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ANALYSIS OF NATURAL FREQUENCIES OF A CRACKED
VISCOELASTIC EULER-BERNOULLI BEAM BASED ON
EQUIVALENT VISCOELASTIC SPRING MODELS

Chao FU?, Xiao YANG?

In order to investigate effects of crack location or crack depth on the natural
frequencies, the corresponding equations based on the finite element method and the
approximate analytical method are presented by utilizing the principle of virtual
work and compatibility conditions at the crack location, respectively. By numerical
examples, the effectiveness and applicability of the two different methods are
compared with those of the exact analytical method (EAM).
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1. Introduction

In recent years, the research of crack effect and crack identification has
attracted considerable attention due to the influences of the external loads,
environment and self-defects [1]. Herein, to study the effects of cracks or defects
on the vibration properties of the cracked viscoelastic beam structures, some
papers are cited. By the Galerkin method and multiple scales method, Younesian
et al. [2] analyzed the frequency responses of a cracked beam rested on a
nonlinear viscoelastic foundation. Utilizing Fourier transform and regarding the
crack as a massless rotation spring, Sarvestan et al. [3] presented a spectral finite
element model for vibration analysis of a cracked viscoelastic beam. With the
standard linear solid constitutive equation, Fu and Yang [4] presented the exact
analytical method (EAM) to investigate the vibration properties of a viscoelastic
Euler-Bernoulli cracked beam. However, to investigate effects of size or location
of cracks on the natural frequencies, a transcendental equation must be solved
numerically.

Based on the principle of virtual work and the compatibility conditions at
the crack location, this paper extends the finite element method (FEM) and
approximate analytical method (AAM) to overcome the weakness of solving
eigenvalue problem, respectively. Then, by numerical examples, the accuracy and
applicability are compared with those of the exact analytical method (EAM).
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2. Theoretical model

According to the constitutive equation of standard linear solid model[5],
the relaxation modulus Y (t) defined in time domain is given as

t
0 i 7, EE, En,
Y t) = _— = e y = y = ’ = . 1
t)=0q,+ ( qoj Py E L E, do E+E, o) ELE, 1)

Where E, and E, are the elastic modulus of the elastic elements, 7, is the viscous

coefficient of a viscous element, v is the Poisson's ratio, and t is the time.
There is a viscoelastic rectangular beam of length L, height h and width b
in the coordinate axis X, y, and z, respectively. Let us consider that w(x,t) and

o(x,t) are the transverse deflection of the axial line and rotation angle of the beam

cross section A. According to the hypothesis of the Euler-Bernoulli beam theory,
the axial normal strain, rotation angle, and normal stress of the cross section are
given as

0p(X, t)

s(x,t) =y p(x,t) =aw(x,t)/ax, o (x,t) =Y (0)s(x,t) +Y () *e(xt). (2)

Where Y (t) is the 1st derivative of Y (t) with respect to the time t, the asterisk *
denotes the convolution, i.e. f(t)*g(t):j; f(r)g(t-7)dzr.
And the bending moment M(x,t) of the intact beam is

M ()= - {Y @2 vy %} (3)

Where | is the moment of inertia of the neutral axis, and | = ﬂAyzdydz.

Supposing that the transverse crack j(j=12,---, N) is always open, which
means the crack can be equivalent as a massless viscoelastic torsion spring [1].
Let us denote the bending moment and equivalent viscoelastic torsion spring of
the crack j with crack depth d; at x=x; by Mij(t) and k;(t), respectively, the rotation
angle Aj(t) of the equivalent torsion spring can be expressed as
M () = =[ k; (A () +K; (1) * A, 1) ]. )
Based on the equation of the rotation angle ¢(x,t) for a cracked beam [4], the
bending moment in time domain and Laplace domain are given as, respectively.

M(x,t)={(E|)( o)a¢(x D (D, 2 t)}, M (x,5) = ~s(ET), (x, s)‘WX 9 (5

Where the superscript “— denotes the Laplace transform of the function with
respect to the time t, and s is the Laplace transform parameter.

