

EXISTENCE OF THREE SOLUTIONS FOR ELLIPTIC DIRICHLET PROBLEMS INVOLVING THE p -LAPLACIAN

G.A. Afrouzi¹, A. Hadjian² and T.A. Roushan²

The aim of this note is to establish the existence of at least three weak solutions for a Dirichlet boundary value problem involving the p -Laplacian. The approach is based on variational methods.

Keywords: Dirichlet problem, p -Laplacian, three solutions.

MSC2010: 35J92, 35B38, 35J20.

1. Introduction

In this paper, we are interested in ensuring the existence of at least three weak solutions for the following Dirichlet problem

$$\begin{cases} -\Delta_p u = \lambda f(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases} \quad (1)$$

where $\Omega \subset \mathbb{R}^N$ ($N \geq 3$) is a non-empty bounded open set with a smooth boundary $\partial\Omega$, $2 \leq p < N$, λ is a positive parameter and $f : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a function.

Motivated by the fact that such problems are used to describe a large class of physical phenomena, many authors have studied the existence and multiplicity of solutions for (1).

The aim of this paper is to establish a precise interval of parameters λ for which problem (1) admits at least three non-zero solutions. Our analysis is based mainly on a three critical points theorem due to Bonanno and Marano [5] to transfer the existence of critical points of the Euler functional to the existence of three solutions to problem (1).

In the literature many papers (see, for instance, the papers [1, 2, 3, 4, 6, 9, 10] and references therein) deal with nonlinear elliptic problems with Dirichlet boundary conditions. For example, Li and Tang in [10], using a three critical points theorem of Ricceri [11], established the existence of an interval $\Lambda \subseteq [0, +\infty[$ and a positive real number ρ such that for each $\lambda \in \Lambda$ the quasilinear elliptic system

$$\begin{cases} -\Delta_p u = \lambda F_u(x, u, v) & \text{in } \Omega, \\ -\Delta_q v = \lambda F_v(x, u, v) & \text{in } \Omega, \\ u = v = 0 & \text{on } \partial\Omega \end{cases}$$

¹Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran.

²e-mail: afrouzi@umz.ac.ir, a.hadjian@umz.ac.ir, t.roushan@umz.ac.ir

admits at least three weak solutions whose norms in $W_0^{1,p}(\Omega) \times W_0^{1,q}(\Omega)$ are less than ρ , and in [1] some similar results for the quasilinear elliptic system

$$\begin{cases} \Delta_{p_i} u_i + \lambda F_{u_i}(x, u_1, \dots, u_n) = 0 & \text{in } \Omega, \\ u_i = 0 & \text{on } \partial\Omega \end{cases} \quad (2)$$

for $1 \leq i \leq n$, were obtained. In [2], the authors using a three critical points theorem of Averna and Bonanno [3], proved the existence of a definite interval, in which λ lies, system (2) admits at least three weak solutions. Also in [4], the authors based on a very recent three critical points theorem due to Bonanno and Marano [5], established the existence of an open interval Λ_1 for each λ of which, the quasilinear elliptic system

$$\begin{cases} -\Delta_p u + a(x)|u|^{p-2}u = \lambda F_u(x, u, v) & \text{in } \Omega, \\ -\Delta_q v + b(x)|v|^{q-2}v = \lambda F_v(x, u, v) & \text{in } \Omega, \\ u = v = 0 & \text{on } \partial\Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^N (N \geq 1)$ is a non-empty bounded open set with a smooth boundary $\partial\Omega$, $p, q > N$, λ is a positive parameter, $a, b \in L^\infty(\Omega)$ with $\text{ess inf}_\Omega a \geq 0$ and $\text{ess inf}_\Omega b \geq 0$, and $F : \Omega \times \mathbb{R}^2 \rightarrow \mathbb{R}$ is a function such that $F(\cdot, t_1, t_2)$ is continuous in $\bar{\Omega}$ for all $(t_1, t_2) \in \mathbb{R}^2$ and $F(x, \cdot, \cdot)$ is C^1 in \mathbb{R}^2 for every $x \in \Omega$, admits at least three distinct weak solutions in $W_0^{1,p}(\Omega) \times W_0^{1,q}(\Omega)$.

