
U.P.B. Sci. Bull., Series A, Vol. 80, Iss. 1, 2018 ISSN 1223-7027

VARIOUS SHADOWING PROPERTIES FOR PARAMETERIZED

ITERATED FUNCTION SYSTEMS

Mehdi Fatehi Nia1, Seyyed Alireza Ahmadi2

In this paper we generalize the notions of limit shadowing property and ex-

ponential limit shadowing property to parameterized iterated function systems IFS and

prove some related theorems on these notions. It is proved that every uniformly contract-

ing and every uniformly expanding IFS has the exponential limit shadowing property.

Then, as an example, we give an IFS which has the limit shadowing property, but fails

to have the exponential limit shadowing property and compare this result with similar

ones in original discrete dynamical systems.
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1. Introduction

Iterated function systems (IFS) are introduced as a unified way of generating a broad class

of fractals and have found numerous applications, in particular to image compression and

image processing [5]. Important notions in dynamics like attractors, minimality, transitivity,

and shadowing have been extended to IFS (see [3, 4, 7, 8, 9, 11]). The shadowing property

plays a key role in the study of the stability of the dynamics. This property says that, near

approximate trajectories, we can find exact trajectories of the system under consideration

[2, 14, 16]. This property is found in hyperbolic dynamics, and it was used successfully to

prove their stability, see for example [13, 17]. In [10], the authors propose a generalization

of the Shadowing Property for set-valued dynamical systems, generated by parameterized

IFS, and prove that if a parameterized IFS is uniformly contracting or uniformly expanding,

then it has the shadowing property.

In this paper, we consider various shadowing properties for parameterized iterated function

systems. First, we recall some definitions and theorems in Section 2. In this section limit

shadowing and exponential limit shadowing properties for IFS are considered. Then, in

Section 3, some preliminary results are proven, showing that the uniformly expanding and

uniformly contacting IFS have the limit shadowing and exponential limit shadowing prop-

erties. Theorem 3.7 shows that when functions in the IFS F are hyperbolic with the same

stable and unstable subspaces, F has the shadowing, limit shadowing and exponential limit

shadowing properties. In Section 4, we give several examples to illustrate these shadowing

properties. In Example ??, this is proved that when the functions in the IFS F have a

common attractor fixed point, F has these shadowing properties locally. In Example 3 and

1Department of Mathematics, Yazd University, 89195-741 Yazd, Iran. e-mail: fatehiniam@yazd.ac.ir
2 Corresponding author: Department of Mathematics, University of Sistan and Baluchestan, Zahedan,

Iran. e-mail: sa.ahmadi@math.usb.ac.ir

145



146 Mehdi Fatehi Nia, Seyyed Alireza Ahmadi

4 we introduce different uniformly contracting IFS. Example 4.2 obtains an IFS on the torus

T3 which has the shadowing, limit shadowing and exponential limit shadowing properties.

Example 4.3 is one of the main results of this paper. In this example we construct a nontriv-

ial IFS which has the limit shadowing property but has neither the shadowing property nor

the exponential limit shadowing property. Example ?? presents an IFS which is neither uni-

formly expanding nor uniformly contracting, but has the limit shadowing and exponential

limit shadowing properties.

2. Definitions

In this Section, we present some terminology and results which are used throughout the

paper.

Let (X, d) be a complete metric space. A parameterized iterated function system (IFS) F

is the space X together with a family of continuous functions fλ : X → X,λ ∈ Λ, where Λ

is an arbitrary nonempty set and is denoted by

F = {X; fλ|λ ∈ Λ}.

A typical element of ΛZ+ can be denoted as σ = {λ0, λ1, ...} and we use the notation

Fσn = fλ0
ofλ1

o...ofλn .

A sequence {xi}i≥0 in X is called a δ−pseudo orbit of the IFS F, if there exists a sequence

σ = {λ0, λ1, ...} ∈ ΛZ+ such that d(fλi(xi), xi+1) < δ, for all i ≥ 0. A sequence {xi}i≥0

in X is called an orbit of F if there exists a sequence σ = {λ0, λ1, ...} ∈ ΛZ+ such that

fλi(xi) = xi+1, for all i ≥ 0.

