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ACCURACY OF THE ANALYTICAL AND FINITE ELEMENT 
MODELS FOR CIRCULAR BENDING PLATES  

Alice MARINESCU11a, Ștefan SOROHAN22, Traian CICONE31b 

The present work had two main purposes. The first one consisted in assessing 
the limits of applicability of analytical models for thin circular bending plates of 
constant thickness under two boundary conditions (simply supported and clamped), 
subjected to constant pressure on a single face. The analytical results were compared 
with more accurate results, obtained using adequate finite element models for a large 
range of input parameters. Small and large displacement options were considered 
within the analyses. The second objective was computing the errors between the 
analytical and finite element models – useful when deciding which model to use for a 
particular analysis. 
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1. Introduction 

Since its earliest applications in the 1940s, the finite element method (FEM) 
has gained over the past couple of decades a great notoriety, especially for problems 
requiring intricate structural analyses, such as those related to the engineering 
design of structures. Normally, the problem-solving process by the means of FEs 
requires complicated mathematical models, but due to the evolution of dedicated 
software with user-friendly interfaces, the usage of FEM has been made accessible 
on a larger scale.  

In a recently published paper [1], focused on analysing the behaviour of a 
compliant hydrostatic thrust bearing, the authors proposed a simplified analytical 
model, based on the thin circular plate model, also known as the Kirchhoff – Love 
model. The model assumes that a mid-surface plane can be used to represent a three-
dimensional plate in a two-dimensional form. The following assumptions are 
considered within this theory [2]:  
• in-plane deformations are null at small displacements; 
• the straight lines normal to the mid-surface remain normal to the mid-surface 

after deformation; 
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• the normal stresses in the direction transverse to the plate are neglected. 
Under these assumptions, the stresses and deformations of thin, plane, 

circular plates can be computed analytically for various constraints and loading 
cases [3].  

These simplifying hypotheses are valid only for large values of the 
thickness-to-radius ratio, 𝑡̄𝑡= R/t. However, for very thin plates and/or at high loads, 
the deflections of the thin plate are significant, the limits of applicability of the 
linear analytical model become questionable and a nonlinear (large deformations) 
approach should be considered. These limits, as well as the resulting errors, in terms 
of deflections and stresses, are further presented in this paper. 

2. General aspects 

Even though the subject is not novel, an extended bibliographical research 
suggested the lack of unanimous opinions regarding the limits of applicability of 
the thin plate model. Moreover, there could not be found any values of the relative 
errors produced when using this model.  

According to literature, there is a lower limit of the relative thickness of the 
plate, expressed by the plate thickness-to-radius ratio, 𝑡̄𝑡, which varies between 
different bibliographic sources. Moreover, between the thin plate and thick plate 
models, transition zones were defined using terms such as “moderately thick” or 
“moderately thin”, as presented below. Within these intervals, the thin plate model 
can still be used, with acceptable errors. However, the magnitude of these errors 
cannot be found in literature. 

For instance, according to Steele et al. [4], plates could be classified as: 
• very thin, when 𝑡̄𝑡 >50 ;   
• moderately thin, when 10< 𝑡̄𝑡< 50; 
• thick, when 1.5< 𝑡̄𝑡< 10; 
• very thick, when 𝑡̄𝑡< 1.5.  

According to Szilard [5], the accuracy of the thin plate theory is proportional 
to the square of the plate thickness. The thin plate model is valid as long as the 
smaller lateral dimension of the plate is at least 10 times larger than the thickness 
of the plate t, which gives for circular plates 𝑡̄𝑡 > 5. For larger values of the plate 
thickness (moderately thick plates), the plate thickness-to-radius ratio is considered 
still acceptable, as long as it takes values in the interval: 2.5 <𝑡̄𝑡 < 5. If the deflections 
are small, they are underestimated with respect to the Kirchhoff-Love theory. 

As stated in Ventsel et al. [6], plates can be divided into three categories: 
• thick plates, when 𝑡̄𝑡< 8…10; 
• membranes, when 𝑡̄𝑡 > 80…100; 
• thin plates, when 8…10< 𝑡̄𝑡 < 80…100. 
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Reddy et al. [7] give a very minimalistic description in regard to the thin 
plates limitations, stating that the thin plate model is valid for plates having the 
thickness-to-side (radius) ratio 𝑡̄𝑡 > 15. 