We note that the ideas used here are motivated by the corresponding ones in [6].

This paper is arranged as follows. In Section 2, we recall some basic notations and definitions and our main tool (Theorem 2.1), while Section 3 is devoted to our main result (Theorem 3.1) and a consequence in the autonomous case.

2. Preliminaries

Our main tool is the following three critical points theorem due to Bonanno and Marano [5]. Here, X^* denotes the dual space of X .

Theorem 2.1 (Theorem 3.6 of [5]). *Let X be a reflexive real Banach space; $\Phi : X \rightarrow \mathbb{R}$ a coercive, continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous inverse on X^* ; and $\Psi : X \rightarrow \mathbb{R}$ be a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact such that*

$$\Phi(0) = \Psi(0) = 0.$$

Assume that there exist $r > 0$ and $\bar{x} \in X$, with $r < \Phi(\bar{x})$, such that:

$$(a_1) \quad \frac{\sup_{\Phi(x) \leq r} \Psi(x)}{r} < \frac{\Psi(\bar{x})}{\Phi(\bar{x})};$$

$$(a_2) \quad \text{for each } \lambda \in \Lambda_r = [\frac{\Phi(\bar{x})}{\Psi(\bar{x})}, \frac{r}{\sup_{\Phi(x) \leq r} \Psi(x)}] \text{ the functional } \Phi - \lambda \Psi \text{ is coercive.}$$

Then, for each $\lambda \in \Lambda_r$, the functional $J_\lambda := \Phi - \lambda \Psi$ has at least three distinct critical points in X .

In the sequel, $f : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that

(i) there exist two non-negative constants a_1, a_2 and $q \in]1, pN/(N-p)[$ such that

$$|f(x, t)| \leq a_1 + a_2|t|^{q-1},$$

for every $(x, t) \in \Omega \times \mathbb{R}$.

Throughout this paper, X will denote the Sobolev space $W_0^{1,p}(\Omega)$ with the norm

$$\|u\|_p = \left(\int_{\Omega} |\nabla u(x)|^p dx \right)^{1/p}.$$

We say that $u : \Omega \rightarrow \mathbb{R}$ is a (weak) solution to problem (1) if $u \in X$ and

$$\int_{\Omega} |\nabla u(x)|^{p-2} \nabla u(x) \nabla v(x) dx - \lambda \int_{\Omega} f(x, u(x)) v(x) dx = 0$$

for all $v \in X$.

Let $p^* = pN/(N-p)$ be the critical Sobolev exponent and denote, as usual, with Γ the Gamma function defined by

$$\Gamma(t) := \int_0^{+\infty} z^{t-1} e^{-z} dz, \quad \forall t > 0.$$

From the Sobolev embedding theorem (see, for instance [13, Theorem A.5]) there exists $c \in \mathbb{R}^+$ such that

$$\|u\|_{L^{p^*}(\Omega)} \leq c \|u\|_p, \quad u \in X. \quad (3)$$

The best constant that appears in (3) is

$$c = \pi^{-1/2} N^{-1/p} \left(\frac{p-1}{N-p} \right)^{1-1/p} \left\{ \frac{\Gamma(1+N/2)\Gamma(N)}{\Gamma(N/p)\Gamma(1+N-N/p)} \right\}^{1/N}, \quad (4)$$

see, for instance, [14].

Fixing $q \in [1, p^*[,$ again from the Sobolev embedding theorem, there exists a positive constant c_q such that

$$\|u\|_{L^q(\Omega)} \leq c_q \|u\|_p, \quad u \in X, \quad (5)$$

and, in particular, the embedding $X \hookrightarrow L^q(\Omega)$ is compact.

