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RECURRENT POINTS FOR ITERATED FUNCTION
SYSTEMS

Yingcui Zhao!

In this paper, we introduce the definitions of w-limit point, periodic
point, almost periodic point, chain recurrent point and non-wandering point
for iterated function systems. Then we mainly focus on the properties of the
above recurrent points, for example whether the recurrent point sets of the
above recurrent points are empty, invariable, iterable or not. We find that
some properties of continuous self-maps on the compact metric space still
hold for iterated function systems, and some don’t hold. Also, we present
the relationships between these various kinds of recurrent point sets.
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1. Introduction

Throughout this paper, let N = {0,1,2---} and ZT = {1,2,---}. A
dynamical ststem is a pair (X, f), where X is a compact metric space with
metric d and f : X — X is a continuous map. The asymptotic properties
of orbits are the core content in the study of dynamical systems. And the
main task is to study the evolution of a single state in the dynamical systems.
Therefore, it is very valuable to study the recurrent points. Many research
about the recurrent points is referred to [4, [§, 12] and references therein.

Iterated function systems[2, 3] and @-contractive parent-child possibly
infinite iterated function systems|[7] are widely used for fractal structures, the
image compression, the image processing and dynamic systems. And iterated
function systems, due to their relatively simple structure and wide applica-
bility, have become foundational tools in the study of fractal geometry and
dynamical systems, making them easier to use for analyzing and promoting
fundamental theoretical research. Let fy, fi be two continuous self-maps on
X. Then F = {X; fo, f1} is called an iterated function systems (IFS). The
topic of iterated function system is currently an intensely studied area of dy-
namical properties, with papers from many authors at this point. See [111 [13]
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for shadowing property, [B, [6] for sensitivity and transitivity, [1] for chaos and
[10] for attractor, etc..
For any subset Y of X, let

FY) = fo¥)|J A(Y).
And for any k € Z7, let

F¥ = {X; fa,_, 00 fa, © faglao, a1, -+ a1 € {0,1}}.
An orbit of x € X under the iterated function system IFS JF is a sequence
{/a(x)}7Zo, where
o= oo Qg -+ € ZI:{S = 505182 - - |3i c {O’ 1}}’
and
fg(l’) = fan 0--0 fa1 o fa()(I)?vn S Z+7
fo(x) = x. Set
orba(z) = {13 ()},
0rba(z, I") = { f3" ()} 720,
orba(fa(2)) = {fa"" (2) }olo,
orba(fo (), T") = {fa"(2)}is.

Inspired by this, we generalize the definitions of the sets of w limit
points, periodic points, almost periodic points, chain recurrent points, recur-
rent points, non-wandering points and strong non-wandering points to our new
setting, and mainly study their properties whether the recurrent point sets of
the above recurrent points are empty, invariable, closed, iterable or not, in
the next section. Then we present the relationships between these kinds of

recurrent points set in Section 3. The results of this paper is numerous. A
summary of what we have investigated and why is given in the conclusion.

2. Preliminaries and Basic Concepts

Let (X, d) be a compact metric space and fy, f1 be two continuous maps
on X. The iterated function system IFS J is the action of the semi-group
generated by {fo, f1} on X.

2.1. w limit point

Definition 2.1. Let o € X. We say that y € X is a w-limit point of
x € X under its orbit orb,(x), if there exists a sequence {n;} C N such that
lim f(x) =y. Weusew(z,F,orb,(x)) to denote the set of the w-limit points
n;—00

of x under its orbit orb,(x). And set
w(z,F) = Uw(a:,?, orby(z)).
aed

Since X is compact, the following proposition is obvious.
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Proposition 2.1. Let x € X and o € X. Then w(z,F,orby(x)) # 0 and
w(z,F) # 0.

Theorem 2.1. Letx € X anda € X. Thenw(x, F, orb,(x)) = w(z, F, orb,(z)).

Proof. It is obvious that w(z,F,orb,(z)) C w(x,F, orb,(x)). Next we only
need to show that

w(z, F,orb,(x)) C w(z,F,orby(x)).

