U.P.B. Sci. Bull,, Series B, Vol. 81, Iss. 1, 2019 ISSN 1454-2331

POLYNOMIALS OF DEGREE-BASED INDICES
FOR HEXAGONAL NANOTUBES

Tom4s VETRIK!

In theoretical chemistry, topological indices are used for modelling
properties of chemical compounds and biological activities in chemistry, bio-
chemistry and manotechnology. Topological indices of manotubes are nu-
merical descriptors which are derived from graphs of chemical compounds.
These indices are extensively used for establishing relationships between the
structure of nanotubes and their physico-chemical properties.

One or a few chosen polynomials of topological indices for nanotubes
have been studied in several papers. We give general formulas and use them
to obtain any polynomial of degree-based indices for hexagonal nanotubes.
We also show that the derivatives of these polynomials can be used to obtain
various topological indices such as the gemeral Randié¢ index for hexagonal
nanotubes.
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1. Introduction

Hexagonal nanotubes are allotropes of carbon with a cylindrical nanos-
tructure. These cylindrical carbon molecules have interesting properties, that
are valuable for nanotechnology, optics, electronics and other fields of materials
science and technology. Hexagonal nanotubes have exceptional thermal con-
ductivity, electrical and mechanical properties. They have applications as ad-
ditives to numerous structural materials. Carbon nanotubes are the strongest
and stiffest materials yet discovered with respect to elastic modulus and ten-
sile strength. They are either metallic or semiconducting along the tubular
axis. Hexagonal nanotubes have useful absorption and they belong to the
most important compounds in materials science.

In theoretical chemistry, topological indices are used for modelling prop-
erties of chemical compounds and biological activities in chemistry, biochem-
istry and nanotechnology. Topological indices of nanotubes are numerical de-
scriptors which are derived from graphs of chemical compounds. It was de-
scribed for example in [7] that these indices are extensively used for establishing
relationships between the structure of nanotubes and their physico-chemical
properties. Topological indices for hexagonal nanotubes have been studied for
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about 15 years. The first works include [4] and [8]. Since then, hundreds of
papers have been published on topological indices for nanotubes.

Topological indices are often studied with the help of their polynomials.
The first Zagreb polynomial and the second Zagreb polynomial for hexagonal
nanotubes were given in [5]. The first Zagreb polynomial, the second Zagreb
polynomial and the forgotten polynomial of generalized prisms and toroidal
polyhex networks were computed in [1] and Zagreb polynomials of nanostars
were computed in [9, 12]. The harmonic polynomial of polycyclic aromatic
hydrocarbons was studied in [6]. Polynomials of various networks were studied
also in [10, 11] and hexagonal nanotubes were investigated for example in
[2, 3, 13]. We give two formulas and use them to obtain any polynomial of
degree-based indices for hexagonal nanotubes.

2. General degree-based indices and their polynomials

Let I" be a graph with the vertex set V(I') and the edge set E(I"). Vertices
correspond to the atoms of a compound and edges correspond to chemical
bonds. The degree d,, of a vertex u € V(I') is the number of neighbours of w.

The most general indices based on degrees are the general Randi¢ index
of a graph I,

Ra(r>: Z (dvdu)aa

vueE(T)
the general sum-connectivity index
Xo@) = > (d+d,)"
vueE(T)
and the generalized Zagreb index
GZop(T) = Y did]+dyd].
vueE(T)
Note that the third redefined Zagreb index is defined as
ReZ(D)= Y dydy(d,+d,)
vueE(T)

and the harmonic index is defined as

Let us introduce a general invariant
P, z) = Z 29 dodu)
vu€E(T)

where ¢(d,,d,) is a function of d, and d,, and ¢(d,,d,) = g(d,,d,). This
invariant includes polynomials of topological indices defined above.
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o If g(dy,d,) = (dpd,)® where « is a positive integer, then P(T',z) is
the general Randi¢ polynomial of I". Moreover, P(I',x) is the second
Zagreb polynomial if o = 1.

o If g(d,,d,) = (d, + d,)™ where « is a positive integer, then P(T',z) is
the general sum-connectivity polynomial of I'. Furthermore, P(T', x) is
the first Zagreb polynomial for « = 1 and the hyper-Zagreb polynomial
for a = 2.

o If g(d,, d,) = d®dP + d*d? where « is a positive integer and (3 is a non-
negative integer, then P(I',x) is the generalized Zagreb polynomial of
I'. Moreover, P(I', x) is the forgotten polynomial if « =2 and 5 = 0.

e If g(d,,d,) = dyd,(d, + d,), then P(T',x) is the third redefined Zagreb
polynomial of T.

o If g(d,,d,) = d, + d, — 1, then P(T',z) is one half of the harmonic
polynomial H(T",z) of I". Note that the harmonic polynomial is defined
differently from the other polynomials.