One says that the IFS F has the Shadowing Property (on Z+) if, given ε > 0, there exists

δ > 0 such that for any δ−pseudo orbit {xi}i≥0 can be found an orbit {yi}i≥0 for which the

inequality d(xi, yi) < ε holds for all i ≥ 0 [10].

Definition 2.1. A sequence {xn}n≥0 in X is called an asymptotic pseudo-orbit of F if there

exists σ = {λ0, λ1, ...} ∈ ΛZ+ such that

limn→∞d(fλn(xn), xn+1)→ 0.

One says that the IFS F has the limit shadowing property if for any asymptotic pseudo orbit

{xn}n≥0 there exists an orbit {yn}n≥0 so that

limn→∞d(xn, yn)→ 0.

We introduce another kind of shadowing for which one-step errors tend to zero with

exponential rate.

Definition 2.2. We say that a sequence {tn}n≥0 of real numbers converges to zero with

rate θ ∈ (0, 1), and we write tn
θ→ 0, if there exists a constant L > 0 such that |tn| ≤ Lθn

for n ≥ 0.

Definition 2.3. Given θ ∈ (0, 1), the sequence ξ = {xn}n≥0 in X is called a θ-exponentially

asymptotic pseudo-orbit of F if there exists

σ = {λ0, λ1, ...} ∈ ΛZ+ such that

limn→∞d(fλn(xn), xn+1)
θ→ 0.

One says that the IFS F has the exponential limit shadowing property with exponent ξ if
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there exists θ0 ∈ (0, 1) so that for any θ-exponentially asymptotic pseudo orbit {xn}n∈T with

θ ∈ (θ0, 1), there is an orbit {yn}n≥0 such that

limn→∞d(xn, yn)
θξ→ 0.

In the case ξ = 1 we say that F has the exponential limit shadowing.

Recall that the parameterized IFS F = {X; fλ|λ ∈ Λ} is uniformly contracting if

α := sup
λ∈Λ

sup
x 6=y

d(fλ(x), fλ(y))

d(x, y)
,

called the contracting ratio, exists and is less than one. We say that F is uniformly expanding

if

β := inf
λ∈Λ

inf
x6=y

d(fλ(x), fλ(y))

d(x, y)
,

called the expanding ratio, exists and is greater than one [10].

In this paper, we extend Theorems 2.1 and 2.2 of [10] which are related to shadowing

property, to the context of limit shadowing and exponential limit shadowing properties.

Here we recall the theorems.

Theorem 2.4. [10] If a parameterized IFS F = {X; fλ|λ ∈ Λ} is uniformly contracting,

then it has the shadowing property on Z+.

Theorem 2.5. [10] If a parameterized IFS F = {X; fλ|λ ∈ Λ} is uniformly expanding, and

if each function fλ(λ ∈ Λ) is surjective, then the IFS has the Shadowing Property on Z+.

Finally, we present a definition which will be used in classification of parametrized

IFS.

Definition 2.6. Suppose (X, d) and (Y, d
′
) are compact metric spaces and Λ is a finite

set. Let F = {X; fλ|λ ∈ Λ} and G = {Y ; gλ|λ ∈ Λ} be two IFS for which the functions

fλ : X → X and gλ : Y → Y are continuous for all λ ∈ Λ. We say that F is topologically

conjugate to G if there is a homeomorphism h : X → Y such that gλ = hofλoh
−1, for all

λ ∈ Λ.

3. Results

We begin this section with a proposition in which we prove that the shadowing and

limit shadowing properties are invariant under conjugacy.

Proposition 3.1. Suppose (X, dX) and (Y, dY ) are compact metric spaces and Λ is a finite

set. Let F = {X; fλ|λ ∈ Λ} and G = {Y ; gλ|λ ∈ Λ} be two conjugated IFS, then:

(a)F has the shadowing property if and only if so does G.

(b)F has the limit shadowing property if and only if so does G.

Proof. We prove only part (b). The proof of Part (a) is similar and will be omitted.