A second limitation of the thin plate model is given by the maximum 
deflection-to-plate thickness ratio, 𝛿̄𝛿𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚/𝑡𝑡, which will be further referred 
to as dimensionless deflection. This limitation is related to whether the model is 
linear (small deflections) or nonlinear (large deflections).  Even in this case, there 
is no clear information on the percentual differences between the two models – 
linear and nonlinear. 
 As stated in Szilard [5], in order to apply the small deflection theory, the 
dimensionless deformation should be δ̄max< 0.1. On the other hand, Striz [8] has 
shown that this limit can be extended up to 0.3 for clamped plates or 0.5 for simply 
supported plates. 

According to [4], the Kirchhoff linear plate theory yields sufficiently 
accurate results for maximum stresses if δ̄max< 0.2. Obviously, this limitation 
depends on the applied load, thus it is of interest to express it in terms of a 
dimensionless load. Hence a load parameter K, function of the pressure p, Young 
Modulus E, and radius-to-plate thickness ratio 𝑡̄𝑡 , was introduced:  

                    𝐾𝐾 = 𝑝𝑝
𝐸𝐸 �

𝑅𝑅
𝑡𝑡�

4
= 𝑝𝑝

𝐸𝐸 𝑡̄𝑡
4  ( 1) 

Striz et al. [8] give limits for this load parameter, as well as comparisons 
with nonlinear models, but without any given indications for the accuracy in terms 
of relative errors. 

The inexistence of analytical solutions for the exact problem of both linear 
and nonlinear elasticity introduces a supplementary burden in the problem of 
defining a reference for evaluating the errors of the thin plate model. 

Due to the time period when the first such analyses have been performed, 
characterized by the lack of powerful computational machines and usage of 
rudimental finite elements, the references considered reliable within these analyses 
can no longer be considered “exact” with respect to today’s standards, due to the 
emergence of new and more performant types of finite elements.  

The current paper targets to find the validity limits and the accuracy of the 
analytical thin plate models in comparison with FE simulations, when the plates are 
subjected to a uniformly distributed pressure. 

 3. Analytical models 

For both the analytical and finite element models, the analyses were 
performed for thin, circular plates, made of a homogeneous and isotropic material, 
subjected to uniform transverse pressure. Since the plates were loaded with 
uniformly distributed pressures, this led to an axi-symmetric problem. The analyses 
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were focused on two different geometrical constraints of the plates: simply 
supported on the outer diameter (fig. 1a) and clamped (fig. 1b), respectively.  

 
 

 
(a)     (b) 

Fig. 1 Thin circular plate: (a) Simply supported; (b) Clamped  

Furthermore, for each of the two boundary conditions, the corresponding 
analytical models were compared with finite element models (considering both 
linear and nonlinear approaches), depending on the ratio between the maximum 
dimensionless deflection, 𝛿̄𝛿𝑚𝑚𝑚𝑚𝑚𝑚. 

 

3.1. Linear analytical solutions 

 
The current analysis is restrained to the linear thin plate model, which has 

closed-form analytical solutions. The plates were assumed to be perfectly flat and 
maintaining a uniform and constant thickness prior to and after bending occurred. 
The analytical solutions for deformations and stresses, produced by a uniformly 
distributed pressure, could be found, for instance, in [3]. 

Dimensionless parameters, function of the input data (i.e. Young modulus, 
Poisson ratio, pressure, yield stress, plate thickness, plate radius), have been used 
in order to reduce the number of variables and cover a larger interval of values. 
Subsequently, for the sake of a better understanding, the equations of the classical 
analytical models, which are briefly presented herein, were chiselled and rewritten 
using particular notations. 