Utilizing the equation of the rotation angle and Dirac delta function 5(x)
[4], the equivalent bending stiffness of the viscoelastic cracked beam in Laplace
domain is written as
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3. Methods for vibration of a viscoelastic cracked beam
3.1. Exact analytical method

Based on the separation of variables method, an exact analytical method is
presented to analyze the viscoelastic cracked beam with open cracks in reference
[4]. Below is a brief progress as follows.

The equivalent stiffness of the crack j (j=1---N) in time domain and
Laplace domain are given as, respectively,

KO =Y ©), K;(5) = ;1Y (5). )
Where the parameter 4, = (0.9/h)[ (d; /h) —1]2/{(dj /[ 2 —(dj/h)}}.

The free vibration equation of the Euler-Bernoulli beam is
o*w(x,t)  8*M(x,t)
Where p is the density of the beam.
Introduce the following dimensionless variables and parameters

M X X, b A L pl? Lt

*

w *
W =—,m
L

o AT AT U O
1

Based on the separation of variables method [6], the vibration solutions

can be assumed as

W (E,0) =W (§e", m(&1)=M"(&e™ . (10)
Where W'(£) and M™(&) are the dimensionless mode functions of the transverse
displacement and bending moment for the cracked beam, i=v-1, o is the
complex eigenfrequency, and the real part and imaginary part of » are the natural
frequency and decrement coefficient [7,8], respectively.
Then, the dimensionless mode functions of the bending moment and shearing
force can be derived. With the corresponding boundary conditions, the set of
linear equations is given as

[AKC}=0. (11)

Where [A] is a 4x4 coefficient vector, and {C}={C,,C,,C,,C,}".

If there exists a nonzero solution of {C}, the necessary and sufficient
condition is stated that the determinant of the coefficients vector is zero, which is
a transcendental equation. Here is the basic process of the present exact analytical
method (EAM) [4]. By solving the equation, the complex eigenfrequency «» can
be obtained with the different boundary conditions.
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3.2. Finite element method

To analyze free vibration of the viscoelastic beam, Hamilton’s principle
[8] and Newton’s second law [9] had been employed. On this basis, by regarding
the crack as a massless rotation spring and considering the additional virtual work
of the bending moment at the crack location [10], the principle of virtual work for
the free vibration of the viscoelastic cracked beam is presented as

2 2 N
IL{pAaV;t—(X’t)(DW(X,t) -M (x,t)@{aVXT()Z(’t)}}dx—ZM 04, =0. (12)

0 2
=t

Where @ is the variational operator.
The vibration solutions [8] can be expressed as

w(x,t) =W (x)e'*, o(x,t) = % =d(x)e'", M(x,t)=M(x)e'. (13)

Where W(x), ®(x), and M(x) are the mode functions of deflection, rotation angle
and bending moment, respectively.

By combining Egs. (3) , (13) and the 1st equation of Eq.(1), we have
| Go * i, dZWEX), o(x) = W)

l+iowp, dx dx

When E, - «, the parameter p, =7,/(E, +E,) is reduced to zero, the 1st equation
of Eqg. (14) is degenerated into the mode function of bending moment for the
Kelvin-Voigt beam [11] as follows

M(X)=— (14)

M (x) =—1 (g, +ia)q1)d \é\)l(gx).

Suppose that the crack j is located at the end point of beam element, i.e.
x=Xx; in fig. 1, the relative rotation angle of the equivalent rotation spring model
at the crack location by using 2nd equation of Eq. (13) is given as

A(Xj 1) = Pir t- P = A(Xj )eiwt- (16)
Where ¢; (t) and ¢ (t) are the rotation angles of two adjacent beam elements at

(15)

the both sides of the crack location X=X;, see fig. 1.
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Fig. 1. Finite element mesh of the viscoelastic cracked beam
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Utilizing the 2nd equation of Eq. (13) and Eq. (16), we have
AX) =D (X) =D (%). a7
By combining Egs. (1), (7) (16) and the Laplace transform of Eq. (3), the
bending moment at the crack location x=x; is given as
M (x;,1) = =2 | A(x)[ Y ()™ +Y (1) % & | =} ql(’:l—slA(x )e'. (18)

Substitution of Egs. (13), (14), (16) and (18) into Eq. (12), one obtain
\é‘)’((x) d W(X)}dx+ZE L, A(x)O[A(x,) ] =0