Suppose that h : X → Y is a homeomorphism such that gλ = h ◦ fλ ◦ h−1 for all λ ∈ Λ. Let

F have the limit shadowing property and {xn}n≥0 be an asymptotic pseudo orbit of G, i.e.

there exists σ = {λ0, λ1, . . . } ∈ ΛZ+ such that limn→∞ d(xn+1, gλn(xn)) = 0. Since h−1 is

uniformly continuous we have limn→∞ d(h−1(xn+1), h−1 ◦ gλn(xn)) = 0. So

lim
n→∞

d(h−1(xn+1), fλn ◦ h−1(xn)) = 0.
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This means that yn = h−1(xn) is an asymptotic pseudo orbit of F. Therefore there exists

an orbit {zn}n≥0 of F so that d(yn, zn) → 0 as n → ∞. Hence the orbit {wn = h(zn)}n≥0

of G satisfies limn→∞ d(xn, wn) = 0. �

In the following theorems we investigate limit shadowing and exponential limit shad-

owing properties in uniformly contracting and uniformly expanding IFS.

Theorem 3.2. If a parameterized IFS F = {X : fλ|λ ∈ Λ} is uniformly contracting, then:

(a) F has the limit shadowing Property on Z+.

(b) F has the exponential limit shadowing property on Z+

Proof. Assume that the IFS F is uniformly contracting with the contracting ratio α.

(a) Suppose {xn}n≥0 is an asymptotic pseudo orbit for F. So there there exist σ =

{λ0, λ1, λ2, ...} ∈ ΛZ+ such that limn→∞ d(fλn(xn), xn+1) = 0. Put τn = d(fλn(xn), xn+1),

for all n ≥ 0. Consider an orbit {yn}n≥0 such that x0 = y0 and yn+1 = fλn(yn), for all

n ≥ 0.

Now we show that limn→∞ d(xn, yn) = 0.

Suppose ε is an arbitrary positive number and M = sup{τn}n≥0. We can find k ∈ N such

that M αk

1−α <
ε
2 and τi < ε (1−α)

2 for all i ≥ k. Obviously,

d(x1, y1) ≤ d(x1, fλ0
(x0)) + d(fλ0

(x0), fλ0
(y0)) ≤ τ0.

Similarly

d(x2, y2) ≤ d(x2, fλ1
(x1)) + d(fλ1

(x1), fλ1
(y1))

≤ τ1 + αd(x1, y1)

≤ τ1 + ατ0.

And

d(x3, y3) ≤ d(x3, fλ2(x2)) + d(fλ2(x2), fλ2(y2))

≤ τ2 + αd(x2, y2)

≤ τ2 + α(τ1 + αd(x1, y1))

≤ τ2 + α(τ1 + ατ0)

= τ2 + ατ1 + α2τ0.

By induction, one can prove that for each n > 2

d(xn, yn) ≤ τn−1 + ατn−2 + ...+ αn−1τ0.

This implies that

d(yn, xn) ≤ τn−1 + ατn−2 + ...+ αk−1τn−k

+ αkτn−(k+1) + αk+1)τn−(k+2) + ..+ αn−1τ0

≤ ε
(1− α)

2
(1 + α+ ..+ αk−1) +Mαk(1 + α+ ..+ αn−k−1)

≤ ε

2
+
ε

2
= ε

for all n ≥ k. Therefore limn→∞ d(yn, xn) ≤ ε. Since ε > 0 is arbitrary then limn→∞ d(yn, xn) =

0. This shows that F has the limit shadowing property.

(b) We choose θ0 ∈ (α, 1) and show that F has the exponential limit shadowing property
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with respect to this θ0. Let {xn}n≥0 be an θ−exponentially asymptotic pseudo orbit of F

with θ ∈ (θ0, 1), i.e. there exists σ = {λ0, λ1, ...} ∈ ΛZ
+ such that

d(fλn(xn), xn+1)
θ→ 0, n→∞.

So there exists L > 0 such that d(fλn(xn), xn+1) ≤ Lθn for n ≥ 0. Consider the following

orbit:

y0 = x0, yn+1 = fλn(yn), n ≥ 0

Hence we have

d(xn, yn) ≤ d(xn, fλn−1
(xn−1)) + d(fλn−1

(xn−1), fλn−1
(yn−1))

≤ Lθn−1 + αd(xn−1, yn−1)

≤
...

≤ L(1 + αθ−1 + α2θ−2 + . . . αn−1θ−n+1)θn−1

≤ ( L
θ−α )θn.