Let y € w(z,F, orb,(x)). Then for any ¢ > 0 there exists ¢y’ € w(x, F, or
such that d(y,y’) < 5. And there is a sequence {n;} C N such that l_im iz

y'. It results that lim f2(z) =y. So, y € w(z,F,orb,(z)). That is,
Nn;—r00

rba())
) =

w(z, F, orby(z)) C w(z,F, orby(z)).

Likewise, we can get the following result.
Theorem 2.2. Let v € X. Then w(x,F) = w(z, ).
Theorem 2.3. Let x € X. Then, F(w(x,F)) = w(x,F).
Proof. Firstly, we show that

Flw(z,F)) C w(z, F).

For any given z € fy(w(z,d)), there exists y € w(z,F) such that fo(y) = 2.
Since y € w(z,F), there exist a € ¥ and a sequence {n;} C N such that

lim fyi(z) =y.

n;—00

By the continuity of fy, we have
lim fo(fa(z)) = fo(nlgnoo fai(@)) = foly).
So, fo(y) € w(x,F). It is similar for z € fi(w(z, F)).
Next we show that
w(z,F) C Flw(z,F)).

Let z € w(z,J). Then there exist o € ¥ and a sequence {n;} C N such that

Jim fot(z) = 2.
Let { fgij_l(x) 20 be a convergent subsequence of {f*7'(z)}2, with either
U, = 0,Vj > 0or O, = 1,V > 0. Without loss of generality, let

O, = 0,¥] > 0.

Set lim fa ( ) =y. Then y € w(x,F). By the continuity of fj,

]—}OO

foly) = follim 277" (@) = lim £ (@) = lim £24(2) = 2.
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Hence, z € fo(w(z, F)). O
By Definition [2.1] we can get the following theorem.
Theorem 2.4. Let x € X and o € X. Then for any i > 0,
wW(fi(z), T, orbo(fi(x))) C w(z,TF,orby(x)).

Proof. Let @ > 0 and let y € w(f’(x),F,orbs(f.(x))). Then there exists a
sequence {n;} of positive integers such that

i 2 a) = tim f3(f() =
Then y € w(x,F,orby(z)). So, w(fi(z),F,orb.(fi(x))) C w(z,F,orbs(z)).
U

Theorem 2.5. Let x € X and o € ¥. Then for any n > 0,

w(z,F,orby(z)) = Uw(fé(x), F", orba(fé(x), F).

n—1
Proof. Firstly, we show that w(z, F, orb,(x)) D J w(fi(z), F", orba (fi(z),F")).
i=0

n—1
For any given y € |Jw(fi(x), F", 0rby(fL(x),F")), there exists 0 <i <n —1

i=0
such that

y € w(fiw), 7" orba(F(x), 57). |
Then there exists a sequence {k;} of positive integers such that klim f;fkj "(x) =
j 200
y. So, y € w(z, F, orb,(x)).
n—1
Next we show that w(z,F,orb,(z)) C Jw(fi(z), F", orb.(fi(z),F")).
i=0
For any given y € w(z,F, orb,(z)), there exists a sequence {n;} of positive
integers such that
lim fo(z) =y.
nj—r00

Then there exist a subsequence {n; } of {n;}, a sequence {q;} of positive
integers and 0 < r < n such that n; = ng, +r. Thus,

lim fr*(z) = lim fo'* (z) = y.
k—o0 k—o00

n—1
o,y € Ul (x). 37, orby (fi(a). 5")). =

By Theorem [2.5] we can get the following theorem.
Theorem 2.6. Let x € X andn > 0. Then

e, 3) = | (@), 57, orba f1(2), 57).

aceY 1=0
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2.2. Periodic point

Definition 2.2. We say that v € X is a periodic point of IFS F if there
exsits « € 3 and n € N such that for any i € N we have [ (x) = fi(x). The
period of x is the smallest number n € Z* satisfying the above equality for all
integers i € N. If n =1, we say that x is a fived point of IFS F. We use P(F)
and Fixz(F) to denote the sets of the periodic points and fized points of IFS F,
respectively.