Since $q < p^*$, by using Hölder's inequality we have

$$\|u\|_{L^q(\Omega)} \leq m(\Omega)^{\frac{p^*-q}{p^*q}} \|u\|_{L^{p^*}(\Omega)},$$

and due to (4), $c_q \leq c m(\Omega)^{\frac{p^*-q}{p^*q}}$, where $m(\Omega)$ denotes the Lebesgue measure of the set Ω .

Now, fix $x^0 \in \Omega$ and pick r_1, r_2 with $0 < r_1 < r_2$ such that $S(x^0, r_1) \subset S(x^0, r_2) \subseteq \Omega$, where $S(x^0, r_i)$ denotes the ball with center at x^0 and radius r_i for $i = 1, 2$.

Finally, put

$$\kappa := \frac{r_2 - r_1}{\pi^{N/2p}} \left(\frac{p\Gamma(1+N/2)}{r_2^N - r_1^N} \right)^{1/p}, \quad (6)$$

and

$$K_1 := \frac{p^{\frac{1-p}{p}} c_1 ((r_2/r_1)^N - 1)}{(r_2 - r_1)^p}, \quad K_2 := \frac{p^{\frac{q-p}{p}} c_q^q ((r_2/r_1)^N - 1)}{q(r_2 - r_1)^p}. \quad (7)$$

3. Main results

We need the following proposition in the proof of our main result.

Proposition 3.1. *Let $T : X \rightarrow X^*$ be the operator defined by $T(u)(v) = \int_{\Omega} |\nabla u(x)|^{p-2} \nabla u(x) \nabla v(x) dx$ for every $u, v \in X$. Then T admits a continuous inverse on X^* .*

Proof. If $x, y \in \mathbb{R}^n$ and $\langle \cdot, \cdot \rangle$ denotes the usual inner product in \mathbb{R}^n , owing to (2.2) of [12], there exists a positive constant c_p such that $\langle |x|^{p-2}x - |y|^{p-2}y, x - y \rangle \geq c_p |x - y|^p$. Thus, it is easy to verify that $(T(u) - T(v))(u - v) \geq c_p \|u - v\|_p^p$, for every $u, v \in X$. This actually means that T is a uniformly monotone operator in X . For every $u \in X \setminus \{0\}$ we have

$$\frac{\langle T(u), u \rangle}{\|u\|_p} = \frac{\int_{\Omega} |\nabla u(x)|^p dx}{\|u\|_p} = \|u\|_p^{p-1},$$

hence T is coercive. Also, T is hemicontinuous, since it is continuous. Therefore, the conclusion follows immediately by applying Theorem 26.A of [15]. \square

By standard arguments, we can prove the following result.

Proposition 3.2. *Let $f : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function such that assumption (i) holds and F defined by*

$$F(x, \xi) := \int_0^{\xi} f(x, t) dt, \quad \forall (x, \xi) \in \Omega \times \mathbb{R}. \quad (8)$$

Then $\Psi : X \rightarrow \mathbb{R}$ defined by $\Psi(u) := \int_{\Omega} F(x, u(x)) dx$ is a Gâteaux differentiable functional on X with compact derivative $\Psi'(u)(v) = \int_{\Omega} f(x, u(x))v(x) dx$ for every $v \in X$.

Proof. Suppose $u, v \in X$ and $t \neq 0$. Then, by the Mean Value Theorem

$$\begin{aligned} & \left| \frac{\Psi(u + tv) - \Psi(u)}{t} - \int_{\Omega} f(x, u(x))v(x) dx \right| \\ & \leq \int_{\Omega} |f(x, u(x) + t\zeta(x)v(x)) - f(x, u(x))| |v(x)| dx \\ & \leq \|v\|_{\infty} \int_{\Omega} |f(x, u(x) + t\zeta(x)v(x)) - f(x, u(x))| dx, \end{aligned}$$