Thus F has the exponential limit shadowing property. �

Corollary 3.3. Suppose Λ is a finite set and for every λ ∈ Λ, fλ : R→ R is a differentiable

function. Assume that p ∈ R is an attractor fixed point (fλ(p) = p and | f ′λ(p) |< 1, for

all λ ∈ Λ). There exist W ⊂ R containing p such that fλ(W ) ⊂ W , for all λ ∈ Λ and

F = {W ; fλ|λ ∈ Λ} has the (exponential) limit shadowing property.

Proof. By Proposition 4.4 of [6], for each λ ∈ Λ there is an open interval Wλ around p such

that if x ∈ Wλ, then fnλ (x) ∈ Wλ, for all n > 0 and limn→∞ fnλ (x) = p. Hence we can find

an interval W ⊂ ∩λ∈ΛWλ and ε > 0 such that if x ∈W , then | f ′λ(x) |< 1− ε, for all λ ∈ Λ.

This implies that for all x, y ∈W , we have |fλ(x)−fλ(y)|
|x−y| < 1− ε. So F = {W ; fλ|λ ∈ Λ} is a

uniformly contracting IFS and has the (exponential) limit shadowing property. �

Theorem 3.4. If a parameterized IFS F = {X : fλ|λ ∈ Λ} is uniformly expanding and each

fλ is surjective, then

(a) F has the exponential limit shadowing property on Z+.

(b) F has the limit shadowing property on Z+.

Proof. Assume that the IFS F is uniformly expanding with the expanding ratio β.

(a) Let θ ∈ (0, 1) and let {xn}n≥0 be an exponentially asymptotic pseudo orbit of F with

exponent θ, i.e. there exists σ = {λ0, λ1, ...} ∈ ΛZ+ such that

d(fλn(xn), xn+1)
θ→ 0, n→∞. (1)

We define the sequence {yn}n≥0 in X as follows:

y0 = x0, yn = f−1
λ0
◦ f−1

λ1
◦ · · · ◦ f−1

λn−1
(xn), n ≥ 1.

Claim: The sequence {yn}n≥0 is a Cauchy sequence.

Therefore the sequence {yn}n≥0 is convergent to some point z ∈ X. Now we consider

the following orbit:

z0 = z, zn+1 = fλn(zn); n ≥ 1.

For each n ≥ 1 and 0 ≤ k ≤ n− 1, we define

y(k)
n = fλk ◦ fλk−1

◦ · · · ◦ fλ0
(yn).
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So, for each k ≥ 0 we have limn→∞ y
(k)
n = zk+1, hence we obtain

d(xn, zn) = d(fλn−1
◦ fλn−2

◦ · · · ◦ fλ0
(yn), fλn−1

◦ fλn−2
◦ · · · ◦ fλ0

(z0))

≤ βnd(yn, z0)

≤ 1
β−1θ

n.

Thus the IFS F has the exponential limit shadowing property.

Proof of Claim: Given λ ∈ Λ, we consider the function

ρλ(x, y) =

{
d(fλ(x),fλ(y))

d(x,y) x 6= y

β x = y,

we have

d(x, y) =
d(fλ(x), fλ(y))

ρλ(x, y)
x, y ∈ X, λ ∈ Λ.

Given n ≥ 1 and 0 ≤ k ≤ n− 1, we denote

y(k)
n = fλk ◦ fλk−1

◦ · · · ◦ fλ0
(yn)

For every n ≥ 1 and p ≥ 1, we have

d(yn, yn+p) =
d(fλ0 (yn),fλ0 (yn+p))

ρλ0 (yn,yn+p)

=
d(y(0)n ,y

(0)
n+p)

ρλ0 (yn,yn+p)

=
d(y(1)n ,y

(1)
n+p)

ρλ0 (yn,yn+p)ρλ1 (y
(0)
n ,y

(0)
n+p)

= . . .

=
d(xn,y

(n−1)
n+p )

ρλ0 (yn,yn+p)
∏n−1
i=1 ρλi (y

(i−1)
n ,y

(i−1)
n+p )

We show that the following inequality holds uniformly with respect to n ≥ 1:

d(xn, y
(n−1)
n+p ) ≤ θn

p∑
k=1

β−k, p ≥ 1. (2)

We prove this inequality by induction on p ≥ 1.

