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LINEAR MODELS AND CALCULATION OF AEROELASTIC 
FLUTTER 

Virgil STANCIU1, Gabriela STROE2, Irina Carmen ANDREI3 

În această lucrare se propune un model aerodinamic îmbunătăţit destinat 
analizei fenomenului complex de flutter aeroelastic. Modelarea cât mai apropiată 
de fenomenul real este esenţială, întrucât determinarea condiţiilor de undă (viteza şi 
frecvenţă de propagare a undei) depind în mod semnificativ de modelul aerodinamic 
adoptat. În lucrare se prezintă un studiu comparativ, elaborat în termeni de 
aerodinamică, pentru care s-au considerat modelul forţelor aerodinamice cvasi-
staţionare şi respectiv modelul periodic nestaţionar. Pe baza rezultatelor obţinute, 
se arată că se pot folosi modele relativ mai simple, cu o bună precizie, precum şi 
faptul că sistemul oscilatorului armonic propus de Theodorsen aproximează mai 
bine realitatea decât modelul cvasi-staţionar.  

 
In this paper the authors present an improved aerodynamic model 

dedicated to analyzing the intricate phenomenon of aeroelastic flutter. The 
appropriate modelling of the real phenomenon is crucial, since the determination of 
the wave conditions (i.e. the wave velocity and frequency) is significantly dependent 
on the aerodynamic model. The paper presents a comparative study, expressed in 
terms of aerodynamics, based on the quasi-steady aerodynamic forces model and 
the unsteady periodic model. According to the results obtained by the authors, it is 
shown that simpler models are proven accurate and the fact that the harmonic 
oscillator system approximates the real phenomenon better than the quasi-steady 
model.  
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1. Introduction 

The aeroelastic flutter is an intricate phenomenon and for its analysis is 
used the V-g method, while for the determination of the unsteady aerodynamic 
forces the Theodorsen model and the quasi-steady model are used [1]. The 
mathematical models are based on the concept of linear aeroelastic typical section 
with two and three degrees of freedom.  

Since the aerodynamic forces are those which introduce energy into the 
system and their value depends on the speed for a given configuration 
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(characteristic mass, elastic and geometric structure) it is possible to calculate the 
critical flutter speed, speed which if exceeded, the system becomes unstable 
dynamically and virtually destroyed. Consequently, the critical wave speed is 
defined as the speed at which the motion is harmonic structure and oscillation 
damping (structural and aerodynamic) is zero. Determination of wave conditions 
(wave speed and frequency associated) is significantly dependent on the wind 
model adopted, a harmonic oscillator system (proposed by Theodorsen) 
approximating reality better than a quasi-stationary. In the following, in terms of 
aerodynamics will be waving this study both for simplified cases based on the 
study of the quasi-stationary aerodynamic forces as well as periodic non-
stationary[1]. Aeroelastic problems of light weight structures of modern aerospace 
vehicles are the result of interactions between aerodynamics, structural and 
inertial forces.  

The mathematical model of the aeroelastic problem is based on the 
Lagrange equations of motion for the structural dynamics and on a quasi-steady 
approach of the generalized unsteady incompressible aerodynamic forces [1], [2], 
[3]. Aeroelastic phenomena of aircraft structures appear as a result of interactions 
between deformations of the elastic structure and the aerodynamic forces induced 
by the structure deformations. They have a strong influence on the structural 
dynamics and dynamic flight stability and also on the overall performance and 
controllability of the aircraft. Undoubtedly, the most important aeroelastic 
phenomenon is flutter, i.e. a self-excited oscillation of the elastic structure under 
the action of the aerodynamic loads. Flutter instabilities often exhibit an explosive 
behavior that causes a sudden change in stability despite only a small change in 
flight condition. Further, the aeroelastic vibrations that occur at all flight regimes 
have a strong impact on the fatigue life of the structure. In this paper we will refer 
only to aeroelastic phenomena which can be avoided or kept under control by 
some active measures [3].The concept active flutter suppression appears as part of 
a rather new technology in aviation, and it means controlling by some active 
devices - typically through activated controls - the natural instabilities of the 
aeroelastic system, in order to make this flutter-free beyond its "nominal" flutter 
boundary. However, currently there is no vehicle in production that uses active 
flutter suppression and much remains to be done before one can consider the 
routine incorporation of such systems in production aircraft. Further, the concept 
of active flutter suppression is strongly related to the much more realistic problem 
of controlling the conventional aeroelastic structural vibrations. Consequently, the 
active structural control is basically investigated and designed both for flutter 
prevention and structural load alleviation [3]. 
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2. Flutter Equation of the Typical Section Model 