So the general Randi¢ polynomial of any graph I" is defined as
vueE(T)
the general sum-connectivity polynomial is
vueE(T)
the generalized Zagreb polynomial of any graph T,
o gB 1 go b
GZo5(T, ) Z pdsdi+dsd]
vueE(T)
the third redefined Zagreb polynomial is defined as
ReZ (T, z) Z ghvdu(dotdu)
vu€eE(T)
and the harmonic polynomial is

H({,x)=2 Z ghvtdu=l,

vueE(T)

3. Armchair polyhex nanotubes

The armchair polyhex nanotube TU ACq[p; q] for ¢ = 7 and p = 10 is
given in Figure 1. The number of hexagons in every column of the correspond-
ing two-dimensional lattice is ¢ and the number of hexagons in every row is p.
Clearly, q can be any positive integer and p is even; see Figure 1.

We can obtain any polynomial of indices based on degrees for armchair
polyhex nanotubes using the following theorem.
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Fig. 1. Armchair polyhex nanotube TU ACg[p; q| for ¢ = 7 and p = 10.

Theorem 3.1. For the armchair polyhex nanotube I' = TU AC[p; q|, we have
P(F7 x) — Z xg(dvvdu) — (3q — 1)p . ajg(373) _|_ 2p . xg(372) +p . $9(2’2).
vueE(T)

Proof. The armchair polyhex nanotube TU AC[p; q] contains (g4 1)2p vertices
and (3q + 2)p edges. Each vertex has degree either two or three (see Figure
1). Vertices of I' can be divided into the sets. The set of vertices of degree 2,

Vo ={ue V()| du =2},
and the set of vertices of degree 3,
Vs={ueV()|d, =3}
| — [Va| = 2gp. Let

E272 = {’UU € E(F) | dv = du = 2},
E3’2 = {UU € E(F) | d, = 3, d, = 2},
E373 = {UU € E(F) ‘ dv = du = 3}

~—

Since |Va| = 2p, we obtain |V5| = [V(T

Note that E(I') = Es5 U E35 U E33. The number of edges incident to two
vertices of degree 2 is p, so |Eas| = p. Each vertex having degree two is
adjacent to one vertex having degree three, thus we get |Fs3 | = 2p and |E3 3] =
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|E(I')| — |E22| — |Es2| = (3¢ — 1)p. Hence,

PT,z) = Z 29 dvdu) — Z 29B3) | Z 2932 | Z 29(2:2)

vueE(T) vu€F3 3 vu€ B3 2 vu€ks 2
— (3q — 1)p . x9(373) + 2p . 1‘9(3’2) +p . 1»9(272).
([l

Polynomials of indices based on degrees for armchair polyhex nanotube
are given in Corollary 3.1.

Corollary 3.1. For the armchair polyhex nanotube I' = TU ACsp; q], we have
the general Randié¢ polynomial of T,

Ro(T,z) = (3¢ — 1)pa®” + 2pa® + pa*”,
the second Zagreb polynomial
Ry(T,2) = (3¢ — 1)pz® + 2pa® + pa?,
the general sum-connectivity polynomaial of T,
X, (T,2) = (3¢ — Dpa® + 2pz® + pa™®”,
the first Zagreb polynomial
Xi(T,z) = (3g — 1)pa® + 2pa® + pa’,
the hyper-Zagreb polynomial
Xo(D,z) = (3¢ — 1)pa®® + 2paz®® + pa'®,
the generalized Zagreb polynomial of T,
GZ,p5(I,x) = (3¢ — 1)p:1:2'3a+3 4 2pa? 3TN L a2t
the forgotten polynomial
GZy0(T,2) = (3q — )px'® + 2pa™® + pa®,
the third redefined Zagreb polynomial
ReZ(T,z) = (3¢ — 1)pz®* + 2p2®® + px'®

Y

and the harmonic polynomial
H(T,x) = (3¢ — 1)2pa® + 4px* + 2pa®.