19

The beam is divided into K units of the finite element along the axis ((seg

fig. 1), there have L, =L/K and x, =(k-1)/K (k=1---,K+1). With the interpolation
function, the mode function of the k-th beam element is given as

W (x) = Spl. (20)

Where s is the shape function vector composed with a series of two-node

Hermite’s interpolation function [12], p{ is the nodal displacement vector of the

k-th beam element, and
S:[S1 S, S 33], pék)_[w o W, q)k+1]T- (21)

S,(0)=1-38"+28°, S,(0=(B-28"+p°)L,,
S;(\=38-24", S,(\=(B-p).. B=¥L,.
Utilizing the 2nd derivative of Eq. (20) with respect to the variable x, one obtain

2
dWEx):B 0 B d? S (23)
dx dx
Suppose that the crack is regarded as a massless torsion spring, and the
length of crack element is zero [10]. Then, Eq. (17) can be rewritten as

A(x) =5, S, =[-1 1], ¢ =[®, @] (24)

c’e !

[ (ia))zm—wplE PAW (X)OW (X) + E, |
0 0 + i,

(22)

Where c!? is the nodal displacement vector with two degrees of freedom, s, is the

matrix of shape function for the j-th crack element.
By substituting Egs. (20), (23) and (24) into Eq. (19), we have
i l+iop
® ()T 2 1 EM(k) K(k) (k) ® Tk el = =0. 25
Z() N o riog TV pr(c)c (25)

Where the superscripts k and j denote the k-th beam element and j-th crack
element, respectively, and

M, :J-OLe PASTSX, K, :JOLe EIB"Bdx, K., =E,luS]S,. (26)
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Where M® (k=1,---,K) and K& are the mass matrix and stiffness matrix of the k-
th beam element, respectively. K (j=1---,N) is the stiffness matrix of the j-th

crack element,
When the crack location x=x; (j=1,2,---,N) is equal to the element nodal

coordinate x, =(k-1)/K (k=2,---,K), it means that the j-th equivalent torsion spring

is connected by the k-th beam element and (k —1) -th beam element, and the nodal
vector of the (k —1) -th beam element can be expressed as

ped =W, , @, W, @,]. 27)
In addition, the nodal vector of the k-th beam element Eq. (21) can be rewritten as
pék) _|:W (D Wk+1 (I)k+1] . (28)

Where @, is a new independent variable. Considering of the crack effect, two
degrees of freedom for the j-th crack element in Eq. (24) are presented as ¢, =g,
and ¢, # @, , respectively.

Then, Eq. (25) is rewritten as

.2 l+iop, }
io) ————EM_ +K_ [{p}=0. (29)
(o len ()
Where
K K
M, {p}=2MPp, K {p}=2 K p{ + Z K&ed. (30)
k=1 k=1 j=1

As the number of generalized node displacements is 2(K +1)+N , the
vector {p} is expressed as

=W, &, W, @, W, O, W, @ Oy W, D\W, O, W, @] (31)
Then, the frequency equatlon is presented as follows

. 2 1+iwp

det ——LEM, +K, |=0.

° |:(I ) q, +iog, ’ (32)

Applying the dimensionless form of Eqg. (32) and utilizing Matlab

programs, the dimensionless eigenfrequency of the viscoelastic cracked beam can
be obtained with the different boundary conditions.

3.3 Approximate analytical method

For a simple-supported elastic beam with open cracks in reference [13], it
was stated that the mode function of the elastic cracked beam was composed with
the mode function of an undamaged beam and a polynomial function which
showed the effect of cracks. By supposing that the maximum potential energy of
the beam was equal to the maximum kinetic energy for an arbitrary k-th mode, the
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approximate analytical expression of the k-th natural frequency for a simple-
supported elastic beam with cracks were derived by employing the compatibility
conditions at the crack locations. In addition, Manevich and Kotakowski [9]
claimed that for a simple-supported beam, the mode function of the viscoelastic
beam was the same to that of the elastic beam. On this basis, the approximate
analytical expression of the complex eigenfrequency for a simple-supported
viscoelastic cracked beam is presented in this subsection.