The maximum deflection, written in dimensionless form for the simply 
supported circular plate, is: 

𝛿̄𝛿𝑠𝑠_𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐾𝐾
3

16
(1 − 𝜐𝜐)(5 + 𝜐𝜐) ( 2) 

and for the clamped case: 
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𝛿̄𝛿𝑐𝑐_𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐾𝐾
3

16
(1 − 𝜐𝜐2) ( 3) 

 
Where 𝛿̄𝛿𝑠𝑠_𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛿𝛿𝑠𝑠_𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡
 and 𝐾𝐾 =

𝑝𝑝

𝐸𝐸
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2
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The relative bending stresses in the centre of the plate, in radial and 
circumferential directions, which ought to be theoretically equal, were computed 
using equation (4) for the simply supported case: 

 

𝜎̄𝜎𝑏𝑏_𝑠𝑠 = 𝐾𝐾3
8 (3 + 𝜐𝜐) ( 4) 

and equation (5) for the clamped case: 

𝜎̄𝜎𝑏𝑏_𝑐𝑐 = 𝐾𝐾3
8 (1 + 𝜐𝜐) ( 5) 

where 𝜎̄𝜎𝑏𝑏 is the dimensionless bending stress, whose "s" and "c" subscripts stand 
for simply supported and clamped, respectively. 
  

3.2. Non-linear analytical solutions 

The nonlinear analysis of thin plates is more complex and includes a 
supplementary assumption for the boundary conditions, which could be either 
movable or immovable [2]; the corresponding results for stresses and deformations 
are quite different. In the present paper, the analysis was limited to considering 
immovable edges. 

However, the analytical solutions for nonlinear models for thin plates are 
approximate, since they are based on restrictive hypotheses. Timoshenko et al. [2] 
give in their book approximate solutions for thin, clamped plates, loaded with 
uniform pressures that produce large deflections (nonlinear model). According to 
their solutions, the maximum deflection is reduced with respect to the linear model, 
with a factor depending on the square relative deflection: 

𝛿̄𝛿𝑚𝑚𝑚𝑚𝑚𝑚 = 3
16
𝐾𝐾(1 − 𝜐𝜐2) 1

1+0.488𝛿̄𝛿𝑚𝑚𝑚𝑚𝑚𝑚
2

 
  ( 6) 

where the correction factor on the right-hand side represents the effect of the 
middle-surface stretching on the deflection. This effect corroborates the increase of 
rigidity with the increase in deflection, due to the fact that the latter is no longer 
proportional with the bending load intensity. From eq. (6), it results that for 
𝛿̄𝛿𝑚𝑚𝑚𝑚𝑚𝑚=0.5, the value of the load parameter K will increase by 11% for the non-linear 
case. However, this equation is valid only for a transitional zone between linear and 
nonlinear loading conditions.  
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 A more general implicit formulation of stresses and deformations was 
obtaine by a series method proposed by K. Federhofer and H. Egger and can be 
found in Timoshenko et al. [2]. According to their solution, the bending stresses 
and deformations can be calculated with the following equations: 

KBA =+ 3
maxmax δδ   ( 7) 

2
maxmax δβσ =   ( 8) 

where A, B and β are constants given in table 1 
 

Table 1 
 A B β 

Simply supported immovable edges 1.852 0.696 1.778 
Clamped immovable edges 0.471 0.171 2.86 

 
Normally, the radial and circumferential stresses are expressed as a sum of 

bending and membrane stresses, but since the current analytical approach gives an 
approximate solution, only the bending stress component shall be further taken into 
account for the sake of simplicity.  

 
4. Finite element models 
 
The finite element model was implemented by running the Mechanical 

APDL module of the ANSYS® [9] software package, in order to compute the 
deflections and bending stresses in the centre of the plates, through both linear and 
nonlinear analyses. 

                       
 

Fig. 2 PLANE183 finite element 
 
PLANE183 2D axi-symmetric quad elements (fig. 2), defined by 8 nodes, 

each node having two degrees of freedom – translations in the radial and axial 
directions – were used for setting the limits of applicability of the classical, 
analytical model. 
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In the first instance, the analysis was performed using the previously 

mentioned finite element in a static linear hypothesis, followed by a nonlinear 
analysis for the same finite element. A maximum allowable stress σ= 400MPa in 
the centre of the plates was chosen as reference for further computations. The 
PLANE183 element in nonlinear analysis was used as a reference when computing 
errors both for the linear finite elements and for the analytical models. 