The phenomenon of flutter (flutter) is the phenomenon of dynamic 
instability, at a certain speed (called the wave speed) which partially elastic 
structure in turbulent plane passes. Flutter occurs in the interaction between elastic 
forces, aerodynamics and mass, so that ultimately results in increasing 
exponentially with time of the periodic motion amplitude [1],[2].To explain this 
phenomenon one considers an elastic bearing surface fixed in a stream of air 
flowing speed. Suppose that the bearing surface of the elastic links enables two 
types of movements, namely: a shift in the direction perpendicular to the airflow 
and a rotation that changes to the original scope. Movement in the air stream 
bearing surface takes place without external interference, but it is necessary for 
the structure to receive an initial external perturbation whose nature does not 
matter. Initially, the two movements are supposed synchronous on bearing 
surface, respectively, both moving and start turning the zero position, reach a 
maximum after returning to their original position zero [3].The energy introduced 
into the system by the aerodynamic forces on the first quarter period is removed 
from the system the second quarter period. The same happens in the second half 
of the period. Since the whole energy cycle introduced in the system is zero, the 
initial amplitude cannot increase. If, however, between the displacement and 
rotation there is a lag of one quarter of the period, the entire motion cycle work 
will be done by aerodynamic forces and bring positive energy into the system 
which leads obviously to increase the amplitude of the initial data. 

The phenomenon occurs for any gap between the rotation and 
displacement provided that the gap is less than half a rotation period and with that 
precedes the phase shift difference. If rotation is delayed behind the movement, a 
phase difference of no more than half of the period, the phenomenon that occurs is 
a continued consumption of energy by buoyancy, a continuous removal of energy 
from the system and therefore, rapidly damping motion [1], [2], [3]. 

 

 
Fig.1 The typical section of an airplane wing 
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For the typical section shown in Fig. 1, one can provide details about the 
model, such as: the model has a translational spring with the stiffness hK  and a 
torsion spring, characterized by the stiffness TK . These springs are attached to the 
airfoil at the shear center. The distance h  is measured at the shear center (which is 
crossed by the elastic axis). Therefore, there is two degrees of freedom ( ),h α . 
The downward displacement of any other point on the airfoil is: 

z h xα= +                                                            (1) 
Where x is a distance measured from the shear center [1]. 

The strain energy and the kinetic energy are respectively given by 
2 21 1

2 2T hU K K hα= +                                                       (2) 
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where ρ is the mass per unit length of the airfoil. 
The virtual work due to the unsteady aerodynamic forces is 

{ }a hW p zdx p h x dx Q h Qαδ δ δ δα δ δα= Δ = Δ + = +∫ ∫                             (4) 

Lagrange's equations provide the equations of motion of the airfoil [1]. 
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The unsteady aerodynamic force and moment will be 
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where the reduced frequency is 
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Likewise, 
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Then, the equation of motion can be rewritten as 

( )

2
2

2 2

2

2

1 / /0
0

1
2 /

1 1 1
2 2 2

h

h h

h h h h

x h b h b
x r r

L L a L
h b

M a L M a L M a L

θ

θ θ θ θ

α

α α

ϖ
ϖ

α αϖ

ϖ
αμ

⎡ ⎤⎡ ⎤ ⎧ ⎫ ⎧ ⎫
− + =⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥

⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦
⎡ ⎤⎛ ⎞− +⎜ ⎟⎢ ⎥⎝ ⎠ ⎧ ⎫⎢ ⎥= − ⎨ ⎬⎢ ⎥ ⎩ ⎭⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

            

(15) 
Let’s define 
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3. V-g method for flutter analysis 

Let’s express the above flutter equation in the following matrix form 
[1],[2]. 
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where [ ]K  is the stiffness matrix, M mass matrix, and A  is the aerodynamic 
matrix. Note that the aerodynamic matrix is a function of the reduced frequency, 
k. 
V-g method assumes first the artifial structural damping, g. 

[ ] ( )[ ]1K ig K= +                                                          (20) 

For a given reduced frequency, bk
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The complex eigenvalue problem is solved beginning with large values of 
k and then decreasing k until a flutter velocity is found. If there is no actual 
damping in the system, when the artificial damping, g, first becomes positive, 
flutter will occur. 