At first, we take the viscoelastic beam with a single crack for an example.
Suppose that there is a transverse open crack with depth d, at x=x,, the cracked

beam is considered as a massless viscoelastic spring connected by two intact
viscoelastic sub-beams. Let w®(xt) is the transverse deflection of the k-th sub-
beam, and here 0<x<x and x <x<L correspond to k=1 and k=2 ,

respectively.

Substituting Egs. (6), (7) and the Laplace equation of Eq. (1) into the 2nd
equation of Eq. (5), using the inverse Laplace transform and ignoring the effect of
the crack, the equations of motion of the k-th intact sub-beam are

O VMOx 1) = — oNPwr(xt)
(1+ P, at]M (xt)=-1 (qo +q at] PV k=12) (33)
o W (xt) ( gj o*'w (x, 1) B
(l"' p1 atij atz =-I qo + q1 ot a)(4 . (k —1: 2) (34)
The boundary conditions of the simple-supported beam are
w?(0,t)=0, M®(0,t) =0, w?(L,t)=0, M@(L,t) =0. (35)

And the compatibility conditions [14] at x=x, are given as follows
w® (x,t) =w? (x,t), MO (x,t) =M (x,t),
MOt _aMP(xt)  aw?(xt)  aw?(xt) (36)

, =A(X,1t).
OX 15)4 154 OX

Where A(x,t) is the relative rotation angle due to the crack effect and the Laplace
transform of A(x,t) is defined by Eq. (4).

Combining Egs. (1), (4), (7) and the 4th equation of Eqg. (36) with the
inverse Laplace transform, and then, combining Eqg. (34), one obtain

2 1 2 2
(qo wg}{@w‘ ;(x1,t) w0 10w ’(vat)}:o_ (37)
X OX y7 OX
Similar to Eq. (13), the vibration solutions can be expressed as
W (x,t) =W  (x)e*, MO (x,t) =m®(x)e'*. (k=12) (38)
Substituting Eqg. (38) into Egs. (33) and (37), respectively
m® (x) = —I Qo +iwg, dZW(k)(X). k=12) (39)

l+iop,  dX?
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dW?(x)  dw®(x) 1 dW?(x)

dx  dx g dd

By extending the method of an elastic beam used by Bakhtiari-Nejad et al.

[13], the n-th mode functions of the viscoelastic beam with a single crack are
given as

(40)

{Wn‘”(X) =0 [Won 0+ A, 4B G DKL Osxsn)

W@ (x)=Q, [an(x)JrA2 +B,,x+C, x*+D, x3] (x, <x<L)
Where W_ (x) is the n-th mode function of the intact beam, for a simple-

nc,n

supported beam there has W, (x)=sin(nnx/L) [9,13]. Q, is the relevant constant.

nc,n

Ar B,y G, and D, (k=1,2) are the undetermined functions.

Substitution of Egs. (38) and (41) into Eq. (35) , the first three equations of
Eqg. (36), and EQq.(40), respectively, one obtain

A, =0, A =x— " (n:j sm(ntxlj, C,=0, C,,=0 D,=D,, =0,

X, l(nnjz . [nnxlj L-x 1( j (nnxlj
B,,=———|— | sinl—|, B,,= — | sin
’ Lug\L L L u L

Substitution of Eq. (42) into Eq. (41), the approximate expressions of
mode functions for the viscoelastic beam with a single crack are presented as

Wo(x)=Q {sm(mix) @i(n—:j sin[nnTxiﬂ. (0<x<x)

W2 (x) =Q {sm(ntx}u(l'lx)xli(n%j sm[mlt_xij:l. (x, <x<L)

Utilizing the principle of virtual work for a simple-supported viscoelastic
beam with an open crack, Egs. (12), (38), (39) and (43) are combined as follows

it Sl 2] 2o
1(q, + ia)ql){(n%j4 % + i(nrnj sin’ (melﬂ =0.

Therefore, utilizing Eqg. (9), the approximate analytical value of the
dimensionless eigenfrequency for the viscoelastic beam with an open crack based
on the standard linear solid model can be obtained.