The following example demonstrates that the property that fixed point
set and periodic point set are invariable for continuous self-maps doesn’t hold
for iterated function systems.

Example 2.1. Consider two continuous maps fy, f1 on X as follows:
fo(sos1-++) = 0sps1-++, fi(sos1--+) = 1sgs1 -+, Vsps1 -+ € X

We show that F(Fiz(F)) € Fiz(F) and F(P(F)) € P(F). For this,
select z =0---0--- € X. It is easy to show that fo(z) =z € Fiz(F) C P(F).
While, fi(z) € Fix(F). And for any o € ¥ and any n > 0, f2(f1(z)) # f1(x).

So, fi(z) € P(F).
Now we show that the periodic point is retentive under iteration of IFS
JF, but the fixed point is not.

Theorem 2.7. For any n > 0, P(F) = P(F").

Proof. Firstly, we prove that P(F) C P(3"). For any given x € P(¥), there
exists a € X such that there exists m € N satisfying

fE(a) = fi(x),Vk € N.

Then, fa®™ (z) = fm*(2),Vk € N. So, z € P(F").

Next, we prove that P(F) D P(F"). Let z € P(F™). Then there exist a €
Y and m > 0 such that f"(x) = . Select 8 = apay -+ * QoA ** * Ay« + +
then

£ ) = (), Vi > 0.
So, x € P(F). 0

For fixed point of IFS JF| it is easy to show that the corresponding con-
clusion is different.

Theorem 2.8. For any n > 0, Fiz(F") ¢ Fiz(F) and Fiz(F) C Fiz(F").
2.3. Almost periodic point

Definition 2.3. We say that x € X is an almost periodic point of IFS F if
there exists a € ¥ and for any € > 0 there exists N > 0 such that for any
q >0, there existsr € N, ¢ < r < q+ N satisfying

d(frt(z), fi(z)) < e,Vi € N.
We use AP(F) to denote the set of almost periodic points of IFS F.
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Firstly, we show that AP(%) is conditional invariable for IFS &F.
Theorem 2.9. If foo fi = fi 0 fo, then F(AP(F)) C AP(F).

Proof. Let y € F(AP(F)). Without loss of generality, suppose that y €
fo(AP(F)). Let € > 0. Since fp is continuous, there exists 6 > 0 such that
for any z,y € X, d(x,y) < ¢ implies d(fo(x), fo(y)) < e. Then there exists
r € AP(F) such that fy(z) = y. And there exist & € ¥ and N > 0 for any
q > 0 there exists r, ¢ < r < g + N satisfying

d(fa (@), fal@)) < 6,¥i 2 0.
By the continuity of fy, we have

d(foo fi(x), foo filx)) = d(f (folx)), falfol(x))) <e,Vi>0.
So, y € AP(F). O

The Example[2.1)in which fyo fi # fi0fy demonstrates that the condition
“foo fi = fio fo” in Theorem cannot be removed. For this, we select
z=0---0--- € AP(¥). Next we use the proof by contradiction to show that
y = fi(z) ¢ AP(T).

Suppose that y € AP(F). Then there exists a € 3 for %, there is N; > 0
such that for any k& > 1, there exists r, (kK — 1)N; < rp < kN; satisfying
d(fa+(y),y) < 5. Hence,

a,, =0and a1 = 1,Vk > 1. (1)
What’s more, for ﬁ > 0, there exists Ny > 0 such that there is r,
0 < r < N, satisfying
1

d(fi(y),y) < v

Thenr > 3N, and o, =1, a9 = a3 = - -+ = a,,_1; = 0, which is in contradiction

with (I). So, y ¢ AP(F)
The following result states that the almost periodic point is retentive
under iteration of IFS &F.

Theorem 2.10. For any n > 0, AP(F) = AP(F").