For p = 1, the inequality follows from (1) and the definition of yn+1.

d(xn, y
(n−1)
n+1 ) =

d(fλn (xn),fλn (y
(n−1)
n+1 ))

ρλn (xn,y
(n−1)
n+1 )

=
d(fλn (xn),xn+1)

ρλn (xn,y
(n−1)
n+1 )

≤ θn

β .

Assume that the inequality (2) holds for some p = q ≥ 1. We prove (2) for p = q + 1.

d(xn, y
(n−1)
n+q+1) =

d(fλn (xn),fλn (y
(n−1)
n+q+1))

ρλn (xn,y
(n−1)
n+q+1)

=
d(fλn (xn),y

(n)
n+q+1)

ρλn (xn,y
(n−1)
n+q+1)

≤ d(fλn (xn),xn+1)+d(xn+1,y
(n)
n+q+1)

ρλn (xn,y
(n−1)
n+q+1)

≤ θn
∑q+1
k=1 β

−k.
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This proves (2).

Now for n ≥ 1 and p ≥ 1, (2) gives us the following:

d(yn, yn+p) ≤ θn
∑p
k=1 β

−k

ρλ0 (yn,yn+p)
∏n−1
i=1 ρλi (y

(i−1)
n ,y

(i−1)
n+p )

≤ θn

(β−1)ρλ0 (yn,yn+p)
∏n−1
i=1 ρλi (y

(i−1)
n ,y

(i−1)
n+p )

≤ 1
β−1 ( θβ )n.

The last inequality proves the claim.

(b) Let {xn}n≥0 be an asymptotic pseudo orbit of F. We define the sequence {yn}n≥0 in X

as follows:

y0 = x0, yn = f−1
λ0
◦ f−1

λ1
◦ · · · ◦ f−1

λn−1
(xn), n ≥ 1.

Since limn→∞ d(fλn(xn), xn+1) = 0, similar to Theorem 2.2 of [10] we can prove that

{yn}n>0 is a convergent sequence. Let z denote its limit and consider the following se-

quence:

z0 = z, zn+1 = fλn(zn); n ≥ 1.

Suppose ε is an arbitrary positive number. Again by use of the proof of Theorem 2.2 in

[10] and the fact that there is n1 > 0 with d(fλn(xn), xn+1) < (β − 1)ε, for all n > n1, we

can find N(ε) > 0 such that d(zn, xn) < ε, for all n > N(ε). Then limn→∞ d(zn, xn) = 0,

because ε is an arbitrary positive number. �

Given complete metric spaces (X, dX) and (Y, dY ), consider the product set X × Y
endowed with the metric

D((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)}.

Let F = {X; fλ|λ ∈ Λ} and G = {Y ; gγ |γ ∈ Γ} be two parameterized IFS. The IFS H =

{X × Y ; Φλ,γ |λ ∈ Λ, γ ∈ Γ}, defined by Φλ,γ(x, y) := (fλ(x), gγ(y)) is called the product of

the two IFS F and G. The proof of the following theorem is straightforward and omitted.

Lemma 3.5. Let (Xi, di), i = 1, 2, be metric spaces and gλ : X1 −→ X1 and hλ : X2 −→
X2, λ ∈ Λ, be homeomorphisms. Let d be a metric on the product space X = X1 × X2

compatible with the uniform product structure. Let fλ;X −→ X be defined by fλ(a, b) =

(gλ(a), hλ(b)), λ ∈ Λ. Then both G = {X1; gλ|λ ∈ Λ} and H = {X2 : hλ|λ ∈ Λ} have the

shadowing property iff F = {X : fλ|λ ∈ Λ} does.

The same result holds for the limit and exponential shadowing properties.

We recall a well-known result [12].

Lemma 3.6. Let f : X −→ X be a linear homeomorphism on a Banach space. Then f is

hyperbolic if and only if the following holds. There exists Banach subspaces Xs, Xu ⊂ X,

called stable and unstable subspaces, respectively, and a norm on X compatible with the

original Banach structure such that

X = Xs ⊕Xu, f(Xs) = Xs, f(Xu) = Xu, ‖f |Xs‖ < 1, ‖f−1|Xu‖ < 1.