When d, -0 or x4 — o, EQ. (44) is degenerated into the expression for a

viscoelastic intact beam with standard linear solid equation as follows

(43)

(44)
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, 1 1(g+iwg,) 4
== 2 A : 45
T pA(1+ia)pl)(nn) (49)
It is found that Eq. (45) corresponds to the expression presented by Lei et al. [15].
Combining Egs. (9) and (43), the dimensionless mode function of the
viscoelastic beam with an open crack is presented as follows

W, () =W, (OH (& - &)+ W, (OH (£ - &)- (46)
Where H(x) is the Heaviside function [4], and
W) =Q, {sin (né)+ - {1)5 (nn)2 sin (nnfl)}, (0<&E<E)
8 (47)

W () -0, {sin(nnw(l‘ﬁ)f%nn)zsin(nna)} (G262
H

In addition, the similar methodology can be utilized to analyze vibration of
the viscoelastic beam with an arbitrary number of cracks.

4. Numerical results and discussion

4.1 Validation of the present methods

Let E, >« and d, -0, the present model is degenerated into the Kelvin-
Voigt intact model. Suppose the geometric and physical parameters are L=1m,
b=02m , h=00015m , p=7800 kg/m® , E,=2x10" N/m? , E/E,=9999 and
n, =6.8x10"E, . And the beam is uniformly meshed by 20 finite elements ( K =20).

The first five eigenfrequencies are shown in table 1. It can be seen that the results
of the present methods are in excellent agreement with those of references [4,11].

Table 1
First five eigenfrequencies of the simply-supported Kelvin-Voigt beam
FEM AAM Ref. [4] Ref. [11]
1st 3.4440+0.0253i 3.4424+0.0253i 3.4439+0.0253i 3.444+0.025i
2nd 13.7702+0.4054i 13.7640+0.4047i 13.7702+0.4054i 13.771+0.405i
3rd 30.9292+2.0524i 30.9147+2.0486i 30.9283+2.0523i 30.930+2.052i
4th 54.7273+6.4876i 54.6993+6.4749i 54,7215+6.4862i 54.724+6.486i
5th 84.6534+15.8437i 84.6031+15.8089i 84.6325+15.8356i 84.636+15.836i

4.2 Analysis of natural frequency of a viscoelastic cracked beam

For a standard linear solid beam under the simple-supported boundary
conditions, we suppose that the geometric parameters of the rectangular beam are
L=1m, p=500 kg/m* and L/h=20. The material parameters are E, =14 GPa ,
E, =39.68 GPa and 7, =6.9x10° GPa-h.

Considering the crack effects, a simple-supported viscoelastic beam with
N symmetrically distributed cracks is considered. For the sake of simplicity, the
crack location is & = j/(N+1) (j=1---,N), crack depth is d, /h, and the real part
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(natural frequency) and imaginary part (decrement coefficient) of the k-th
eigenfrequency o, are defined by Re(w,) and Im(w,) , respectively.

To analyze the natural frequency of a viscoelastic beam constituted by
SLS model with a single crack( N=1), we denote Re(wy,)» Re(@ey,) and

Re(waa,) @S the real part of the n-th eigenfrequency based on the results of

EAM, FEM and AAM, respectively. Then, the error comparisons between the
first three natural frequencies obtained by EAM, FEM and AAM with the crack
depth d,/h and crack location ¢ are shown in tables 2~4. Here, the beam is

uniformly meshed by 20 finite elements (K =20). As can be seen, the errors of the
first three natural frequencies obtained by EAM and FEM are extremely small,
which indicates that the results of EAM and FEM are in excellent agreement with
each other.

However, in tables 3 and 4, as the crack depth increases from d,/h=0.2 to

0.4 and 0.6, the errors between the 2nd natural frequency by EAM and AAM are
11.95% and 38.5%, respectively, while the corresponding error values of 3rd
natural frequency increase to be 44.83% and 73.01%. Obviously, the 2nd and 3rd
natural frequencies obtained by the approximate analytical method show a
significant error. There was a similar conclusion of the elastic cracked beam
reported by Bakhtiari-Nejad et al. [13]. The possible reason of the error can be
interpreted that the mode function Eqg. (43) is the linear correction function.
Therefore, by comparing with the results of EAM, the present FEM can provide
higher accuracy and applicability for the viscoelastic cracked beam, while the
present AAM is only advised to predict 1st natural frequency.