Proof. Firstly, we prove that AP(F) C AP(F™). For any given z € AP(J)
there is o € ¥ such that for any € > 0, there exists N; > 0 such that for any
q > 0, there is r, ¢ < r < ¢+ N; satisfying d(f"(x), fi(z)) < &,Vi > 0.
Hence, for any n > 0, we have

d(f2U (), fIM(x)) < e, Vi > 0.

So, x € AP(F™).

Next, we show that AP(F) D AP(3F™). For any given © € AP(F"), there
is a € ¥ such that for any € > 0, there exists Ny > 0 such that for any ¢ > 0,
there is r, ¢ < r < ¢ + N, satisfying

d(f5"(x), fo'(2)) < 8,¥i 2 0,
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where 0 satisfies that for any x,y € X, d(z,y) < ¢ implies d(f5(z), f3(y)) <e¢
VO < s < k,Vp € X.Set N =kN,. Then for any ¢ > 0, thereexists [, 0 <[ < k
such that ¢ —1 = 0(mod k). Let ¢ = q—1. Then ¢+ N > g+ N —1 = ¢+ kNs.
Therefore, there exists r, % <r< % + Ny such that

d(fo " (), f3'(2)) < 6,¥i > 0.
By the uniform continuity of f5,¥0 < s < k,¥f € X, d(fir 5 (), fi5(z)) <
g, Vi > 0,V0 < s < k. That is,

d(fa" (), fo(x)) < e,¥i > 0.
Note that ¢ < rk < g+ N. So, x € AP(F). O

2.4. Chain recurrent point

Definition 2.4. We say that x € X is a chain recurrent point of IFS F if for
any € > 0, there exists a finite number of points xo,xq, -+, € X such that
To= Ty = T and

lnid(fk<xl>7xz+l) < €7i = 07 m — 1.

k=01
We use CR(F) to denote the set of the chain recurrent points of IFS F.

We mainly study that CR(F) is closed but not invariable for IFS &.
Theorem 2.11. CR(F) = CR(F), However, F(CR(F)) £ CR(F)

Proof. Firstly we show that CR(F) = CR(F). For this, suppose that z is a
cluster point of CR(F). Then we only need to prove that z € CR(F).

For any given € > 0, since fo and f; are continuous, there exists 0 < § < §
such that for any z € X with d(z,2) < 6, d(f(z), fr(z)) <5, k=0, 1. Since
x is a cluster point of CR(J), there exists y € CR(F) with © # y such
that d(z,y) < 6. Since y € CR(F), there exists a finite number of points
Yo, Y1, ,Ym € X such that yo =y, = y and

kizlloild(fk(yz')’ywl) = d(fn:(4i), yir1) < g,i =0,m—1.
Ym—1, Tm = @, then d(fn,(x;),xi41) <
i), Tiv1) < €,i=0,m —1. Hence, x €

Let 1o = @, 1 = 41, =+, Tm1 =
e,i = 0,m — 1. Therefore, i( (T
—0,1

CR(F).
Next we illustrate that F(CR(F)) € CR(F)

Example 2.2. Consider two maps fo, f1 on Z" as follows:
fo)=1,fo(n)=n+1,n=23,--- and fi(n)=n+1,n=1,2---
Since 1 is a fixed point of fy, 1 € CR(F). But fi(1) =2¢ CR(F). O

Interestingly, we can get the result that C'R(J) is invariable for IFS &
by strengthening the condition.
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Theorem 2.12. Suppose that for any v € CR(F) and any € > 0, there exists
a finite number of points xg,x1,- - , T, with xg = x,, = x such that

sup d(fr(xo),z1) < e and inf d(fr(x;),zi41) <e,i=1,m— 1.
k=0,1 k=0,1
Then, F(CR(F)) C CR(T).