Now we extend the classical shadowing lemma in linear case for parameterized IFS.

Theorem 3.7. Suppose that X is a Banach space, Λ is finite and

{fλ : X → X}λ∈Λ are hyperbolic linear maps with the same stable and unstable subspaces.

Then the IFS F = {X : fλ|λ ∈ Λ} has the shadowing, limit shadowing and exponential limit

shadowing properties.
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Proof. Take G = {Xs : fλ|λ ∈ Λ} and H = {Xu : fλ|λ ∈ Λ}. It is clear that G is uniformly

contracting and H is uniformly expanding. So, Theorems 3.2 and 3.4 imply that G and

H have the shadowing, limit shadowing and exponential limit shadowing properties. Then

by Lemma 3.5, F has the shadowing, limit shadowing and exponential limit shadowing

properties. �

4. Examples

In this section we show that the limit shadowing and exponential limit shadowing

properties are different from other kinds of shadowing property for parameterized IFS. Let

us recall some notions related to symbolic dynamics. Let

Σ2 = {(s0s1s2...)|si = 0 or 1}.

We will refer to the elements of Σ2 as points in Σ2. Let s = s0s1s2... and t = t0t1t2... be

points in Σ2. We denote the distance between s and t by d(s, t), and define it by

d(s, t) =

{
0, s = t
1

2k−1 , k = min{i; si 6= ti}

Example 4.1. Let f0, f1 : Σ2 → Σ2 be defined by f0(s0s1s2...) = 0s0s1s2... and f1(s0s1s2...) =

1s0s1s2... for each s = s0s1s2... ∈ Σ2.

It is clear that F = {Σ2; f0, f1} is uniformly contracting and, by Theorem 3.2 has the expo-

nential limit shadowing property.

Note that the IFS Fk also have the exponential limit shadowing property, for all k > 1.

For example, if k = 2 then F2 = {Σ2; g0, g1, g2, g3}, where

g0(s0s1s2...) = f0of0(s0s1s2...) = 00s0s1s2....,

g1(s0s1s2...) = f1of0(s0s1s2...) = 10s0s1s2....,

g2(s0s1s2...) = f0of1(s0s1s2...) = 01s0s1s2....,

g3(s0s1s2...) = f1of1(s0s1s2...) = 11s0s1s2...,

for each s = s0s1s2... ∈ Σ2. Clearly F2 is uniformly contracting and has the exponential

limit shadowing property.

Consider the 3-dimensional torus

T3 = R3/Z3

equipped with the Euclidean metric, d. In the following example we give an IFS on T3 which

has the shadowing, limit shadowing and exponential limit shadowing properties.

Example 4.2. Let f1 and f2 be the isomorphisms of R3 which are represented, with respect

to the standard basis, by the matrices:

A1 =

 −2 −1 0

1 −2 0

0 0 1
2

 , A2 =

 3 1 0

−1 3 0

0 0 −1
3

 .
It is clear that f1 and f2 both have the xy−plane and z−axis as the same stable and unstable

subspaces, respectively. So, by Theorem 3.7 the IFS

F = {R3; f1, f2} has the shadowing, limit shadowing and exponential limit shadowing proper-

ties. Let f̃1, f̃2 : T2 −→ T2 be Anosov diffeomorphisms of the torus T3 induced by f1 and f2.

Let ε be an arbitrary positive number. There exists δ > 0 such that for every points a, b ∈ T3
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with d(a, b) < δ, we can find corresponding points x, y ∈ R3 such that ‖x − y‖ < ε. Simi-

larly, for every ε
′
> 0 there exist δ

′
> 0 such that for every points x, y ∈ R3, if ‖x− y‖ < δ

′

then d(x̃, ỹ) < ε
′
, where x̃ = x/Z3 and ỹ = y/Z3. Then the IFS G = {T3; f̃1, f̃2} has the

shadowing, limit shadowing and exponential limit shadowing properties.

The following example shows that the limit shadowing property does not imply the

exponential limit shadowing property.