Proof. For R,(I',x) which is the general Randi¢ polynomial of I" we have
g(dy,d,) = (d,d,)®, therefore ¢(3,3) = 9%, ¢(3,2) = 6% and ¢(2,2) = 4°.
So from Theorem 3.1,

Ro(T,z) = (3¢ — 1)pa® 4 2pa® + pa*”.
For o« = 1 the second Zagreb polynomial is

Ry(T',x) = (3¢ — 1)pz® + 2pa® + pa*.
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For X,(I',z) that is the general sum-connectivity polynomial we have
g(dy,dy,) = (d, + d,)%, thus ¢(3,3) = 6%, g(3,2) = 5% and ¢(2,2) = 4“. Hence
by Theorem 3.1,

X, (T,z) = (3¢ — 1)pz® + 2pa™ + pa*”.
For o« = 1 the first Zagreb polynomial is
X, (T, z) = (3¢ — 1)pa® + 2pa® + pa*.
For oo = 2 the hyper-Zagreb polynomial is
Xo(D,z) = (3¢ — 1)pz®® + 2pa®® + pa'S.
For GZ(I',x) which is the generalized Zagreb polynomial we have
g(dy,d,) = d*dP + d2d?, so g(3,3) = 2-323% =2.3%78 ¢(3,2) = 2238 + 3227

u v

and ¢(2,2) = 22928 = 20+5+1 Thus
GZup(I',z) = (3¢ — 1)px2'3a+5 4 oI L 2
If « =2 and =0, we get the forgotten polynomial
GZy0(T,7) = (3q — 1)px™® + 2pa'® + pa®.

For the third redefined Zagreb polynomial ReZ(I', z) we have g(d,,d,) =
dyd,(d, +d,), thus g(3,3) = 54, ¢(3,2) = 30 and ¢(2,2) = 16. Hence

ReZ(T,x) = (3¢ — 1)pz™ + 2pz® + pa'®.

For the harmonic polynomial of T we have g(d,,d,) = d, + d,, — 1, thus
9(3,3) =5, ¢g(3,2) =4 and ¢(2,2) = 3. Hence

H(T,z) = 2[(3q — 1)pz® + 2pz* + pr®] = (3¢ — 1)2pa® + 4dpa* + 2pa®.

4. Zig-zag polyhex nanotubes

Let us investigate zig-zag polyhex nanotubes TU ZCg[p; q]. The number
of hexagons in every column of the corresponding two-dimensional lattice is
p > 2 the number of hexagons in every row is ¢ > 1; see Figure 2.

We give a general formula and use it to obtain any polynomial of topo-
logical indices based on degrees for zig-zag polyhex nanotubes.

Theorem 4.1. For the zig-zag polyhex nanotube I' = TU ZCg[p; q|, we have
P<F7I‘) — Z xg(dv,du) — (3q _ 2)p . xg(3,3) + 4p . l’g(372)‘
vueE(T)

Proof. The nanotube TUZCs[p; q] contains (¢ + 1)2p vertices and (3q + 2)p
edges. Any vertex has degree either two or three. V(I') can be divided into
the sets:

Vo={ue V() |d, =2} and V= {ue V() |d, =3}
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6

Fig. 2. Zig-zag polyhex nanotube TU ZCg[p; q] for p =6 and ¢ = 11

We have |V, = 2p and |V3]| = 2¢gp. Let
E372 = {’UU € E(F) ‘ dv = 3, du = 2},
E373 = {UU c E(F) | dv = du = 3}

Note that E(I') = Es U E33. Each vertex having degree two is adjacent
to two vertices having degree three, thus we get |E32| = 4p. Then |Es3| =
|E(T)| — |Es2| = (3¢ — 2)p and

P(l,z) = Z 29(dodu) Z 29(33) Z £9(3.2)

vueE(T) vu€ls 3 VuEES3 2
= (3¢—2)p- 2933 4 4p . 2962,
O

Now we present the best-known polynomials for zig-zag polyhex nan-
otubes.