Proof. For any y € F(CR(F)), there exists x € CR(F) such that ¢(z) = v,
where ¢ € {fo, fi}. Forany ¢ > 0, let 0 < 0 < § such that for any z,y €

X, d(x,y) < ¢ implies d(fo(z), fo(y)) < § and d(fi(v), fi(y)) < 5. Since
r € CR(F), there exists a finite number of points xg, z1, -+, 2, € X with
To = X, = « such that

lnid(fk($2)7$z+l) = d(fnz<xz)>$z+1) < 572 = 1am - 17

k=0,1
and sup d(fx(xg),z1) < d. Then, d(¢(z),x1) < 0. Let yo = ¢(x), 11 = wo,
k=0,1
Yo = T3, * 5y Ynm—1 = Tmy Ym = gb(l’) Then,

klznécﬂfk(yo)ayl) < klzné{d(fk © ¢(x)’ fm(xl)) + d(fm (xl)v 132)} <ég,

1 id(fk(yl)a yi—i—l) < inid(fk‘(xi-i-l)v xi+2) < €,i = 17m - 27
k=0,1 k=0,1

and

k=0,1
So, y € CR(F). O
2.5. Recurrent point

Definition 2.5. We say that x € X is a recurrent point of IFS F if there
erist « € &2 and a sequence {n;} C N such that

lim fli(x) ==.
ni—00
We use R(F) to denote the set of the recurrent points of IFS F.
Firstly, we show that R(F) is conditional invariable for IFS &.
Theorem 2.13. If fyo fi = f10 fo, then F(R(F)) C R(F).

Proof. We will show that fo(R(F)) C R(F). It is similar for fi(x). For any
given x € R(TF), there exist a € ¥ and a sequence {n;} of positive integers
such that

lim fli(z) =z.

n;—00

Since fy is continuous,
fo(ngnoo fai(@) = nh_fgo fo(fai (@) = folz).
So, fo(z) € R(F). O
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The following example demonstrates that the condition “fyo f; = f10 fy”
in Theorem 2.13] cann’t be removed.

Example 2.3. Consider two maps fo, fi on {—1,0,1} as follows:
fO(_1> = _17f0<0) = 17f0(1) = -1

and

fi(=1) = =1, f1(0) =0, fi(1) = 1.

We have that fi o fo(0) # foo f1(0), foo f1 # fio fo. And it is easy to
show that 0 € R(F), but fy(0) & R(F).

Now we show that the recurrent point is retentive under iteration of IFS
F.

Theorem 2.14. For any n > 0, R(F) = R(F").

Proof. Firstly, we prove R(F) C R(F"). Let x € R(F) and U be an open

neighborhood of z. Then there exist a € ¥ and a sequence {n;} of positive

integers such that lim f7(z) = x. In addition, there exist a subsequence
NG —> 00

{ni,} of {n;} and an integer r, 0 < r < n such that for each j there exists
q; € N satisfying n;; = nq; +r. Let m; = n;;, then
li "i(x) = .
A £ (r) ==
Thus, there exists m;, such that fu ' () € Uy. By the continuity of fa ', there
exists an open neighborhood U; of x satistying U; C U, and f;n“(Ul) C Up.
And there exists m;, such that

f:!nh(x> € Ulv

-++. By induction, we can get n open neighborhoods Uy, Uy, --- ,U,_1 of x and
n integers mj,, mj,,- -+ ,m;, satisfying
(1) Upoq CUpo C -+ C Uy,

mj,

(2) fo ™ (Ux) CUp1, k=1,n—1,
(3) f;njk(l‘) € U_1, k= 1,n—1.
Therefore, fa ' 0 fo > 0+ 0 fa’"(x) € Uy. Since mj, +mj, + -+ +my, = 0(
mod n), xz € R(F").

Next, we prove that R(F) D R(F™). For any given z € R(F"), = €
w(x, I orby(x,F")). Then, it is easy to show that x € w(x,F, orb,(x)). So,
r € R(F). O

2.6. Non-wandering point

Definition 2.6. We say that x € X is a non-wandering point of IFS F if for
any € > 0 there exist « € X2, yo € X and n > 0 such that

d(z,y0) < e and d(f(yo), ) < e.
We use Q(F) to denote the set of the non-wandering points of IFS F.
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Firstly, we study if Q(F) is a closed set.