The boundary conditions applied for the simply supported plate implied 
constraining the plate in radial direction along the axis of symmetry, and in axial 
direction, on the plate edge. A rigid region was implemented along the line where 
the plate has been constrained in axial direction, in order to emulate the analytical 
boundary conditions (fig 3a). However, there exists a simpler alternative to the 
latter boundary condition, that implies constraining the plate in axial direction only 
in a point situated in the mid-plane (fig. 3b). 

 

                   (a) 

                   (b) 
Fig. 3 Boundary conditions for the simply supported plate 

 
 

 

(a) 
 
 

(b) 
 
 
 

(c) 
 
 
 
 

(d) 
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(b) 
 
 
 

(c) 
 
 
 
 

(d) 

Fig. 4 Radial stress distributions:                                         
(a) thin plate; (b) thin plate with rigid region                       

(c) thick plate; (d) thick plate with rigid region 

Fig. 5 Circumferential stress distributions:                  
(a) thin plate; (b) thin plate with rigid region                       

(c) thick plate; (d) thick plate with rigid region 
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Tests were performed for two plates having the same radius and different 
thicknesses (i.e. a thin and a thick plate), in order to verify whether the manner of 
applying the second BC for the simply supported case affects the results when 
subjecting the plate to bending. When comparing the results, one noticed that there 
were no significant changes in the radial (fig.4) and circumferential (fig.5) stress 
distributions, regardless of the manner of applying the boundary conditions, as long 
as the size of the finite elements is approximately t/8. However, if a very fine mesh 
is used, the simplified second BC placed according to fig. 3b can be used, especially 
for non-linear analyses. 

                                            

(a) 
 
 
(b) 
 
 
 
(c) 
 
 
 
 
(d) 

 

Fig. 6 Shear stress distributions: (a) thin plate; (b) thin plate with rigid region                                                  
(c) thick plate; (d) thick plate with rigid region 

 
The shear stress distributions (fig. 6) presented sensible differences when 

applying the boundary conditions differently. The shear stress distribution is used  
when computing the deflection of thick plates. However, the current analysis did 
not count for a thorough analysis of shear stresses, these having been neglected. 

For the clamped plate, the boundary conditions were applied as follows: in 
radial direction, along the axis of symmetry, and at the edge of the plate, on both 
translations (fig. 7).  

 

 
Fig. 7 Boundary conditions for the clamped plate.  
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Just as in the previous examples, tests were performed for two clamped 
plates, having the same radius and different thicknesses. When analysing fig. 8 and 
fig. 9, once could conclude that the radial and circumferential stress distributions 
are overlapping almost perfectly, even though slight singularities are present, since 
the maximum stress for clamped plates appears within the constraint areas. Grey 
areas can be noticed at the corners of both fig. 8a and fig. 8b; these are due to the 
fact that the imposed allowable stress of 400MPa in the centre of the plate was 
exceeded. Moreover, in the case of fig. 8b, these areas appear in the middle of the 
plate as well, which means that the analytically estimated load was more suitable 
for the thin plate model. 

 

 
 
 

(a) 
 
 
 
 
 
 

(b) 

 

 

 
 
 

(a) 
 
 
 
 
 
 

(b) 

Fig. 8 Radial stress distributions: (a) thin 
plate (b) thick plate 

 

 Fig. 9 Circumferential stress distributions: 
(a) thin plate (b) thick plate 

 

 

  
Fig.10 Shear stress distributions: (a) thin clamped plate; (b) thick clamped plate  

  
 
 The shearing effect (fig. 10) was observed to be milder than in the case of 
simply supported plates. 

(a) 

(b) 
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3. Results and discussions  

3.1 Mesh accuracy 

In previous approaches from literature employing a finite element analysis 
of circular plates [10], there has been established a clear correlation between the 
size of the mesh and the accuracy of the model, that is, the convergence of FEM 
with the analytical solution. As expected, a higher accuracy requires a compelling 
compromise - the smaller the mesh size, the longer the computational time required.  

The accuracy analysis implied using PLANE183 finite elements, 
implemented linearly and non-linearly for both clamped and simply supported 
plates. The analysis comprised two stages.  