Corollary 4.1. For the zig-zag polyhex nanotube I' = TU ZCs|p; q|, the general
Randié¢ polynomial of T' is

Ro(T,z) = (3¢ — 2)pa® + 4px®°,
the second Zagreb polynomial
Ry(T,z) = (3¢ — 2)pz® + 4pa®,
the general sum-connectivity polynomial

X, (T, 2) = (3¢ — 2)pz® + 4pa®”,
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the first Zagreb polynomial
X1(D,z) = (3¢ — 2)pa® + 4pa®,
the hyper-Zagreb polynomial
Xo(T, ) = (3q — 2)pz™ + 4pa™,
the generalized Zagreb polynomial
GZ,p5(I,2) = (3¢ — 2)px2'3a+ﬁ T+ 433027
the forgotten polynomial
GZy0(T,2) = (3q — 2)px™® + 4pa™?
the third redefined Zagreb polynomial
ReZ(T,x) = (3q — 2)pz® + 4pa™®
and the harmonic polynomial
H(T,z) = (3q — 2)2pz® + Spx*.
Proof. For R, (I", z) which is the general Randi¢ polynomial, we get g(d,, d,) =
(dydy,)®, so g(3,3) = 9% and ¢(3,2) = 6“. From Theorem 4.1,
Ro(T,z) = (3 — 2)pa”" + 4pa®.
For @ = 1 the second Zagreb polynomial is
Ri(T,z) = (3 — 2)px® + 4pa®.

For X, (T, z) that is the general sum-connectivity polynomial, we have
9(dy,d,) = (d, + d,)*, therefore ¢g(3,3) = 6 and ¢(3,2) = 5*. From Theorem
4.1

| X, (T, 2) = (3¢ — 2)pr® + dpr™.
For o = 1 the first Zagreb polynomial is
X1 (T, 2) = (3q — 2)pa® + 4pa®.
For a = 2 the hyper-Zagreb polynomial is
Xo(D, z) = (3¢ — 2)pa™ + 4px™.

For GZ(T',x) which is the generalized Zagreb polynomial, we obtain
g(dy, d,) = d*dP+d>d?, so g(3,3) = 2-:323°% = 2.3%"F and ¢(3,2) = 223°+3225.
Thus

GZas(T, 1) = (3¢ — 2)pa®™""" 4 dpg®*37+3°27
If « =2 and =0, we get the forgotten polynomial
GZy0(T,x) = (3q — 2)px'® + 4pa'.

For the third redefined Zagreb polynomial ReZ(T', z) we have g(d,,d,) =

dyd,(d, + d,), thus g(3,3) = 54 and ¢(3,2) = 30. Hence
ReZ(T,x) = (3q — 2)px™ + 4pa™.
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For the harmonic polynomial of I" we have ¢(d,,d,) = d, + d, — 1, thus
9(3,3) =5 and ¢(3,2) = 4. Hence

H(T,x) = 2[(3q — 2)pz° + 4px*] = (3¢ — 2)2pa® + 8pa™.

O

Let us show that the derivatives of polynomials can be easily applied to
obtain the values of topological indices for hexagonal nanotubes (when using
x = 1 in the derivative). For the armchair polyhex nanotube I' = TU ACj[p; ¢,
we have

P'(D,z) = (3¢ — )p - g(3,3)293) 7 4 2p . ¢(3,2)29D 71 4. g(2,2)29@D 1,

therefore the general expression of a topological index of the armchair polyhex
nanotube is

P'(T,1) =3¢ —1)p-9(3,3) +2p-9(3,2) +p- 9(2,2).
For the zig-zag polyhex nanotube I' = TU ZCs]p; q], we have
P'(T,z) = (3¢ = 2)p- g(3,3)a?* 7" + 4p - g(3,2)27* 7,
therefore the general expression of a topological index of I' = TU ZCg|[p; q| is
P'(D,1) = (3¢ —2)p- 9(3,3) + 4p - 9(3,2).