Theorem 2.15. Q(F) = ( F).

Proof Let ¢ > 0 and let x be a cluster point of Q(F). Then there exists
v" € Q(F) such that d(z,2") < 5. Since 2’ € Q(F), there exist yy € X, a € ¥
and n > 0 such that

d(z',yo) < g and d(fI(yo),z") < %
Therefore,
d(z,yo) < d(z,2")+d(x',yo) < € and d(fI (yo),x) < d(f2(yo), 2" )+d(2', z) < €.
So, x € QF). O

Now we illustrate that Q(F) is neither invariable nor iterable for IFS &,
respectively.

Example 2.4. Consider two maps fo, f1 same as in Example[2.5.

For any € > 0, d(0,0) = 0 and d(f1(0),0) = d(0,0) = 0. So, 0 € Q(F).
What’s more, there is only 1 € {—1,0,1} satisfying d(fo(0),1) < 3. While
for any € ¥ and any n > 0, f*(fo(0)) = —1. So, fo(0) ¢ Q(F). That is

)) & Q(T)
Example 2.5. Consider the constant map fo(x) = 1 and fi defined as the
map [ in Example 1.4.1 of [9].

For the sake of convenience, we write again the map f in Example 1.4.1
of [9] as follows. Let f be a continuous map on [0, 1] with

fla)=c, f(b) =1,f(c) = d, f(d) = ¢ f(1) =a
where 0 < a < b < ¢ < d < 1. What’s more, f is strictly monotonically
increasing on [0, b] and is linear on [b, ¢, [¢,d], [¢,1]. Then a € [0, 1] is a non-
wandering point of f. Thus, a € Q(F). However, for any small enough ¢ > 0
and any a € X, f2([a —e,a +¢€]) C [¢,1], and [c, 1] is an invaiable set for IFS
F2. So, a ¢ Q(F?). That is Q(F) € Q(F?
2.7. Strong non-wandering point

Definition 2.7. We say that x € X is a strong non-wandering point of [FS
F if for any open neighborhood V' of x there exist « € ¥ and y € X such that

1 .
limsup —#{i|f.(y) €e V,0<i < N —1} >0,
N—oo N

where $A is the cardinal number of A. We use SQ(F) to denote the set of the
strong non-wandering points of IF'S J.

Now we show that SQ(F) is an invariable closed set.

Theorem 2.16. (1) SQ(F) = SQF),
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(2) F(SQTF)) C SQUT).

Proof. (1) Let € > 0 and let z be a cluster point of SQ(F). Then there exists
r € SQ(F) such that d(z,z) < 5. And there exist o € ¥ and y € X such
that

1 .
lim sup —#{ild(fi(y),2) < =,0 <i < N —1} > 0.
Since for any i > 0, d(fi(y), z) < d(f.(y), ) + d(z, 2),

1 )
lim sup Nﬁ{dd(fé(y), 2)<e,0<i<N-—-1}>0.

N—o00
So, z € SQF).

(2) Let y € F(SQF)), without the loss of generality, we can take y = fo(z),
where z € SQ(F). Let € > 0 and let § > 0 such that for any z,y € X,
d(z,y) < ¢ implies d(fo(x), fo(y)) < €. Since z € SQ(F), there exist
a € X and z € X such that

1 )
limsup —#{i|d(f.(2),x) < 6,0<i< N —1} > 0.
N—o00 N
Furthermore, there exists 5 € X such that

1 )
lim sup Nﬁ{dd(fé(z),y) <g0<i<N-1}>0.

N—oo

So, y € SQF).

3. Relationships among various kinds of recurrent point

In this section we study the relationships between these various kinds of
recurrent point sets. Before this, we introduce the definitions of weakly almost
point and quasi-weakly almost periodic point for the IFS.