A comparison between the numerical results obtained by the authors by 
using the harmonic oscillator model versus the quasi-steady model is shown in 
Figs.2. - 5.  

In Fig. 6 and Fig.7 there the variations of the functions g=g(V) 
and ( )Vϖ ϖ=  are shown. The damping of the flutter velocity will be acquired 
when the function g will change its sign.  

The calculation of flutter was performed with V-g method, for the study 
case considered and experienced by the authors; the result, i.e. the variation of the 
flutter velocity is shown in Figure 8.  

Traditional methods of calculation (e.g. the Theodorsen and the panel 
methods) lead to relatively good estimations in terms of dynamic response of the 
system, with slight overestimation of the effects (i.e. the displacements of the 
aeroelastic system).  
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Fig. 2 The aerodynamic forces and moments  
- red curves = the Theodorsen method 

(unsteady case).  
- blue curves = the variation of g=g(V) for 

the quasi-steady case.  

Fig. 3 The frequencies  
- red curves = the Theodorsen method (i.e. 

the unsteady case).  
- blue curves = the variation for the quasi-

steady case.  
 

 
Fig. 4 The critical wave speed versus the flight 

altitude  
Fig. 5 The critical wave speed versus the flight 

velocity  

 
Fig. 6 The variation of g=g(V)  Fig. 7 The variation of ( )Vϖ ϖ=   
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Fig.8 Flutter speed determined with the V-g method  

Table 1  
The results of the numerical simulations 

  V flutter [m/sec]  V flutter [m/sec]  V flutter [m/sec] 
Elastic axis position Case1 Case 2 Case 3 

0% 36 42 47 
20% 24 28 25 
40% 17.7 21 15.5 
60% 22 29.5 16 
80% 41 68 23.5 

 
The results of numerical simulations with the V-g method centralized in 

Table1, prove the achieving of the flutter speed in the range of interest for most 
cases. Boxes shaded in green in the table correspond to configurations that 
achieve a speed of flutter within the experimental capabilities. Flutter calculations 
were performed for 15 different configurations (inertial characteristics, features 
flexible, elastic axis position) and the results prove the achievement of flutter 
speed in the range of interest for most cases. Although the structural analysis 
carried out, is static, we provided some results on the behavior of wing-fastening 
system. The obtained deformations have maximum values of 9.5 mm for 
clamping to 0% and 11 mm for fixing 80% of chord. The results indicate a low 
rigidity clamping system (considering that the requests were overstated by 
imposing how to load and enhance the safety coefficient of 1.5). 
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4. Conclusions  
In order to make numerical comparisons, it was considered as the study 

case, the typical section model, Fig. 1, with the following characteristics: 
0,2xθ = ; 0,5rθ = ; 20μ = ; 0,1a = − ; 1b = ; 0,3R = .                    (25) 

In Figure 2 are represented by red curves the corresponding cases where 
the aerodynamic forces and moments have been calculated with the method 
proposed by Theodorsen (i.e. the unsteady case). The blue curves represent the 

( )g g V=  quasi-steady case. The wave speed (in non-dimensional form) for the 
two cases is the intersection curve (red respectively blue) axis 0g = . There is an 
important difference between the two determined values of critical wave speed. 
If the difference between the two speeds is small, we conclude that the 
phenomenon modeling in quasi-steady state is a conservative one. Since, this is 
not the case, it is clear that a more realistic approximation of the phenomenon is 
necessary to calculate aerodynamic forces and moments in harmonic oscillatory 
regime. Further, in Fig. 4 is plotted the critical wave speed dependence on the 
altitude of flight. The calculation was done at altitudes 0, 1000, 2000, 3000, 4000, 
5000 meters.  

In Figs. 3 and 4 the frequencies associated with each case were 
represented. As in the previous case, the unsteady and quasi-steady cases have 
been represented in red and blue contours. One can notice the increasing of the 
critical flutter speed with the increasing altitude flight. Like the case presented 
earlier, as obviously expected, the critical wave speed calculation taking into 
account a quasi-steady model gives unsatisfactory results. The comparative study 
carried on in this paper is based on the genuine experiment data (acquired through 
experiments done by the authors).  

The analysis methods were based on the quasi-steady aerodynamic forces 
model and the unsteady periodic model. According to the results obtained by the 
authors, it is shown that simpler models are proven accurate and the fact that the 
harmonic oscillator system approximates the real phenomenon better than the 
quasi-steady model.  
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