Example 4.3. Consider the unit circle S1 with the coordinate x ∈ [0, 1). Let φ be a

dynamical system on S1 generated by the mapping f : [0, 1) → [0, 1) defined by f(x) =

x−x2(x− 1
2 )(x−1)2. Ahmadi and Molaei prove that φ has the limit shadowing property, but

does not have the exponential limit shadowing property [1]. Also, suppose f1 : [ 1
2 , 1]→ [ 1

2 , 1]

is a map such that f1( 1
2 ) = 1

2 , f1(1) = 1 and x < f1(x) < f2
1 (x) < f(x) for all x ∈ ( 1

2 , 1).

Let ψ1, ψ2 be dynamical systems on S1 generated by the maps g1, g2 : [0, 1)→ [0, 1) defined

by

g1(x) =

{
f(x) if 0 ≤ x ≤ 1

2 ,

f1(x) if 1
2 ≤ x < 1

g2(x) =

{
f(x) if 0 ≤ x ≤ 1

2 ,

f2
1 (x) if 1

2 ≤ x < 1

Now, we prove that the IFS F = {S1;ψ1, ψ2} does not have the exponential limit shadowing

property but has the limit shadowing property.

Suppose that F has the exponential limit shadowing property with constants L > 0 and

µ ∈ (0, 1). Consider the sequence {xk}k≥n0
in the previous example. Then there exist a

point p ∈ S1, a sequence σ = {λ0, λ1, ...} ∈ {1, 2}Z+ and a natural number n1 such that

|Fσk(p)− xk| ≤ Lµ
k
2 for k ≥ n1.

Case 1. p ∈ [0, 1
2 ]. It follows that Fσk(p) = φn(p) for all n ≥ 0. So d(φ1(p), xk)

µ→ 0,

contradiction.

Case 2. p ∈ ( 1
2 , 1). Since x < f1(x) < f2

1 (x) < f(x) for all x ∈ ( 1
2 , 1) and {xk}k≥n0 ⊂ (0, 1

2 ),

we have d(φn(p), xn) ≤ d(Fσn(p), xn).

Then d(φ(p), xk)
µ→ 0, a contradiction. So F does not have the exponential limit shadowing

property.

Now, we show that F has the limit shadowing property.

Let {xk}k≥0 be an asymptotic pseudo orbit for F. So, there exists

σ = {λ0, λ1, λ2, ...} ∈ {1, 2}Z+ such that limk→∞ d(ψλk(xk), xk+1) = 0.

Take J = {i|λi = 2} and

zi =

{
xi, ψ1(xi) if 1

2 ≤ xi ≤ 0 and i ∈ J
xi otherwise

Consider the sequence z = z0, z1, z2, .... For example, if 0 /∈ J and 1 ∈ J , then z =

x0, x1, ψ1(x1), x2, .... Since d(ψ1(xi), ψ1(xi)) = 0 and

d(ψ2
1(xi), xi+1) = d(f2(xi), xi+1), for all i ∈ J , then z is an asymptotic pseudo orbit for origi-

nal discrete dynamical system (S1, ψ1). Theorem 3.1.2 of [15] implies that the (S1, ψ1) has the

limit shadowing property. Therefore we can find p ∈ S1 such that limn→∞ d(ψn1 (p), yn) = 0.

Take γ = {γ0, γ1, γ2, ...} ∈ {1, 2}Z+ such that

γi =

{
1 if i− 1 ∈ J
2 otherwise

Let p0 = p and pi+1 = ψγi(pi), for all i ≥ 1. So {pi}i≥0 is an orbit of F and {d(pn, xn)}n≥0

is a subsequence of {d(ψn1 (p), yn)}n≥0, So limn→∞ d(pn, xn) = 0.
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5. CONCLUSION

In this paper, we generalized the notions of limit shadowing and exponential limit

shadowing for parameterized iterated function systems which has been originally introduced

for discrete dynamical systems. Then, we proved some results which will be needed for

future studies in this connection. These results are generalizations of the previous work

done by several authors [1, 15, 10]. We bring this paper to end by posing the following

questions.

1− Does the IFS F in Example 4.1 have the limit shadowing property?

2− Does a hyperbolic IFS (see [5], Definition 7.1) on a compact metric space have the limit

shadowing property?

3− Does a hyperbolic IFS on a compact metric space have the exponential limit shadowing

property?
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