Definition 3.1. We say that x € X is a weakly almost periodic point of the
IFS F if there exsits o € X and for any € > 0 there exists a positive integer
N, such that

#{a|d(f5H (), fi(x)) < e,Vj € N,0 < i <nN.} >n,Vn > 0.
We use W(F) to denote the set of the weakly almost points of IFS F.

Definition 3.2. We say that x € X is a quasi-weakly almost periodic point
of IFS T if there exsits a € X for any € > 0 there exist a positive integer N,
and a sequence {n;} C N such that

tlild(fi (), f5(2)) < e, Yk € N,0 <i < n;N.} > n;,Vj > 0.
We use QW (F) to denote the set of the quasi-weakly almost points of IFS F.

Theorem 3.1. Fizx(F) C P(F) C AP(F) C W(F) Cc QW(F) C R(F) C
Q(F) c CR(F).
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Proof. 1t is easy to know that Fiz(F) C P(F) C AP(F) Cc W(F) Cc QW(F) C
R(F) by their definitions.

Now we show that Q(F) C CR(F).

Let z € Q(F), e > 0 and let § > 0 such that for any z,y € X, d(z,y) < §
implies d(fo(z), fo(y)) < € and d(fi(z), fi(y)) < . Then there exist a € ¥,
Yo € X and n > 0 such that

d(z,y0) < 9 and d(f2(yo),x) < 0.

Set 7o = z,21 = fi(yo),v2 = fi(y1), s Tm-1 = f1(Ym—2), Where y; 11 =
fi(y:),0 <i <n—2 with g = x,, = z. Then,

nf d(fi(ro).x1) = inf d(fila). fi(w) < d(fi(a). fi(w) <<.

inid(fk(xi)7xi+l) = inid(fk<yi)7f1(yi)) =0<ei=1,m-2,
k=0,1 k=0,1

inid(fk<l‘m,1),l'm) = lni{d(fk«gmfl)aym) + d(yma x)>} <E.
k=0,1 k=0,1

So, z € CR(F). OJ
It is easy to get the following relationship by their definitions.
Theorem 3.2. AP(F) C SQF) C Q(F).

Since (X, d) is compact, AP(F) # (). Then by Theorem [3.1|and Theorem
3.2 we can get the following corollary.

Corollary 3.1. All of AP(F), W(F), QW (F), R(F), QF) and CR(F) are
not empty.

Theorem 3.3. P(F) C SQ(F).

Proof. Let x € P(F). Next we will start splitting in the following situation.
Case 1. z € P(¥). There exist & € ¥ and m > 0 such that fi™(z) = fi(z),
Vi > 0. Let € > 0. Then,

1 : n 1
;ﬂ{z\d(% folr)) <e,0<i<n-—1}= ([E] + 1)5-
Thus,
lim sup lti{z|d(x, fi(z)) <e,0<i<n—1} > lim l(ﬁ —-1)= 1 > 0.
nooo M n—00 M m
So, x € SQF).

Case 2. x ¢ P(F). Let ¢ > 0. By x € P(J), there exists y € P(F) with  # y
such that d(z,y) < e. And there exist « € ¥ and m > 0 such that
fa(y) = faly), Vi = 0. Thus,

1 4 1

—f4{2|d ! 0<i1<n—-1}y=(—|+1)—.

Litild(e. i) <0< i<n -1y = (4 + 1)
Then, it is similar with Case 1 that =z € SQ(F).
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4. Conclusion

The main properties of the sets of w-limit points, periodic points, almost
periodic points, chain recurrent points and non-wandering points for iterated
function systems can be summarized in Table 1.

TABLE 1. The main conclusions about the various kinds of re-
current point sets.

Property w(F) P(F) AP(F) CR(F) R(F) QF
nonempty /= — v vV
invariable 4/ X x NG N4 X*

closed vV — — — vV
iterable Vv Vv Vv v X

(1)“\” means that it doesn’t hold and it holds with some additional con-
ditions. (2)“x” menas it holds for continuous slef-maps.

< X<
3
|2
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