For example, for the general Randi¢ polynomial we have g(d,,d,) =
(dyd,)* which implies that ¢(3,3) = 9%, ¢(3,2) = 6“ and ¢(2,2) = 4*. Thus
the general Randi¢ index of the armchair polyhex nanotube is

R,(T,1) = (3¢ = 1)p- 9% +2p- 6 +p- 4%,

For the general Randi¢ polynomial of the zig-zag polyhex nanotube I' =
TUZCs[p; q] we have g(3,3) = 9% and ¢(3,2) = 6% thus the general Randi¢
index of the zig-zag polyhex nanotube is

R.(T,1)=(3¢—2)p-9*+4p- 6“.

Similarly, we can use polynomials to obtain other topological indices.
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5. Summary of results

In Theorem 3.1 and Corollary 3.1 we stated that for the armchair polyhex
nanotube I' = TU ACs]p; q], we have

PI,x) = Z 296 — (3q — 1)p- 290 1 2p . 2902 4 . 4922,
vu€B(T)
Ry (T, z) (3q — l)p;pga + 2px6a +px4a’
Ri(T,z) = (3¢ —1)pz” + 2pa° + pa?,
Xo(T,z) = (3¢—1)pz® +2p2™ + pa*,
Xi(T,z) = (3¢ —1)pa® + 2pa® + pa?,
Xo(T,z) = (3¢ —1)pa”® + 2pz® + pa'®
GZa,g(F, a:) = (3(] _ 1)}933 ga+s + 2 2a35+3a2f1 +px2a+5+1,
GZyo(T,x) = (3¢ —1)pz'® +2pa’™ + pa®,
ReZ([,z) = (3¢— 1)pa®™ + 2pz™® 4 pa'®

HT,z) = (3¢—1)2pz® + 4pa* + 2pa®.

Theorem 4.1 and Corollary 4.1 say that for the zig-zag polyhex nanotube
' = TUZCg[p; q], we have

P(F, Z‘) = Z Ig (dov,du) 3q _ 2)p . 139(3’3) + 4p . $g(3’2)7
vueE(T)
Ra(F7 $) = (3q _ 2)p$90‘ _'_ 4pl)60¢7
Ri(T,z) = (3qg— 2)p:c9 + 4px
Xa(F7 13) = (3(] — 2)p 6 + 4dpx®
Xi(F,z) = (3q—2)pz® + 4pa®,
Xo(T,z) = (3¢—2)pr™ + 4p;p25
GZa,ﬁ(F7 w) (3q _ 2)px2'3 + 4p 2043[34,3&25,
H(l,z) = (3q 2)2px® + pr

6. Conclusion

Topological indices are extensively used for establishing relationships be-
tween the structure of nanotubes and their physico-chemical properties. These
indices are a convenient method of translating chemical constitution into nu-
merical values which are used for correlations with physical properties.

There are two types of hexagonal nanotubes: armchair polyhex nan-
otubes and zig-zag polyhex nanotubes; see Figures 1 and 2. We can represent
these nanotubes by graphs that consist of vertices and edges.
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Topological indices are often studied with the help of their polynomials.
In this paper we presented general formulas and used them to obtain any
polynomial of degree-based indices for hexagonal nanotubes. We showed that
the derivatives of these polynomials can be used to obtain various topological
indices such as the general Randi¢ index for hexagonal nanotubes.

7. Notations

r graph

ET) edge set of a graph

V() vertex set of a graph

dy degree of a vertex u — the number of neighbours of «

V; set containing vertices of degree ¢

E; ; set containing edges with one vertex having degree ¢
and the other vertex having degree j

|E; ;| the number of edges in E; ;

VU edge containing vertices v and u

g(dy,dy) function of d, and d, which depends on a particular
topological index

P(T,x) general polynomial

TUACg[p; q] armchair polyhex nanotube

TUZCgp;q| zig-zag polyhex nanotube

P, x) general polynomial of I' which is used to study all the
other polynomials

R, (T, x) general Randi¢ polynomial of I'

Ry (T, x) second Zagreb polynomial

X, (T, x) general sum-connectivity polynomial
Xi(T, x) first Zagreb polynomial
Xo(T', ) hyper-Zagreb polynomial

GZ,p5(I',x) generalized Zagreb polynomial
GZyo(I',x)  forgotten polynomial

ReZ(T',z)  third redefined Zagreb polynomial
H(T, z) harmonic polynomial
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