Thus, the first stage consisted in a successive refinement of the mesh 
elements after each new program run. This refinement consisted in doubling the 
number of elements both across the thickness and along the radius of the 2D model. 
Meshes having aspect ratios (AR) of 1 and 5 were implemented for a value of the 
relative plate thickness 𝑡̄𝑡 = 50, situated at the extreme boundary of the thin plate 
model range (𝑡̄𝑡 ∈ (2 … 50)).  

The relative errors were computed with the following formula: 

𝜀𝜀 = �
𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑎𝑎𝑖𝑖
𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟

� (9) 

where aref   represents the value obtained for the finest mesh with respect to a certain 
aspect ratio, and ai takes successively the values corresponding to the subsequent, 
coarser meshes. 

 

      
(a) (b) 

Fig. 11 Relative error of maximum deflection function of the number of elements along the 
thickness direction 

(a) Simply supported plate; (b) Clamped plate 
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Figure 11 displays the errors for deflections (εδ) with respect to the number 
of elements n, across the thickness of the plate. An overlapping of the curves for 
the two aspect ratios (fig. 11a) can be observed for the case of the simply supported 
plates.  

For the clamped plate (fig. 11b), the curves do not overlap, and the errors 
are slightly higher than for the simply supported case; even so, since the errors are 
in a reasonable range, the previous statement remains valid.  

The deviations from linearity from fig. 11b are produced by local 
singularities. 

By comparing these results, one arrived to the conclusion that the factor 
which influenced the accuracy of the results was the number of elements across the 
thickness of the plate, regardless of the aspect ratio of the finite elements employed, 
or the number of elements along the radius.  

Thus, one could conclude that reasonable errors (under 10-4) could be 
obtained for a number of at least 8 elements per plate thickness for both the simply 
supported and clamped plates.  

For the sake of using less computational time, one could opt for a higher 
aspect ratio, corresponding to less elements along the radius, while considering 
using a reasonable number of elements along the plate thickness, as stated 
previously. 

3.2 Comparison between the analytical and FE models 

The limitations of the analytical models were emphasised by an analysis 
relying on the dimensionless parameters 𝑡̄𝑡, 𝛿̄𝛿 and K. The simulations were made for 
two levels of pressure loading selected to produce maximum bending stresses 
around 100MPa and 400MPa, respectively, for values of the Young modulus          
E= 210GPa and Poisson ratio ν= 0.3. As expected, the values computed with 
respect to the two loading cases overlapped while being represented in 
dimensionless form. Therefore, the following graphical representations were traced 
only with respect to the stress of 400 MPa. 

The graphs shown in fig. 12 represents synthetically the most important 
result of this work: the maximum deformation and the maximum normal stress 
function of the load (in dimensionless form) predicted by linear and non-linear FE 
analyses, compared with the analytical solution. 

When putting in contrast the analytical and the FE models, one could note 
that, under the small deflections assumption, there are different limitations for 
deflections and stresses for the same constraint.  

Thus, at a close inspection of the graphs from fig. 12, one could conclude 
that, for deflections (fig. 12a), the limits where the targeted models overlap are 
around the values 𝛿̄𝛿 = 0.5 (K= 0.75) for the simply supported case, and 𝛿̄𝛿 = 0.3 
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(K= 2) for the clamped case. For the stresses (fig. 12b), the limits are situated 
approximately at 𝜎̄𝜎 = 1   (K= 0.85), for the simply supported plate and 𝜎̄𝜎 = 1.6 
(K= 3.5), for the clamped plate.  

 
 

  
(a) (b) 

 
Fig. 12 Comparisons between the linear and nonlinear FE and the analytical model for clamped 

and simply supported plates for: (a) deflections; (b) stresses 
 
 

The graphs from figure 13 depict the errors computed for deflections and 
stresses, for the analytical model – fig. 13 (a), (c) – and for the linear finite element 
model – fig. 13 (b), (d). The non-linear finite element model was used as a reference 
model when computing the errors. The increase in the errors situated on the 
extremity of left-hand sides, both for the case of deflections – fig. 13 (a), (b) – and 
for stresses – fig. 13 (c), (d) – are due to the fact that the values obtained exceed the 
assumptions of the small plate model. On the right-hand sides of the two graphs, 
the errors are increasing due to the fact that the plate falls in the large deflection 
model. Therefore, one could conclude that the transition zone between the linear 
and nonlinear models is in the zones where the curves come closer together or 
intersect. 
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        (a)                                                               (b) 

    
                                              (c)                                                                (d) 

Fig. 13 Errors for: (a), (b) deflections; (c), (d) stresses 
 

4. Conclusions 
 
For optimization problems, an analytical approach involving simplified 

analytical relations could be more beneficial than using a more complex, numerical 
approach. Using an analytical approach could help reducing considerably the 
working time and the level of dificulty of the problem-solving algorithm. Therefore, 
in order to have reasonable errors of the analytical model with respect to its FEM 
equivalent, it is of paramount importance knowing the limits of the input values. 

