = a,

dG1(v) = b, dG1(z) = 2 and dG1(zi) = wi for each 1 ≤ i ≤ t. We deduce that the difference,
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χα(G)− χα(G1), which will be denoted by ∆, is equal to:

∆ =

t∑
i=1

(t+ 1 + wi)
α + (t+ 2)α + (a+ b)α

−
t∑
i=1

(t+ wi)
α − (a+ 2)α − (b+ 2)α

=

t∑
i=1

((t+ 1 + wi)
α − (t+ wi)

α) + (t+ 2)α

+ (a+ b)α − (a+ 2)α − (b+ 2)α.

If t ≥ 2 then
∑t
i=1((t+ 1 + wi)

α − (t + wi)
α) > 0 and (t+ 2)α ≥ 4α. Using Lemma

2.3 we deduce that (a+ b)α + 4α − (a+ 2)α − (b+ 2)α ≥ 0 with equality only for a = 2 or
b = 2. Consequently, ∆ > 0, a contradiction.
It follows that t = 1. In this case the vertex y is a pendant vertex of G1. By repeating this
procedure with y instead of z and so on we shall find a k-cyclic graph of order n having
a pendant vertex adjacent to a vertex w on C. In this case d(w) ≥ 3, thus implying that
corresponding t ≥ 2 and ∆ ≥ 1, a contradiction. Suppose now that all vertices of G have
their degrees greater than or equal to two.
(i) If k = 1, then G has n edges this implies that G is a connected unicyclic graph with-
out pendant vertices. Since χα(G) is minimal and G cannot have pendant vertices we get
G = Cn.
(ii) If k = 2, then G has n+ 1 edges and this implies that G is a connected bicyclic graph.
Since the sum of the degrees of G equals 2n+ 2 it follows that the degree sequence of G is
d1(G) = [32, 2n−2] or d2(G) = [41, 2n−1]. If the degree sequence is d1(G) then G consists of:
a) two cycles having a common path of length l ≥ 1, or b) two cycles joined by a path of
length l ≥ 1. If the degree sequence is d2(G) then G is composed of c) two cycles having a
common vertex. In cases a) and b) if l = 1 then χα(G) = (n−4)4α+4·5α+6α = A and if l ≥ 2
then χα(G) = (n−5)4α+6 ·5α = B and in the case c) we get χα(G) = (n−3)4α+4 ·6α = C.
We get A > B since this inequality is equivalent to 4α + 6α > 2 · 5α. This can be deduced
from Jensen’s inequality written for the function xα, which is strictly convex for α > 1. Also
C > A holds since this inequality is equivalent to 4α + 3 · 6α > 4 · 5α and it can be deduced
from the inequalities 4α + 6α > 2 · 5α and 2 · 6α > 2 · 5α.
The conclusion follows since for n = 4 the unique bicyclic graph is K4 − e for which
χα(K4 − e) = 4 · 5α + 6α. The extremal graph is unique only for n = 4 and n = 5
since for n = 6 we have two extremal graphs: C5 and C4 with a common path P3 and two
cycles C5 with a common path P4.
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[11] B. Zhou, N. Trinajstić, On general sum-connectivity index, J Math Chem 47 (2010) 210-218.