Table 2
Error comparisons between the 1st natural frequencies obtained by EAM, FEM and AAM
‘ Re(a)FE,\,L1 - a)EAM‘l)/Re(a)EAMyl)‘ x100% ‘ Re(a)AA,\,,Y1 - a)EAle)/Re(a)EAMl)‘ x100%
& di/h=0.2 d./h=0.4 d1/h=0.6 di/h=0.2 di/h=0.4 d./h=0.6
0.1 0 0 0.002 0 0..001 0.005
0.2 0.001 0.004 0 0.001 0.007 0.02
0.3 0 0.001 0.004 0 0.005 0.025
0.4 0.001 0 0 0.001 0.002 0.007
0.5 0.003 0 0 0.003 0 0.001
Table 3
Error comparisons between the 2nd natural frequencies obtained by EAM, FEM and AAM
‘Re(a)FEM,Z ~ Weam2 )/ Re(a)EAM,Z )‘ x100% ‘Re(a)AAM,Z ~ Weam2 )/Re(a)EAM,Z)‘ »x100%
& di/h=0.2 di/h=0.4 d1/h=0.6 di/h=0.2 di/h=0.4 di/h=0.6
0.1 0.001 0.001 0 0.103 0.93 5.94
0.2 0 0.001 0 0.92 6.80 26.03
0.3 0.001 0.001 0.001 1.73 11.95 38.50
0.4 0 0.001 0 0.98 8.07 34.31

0.5 0.001 0.001 0.001 0 0 0
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Table 4

Error comparisons between the 3rd natural frequencies obtained by EAM, FEM and AAM

|Re(@rems — @eams )/ RE( @eans )| x100% |Re(@amis — @eavs )/ RE(@eas )| x100%

& di/h=0.2 di/h=0.4 d1/h=0.6 di/h=0.2 di/h=0.4 d1/h=0.6
0.1 0.003 0.003 0.003 1.15 8.69 32.65
0.2 0.003 0.003 0.003 5.00 27.28 60.13
0.3 0.003 0.004 0.003 1.07 9.19 39.74
0.4 0.003 0.003 0.003 4.60 27.62 63.69
0.5 0.003 0.003 0.003 11.78 44.83 73.01

To consider the effects of crack, we suppose that o,, and o, are the n-th

eigenfrequency of the viscoelastic intact beam and cracked beam, respectively,
then 4, =Re(w,)/Re(w,,) 1S the n-th natural frequency ratio. In the case of a

viscoelastic beam with two symmetric cracks, the crack depths are equal to each
other. Fig. 2 shows the first three natural frequencies of the cracked beam by
EAM, FEM and AAM. In the computation, the beam is uniformly meshed by 21
finite elements. It can be seen clearly that the first three natural frequency ratios of
the three methods are in excellent agreement with each other for different crack
depth. In Addition, when the cracks are located at the nodes of vibration, i.e.
& =13 and &, =2/3, the 3rd natural frequency ratio is 4, =1, which reveals that the

3rd natural frequency is independent of the crack depth, in fig. 2(c).

105

8

8

——EAM \\
O FEM

07 *  AAM

8

O FEM
E 07T« AAM

Dimensionless natural frequency ratio 7,
Dimensionless natural frequency ratio 7,

&

(a) 1st frequency ratio (b) 2nd frequency ratio (c) 3rd frequency ratio
Fig. 2. Comparisons between the first three frequencies ratio of the simply-supported beam with two
symmetric cracks obtained by EAM, FEM and AAM

5. Conclusions

In this paper, the finite element model and approximate analytical
expressions to analyze the viscoelastic cracked beam with open cracks are derived
to overcome the weakness of solving eigenvalue problem. In numerical
computations, the accuracy and applicability of the present methods (FEM, AAM)
are compared with those of the exact analytical method (EAM), and the effects of
the crack location, crack depth, and crack number on the vibration properties of
the viscoelastic cracked beam are demonstrated. Some conclusions arising from
the numerical results can be summarized as follows: (1) Results of the present
finite element method are in excellent agreement with those of the exact analytical
method, while the approximate analytical method is advised to predict 1st natural
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frequency with some acceptable deviations. (2) At the nodes of vibration, the
natural frequency is independent of the crack depth.
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