The current paper managed settling the limits of applicability for thin plates, 
both from a relative thickness and a deflection point of view (i.e. whether the plate 
is in the small deflections or large deflections range), as well as assessing the 
accuracy limits of the approximate analytical model with respect to the more 
precise, finite element model. Moreover, the paper provides errors for the maximum 
deflections and the stresses in the centre of the plates, which are extremely useful 
when establishing the transition zones of plates with respect to the radius-to-plate 
thickness ratio. 
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The limits of accuracy of the thin plate model are broader when computing 
stresses, in comparison to the case when deflections are targeted.  

It was observed that the analytical model for the simply supported plate 
gives errors for the deflections less than 1% with respect to the nonlinear FE model 
for values of K within the interval 0.15÷0.33. The analytical model for the camped 
plate has higher values of these errors, which exceed 1% regardless of the values of 
the load parameter K. If one was to extend the limit of these errors up to a typical 
engineering error of 3%, the clamped plate model could be used for values of K 
within the interval 0.4 ÷1.75, while the reliable interval for the simply supported 
model would be extended to a K between 0.054÷0.53. 
 If keeping in mind the same 3% error limitation as in the previous case when 
analysing the accuracy of the analytical model for the simply supported plate for 
stresses, the parameter K ought to take values in the interval 0.01...0.75. For the 
clamped plate, the parameter K should be situated between 0.036...0.98. 

 

R E F E R E N C E S 

[1]. T. Cicone, A. A. Marinescu and Şt. Sorohan, A Simple Analytical Model for an Elastohydrostatic 
Thrust Bearing, IOP Conference Series: Materials Science and Engineering vol. 724, 2020, 
012041 

[2]. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and shells, McGraw-Hill Book 
Company, New York, 1959 

[3]. W Young and R. Budynas, Roark’s formulas for stress and strain, McGraw-Hill Companies, 
New York, 2011 

[4]. C.E. Steele, and C.D. Balch, Introduction to the Theory of Plates – Lecture notes, Division of 
Mechanics and Computation, Department of Mecanical Engineering, Stanford University, 
2009 

[5]. R. Szilard, Theories and Applications of Plate Analysis: Classical, Numerical and Engineering 
Methods, John Wiley & Sons, Inc., New Jersey, 2004 

[6]. E. Ventsel and T. Krauthammer, Thin Plates and Shells - Theory, Analysis, and Applications, 
Marcel Dekker Inc., New York, 2001 

[7].  J.N. Reddy, Theory and Analysis of Elastic Plates and Shells, CRC Press, Boca Raton, 2007 
[8]. A. G. Striz, S. K. Jang and C.W. Bert, Nonlinear Bending Analysis of Thin Circular Plates by 

Differential Quadrature, Thin-Walled Structures vol. 6, 1988, pp.51-62 
[9]. ***ANSYS – User’s guide, www.ansys.com  
[10]. M. Yokoyama, Accuracy estimation in the finite element analysis of transverse bending of thin 

flat plates, Advances in Engineering Software vol. 15, 1992, pp. 203-210 


	[1]. T. Cicone, A. A. Marinescu and Şt. Sorohan, A Simple Analytical Model for an Elastohydrostatic Thrust Bearing, IOP Conference Series: Materials Science and Engineering vol. 724, 2020, 012041
	[2]. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and shells, McGraw-Hill Book Company, New York, 1959
	[3]. W Young and R. Budynas, Roark’s formulas for stress and strain, McGraw-Hill Companies, New York, 2011
	[5]. R. Szilard, Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods, John Wiley & Sons, Inc., New Jersey, 2004