where $0 < \zeta(x) < 1$ for every $x \in \Omega$ for which $F(x, \xi)$ is differentiable with respect to ξ . Since f is a Carathéodory function, we have $\lim_{t \rightarrow 0} f(x, u(x) + t\zeta(x)v(x)) = f(x, u(x))$ for a.e. $x \in \Omega$. Then, by the assumption (i) on $f(x, t)$ we have

$$\begin{aligned} & |f(x, u(x) + t\zeta(x)v(x)) - f(x, u(x))| \\ & \leq 2a_1 + a_2((k+1)|u(x)|^{q-1} + k|v(x)|^{q-1}) \end{aligned}$$

for any $|t| < 1$ and some $k > 0$. Therefore, the Lebesgue Convergence Theorem implies $\lim_{t \rightarrow 0} \frac{\Psi(u+tv) - \Psi(u)}{t} = \int_{\Omega} f(x, u(x))v(x)dx$. So, $\Psi : X \rightarrow \mathbb{R}$ is a Gâteaux differentiable functional at every $u \in X$ with derivative $\Psi'(u)(v) = \int_{\Omega} f(x, u(x))v(x)dx$ for every $v \in X$. To show that $\Psi' : X \rightarrow X^*$ is a compact operator, it suffices to show that Ψ' is strongly continuous on X . Let $u_n \rightharpoonup u$ in X . Then $u_n \rightarrow u$ uniformly on Ω . Now since $F(x, \xi)$ is differentiable with respect to ξ for a.e. $x \in \Omega$, the derivative of F is continuous in \mathbb{R} for a.e. $x \in \Omega$, so $f(x, u_n) \rightarrow f(x, u)$. Thus $\Psi'(u_n) \rightarrow \Psi'(u)$, i.e., Ψ' is strongly continuous on X and this implies that Ψ' is a compact operator by [15, Proposition 26.2]. \square

Our main result is the following theorem.

Theorem 3.1. *Let $f : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function such that assumption (i) holds. Furthermore, assume that*

- (ii) $F(x, \xi) \geq 0$ for every $(x, \xi) \in \Omega \times \mathbb{R}^+$, where F is given by (8);
- (iii) there exist two positive constants b and $s < p$ such that $F(x, \xi) \leq b(1 + |\xi|^s)$, for almost every $x \in \Omega$ and for every $\xi \in \mathbb{R}$;
- (iv) there exist two positive constants γ and δ , with $\delta > \gamma\kappa$ such that

$$\frac{\inf_{x \in \Omega} F(x, \delta)}{\delta^p} > a_1 \frac{K_1}{\gamma^{p-1}} + a_2 K_2 \gamma^{q-p}$$

where a_1, a_2 are given in (i) and κ, K_1, K_2 are given by (6) and (7).

Then, for each λ belonging to

$$\Lambda_1 := \left[\frac{(r_2/r_1)^N - 1}{p(r_2 - r_1)^p} \frac{\delta^p}{\inf_{x \in \Omega} F(x, \delta)}, \frac{(r_2/r_1)^N - 1}{p(r_2 - r_1)^p} \frac{1}{a_1 \frac{K_1}{\gamma^{p-1}} + a_2 K_2 \gamma^{q-p}} \right],$$

problem (1) admits at least three weak solutions in X .

Proof. In order to apply Theorem 2.1, we define $\Phi, \Psi : X \rightarrow \mathbb{R}$ by

$$\Phi(u) := \frac{\|u\|_p^p}{p}, \quad \text{and} \quad \Psi(u) := \int_{\Omega} F(x, u(x))dx, \quad \forall u \in X.$$

The functional Φ is continuously Gâteaux differentiable with $\Phi'(u)(v) = \int_{\Omega} |\nabla u(x)|^{p-2} \nabla u(x) \nabla v(x)dx$ for every $u, v \in X$ (see, e.g., [7, page 133]). By Proposition 3.1, Φ' admits a continuous inverse on X^* , and since Φ' is monotone, Φ is sequentially weakly lower semicontinuous (see [15, Proposition 25.20]). Also, Ψ is continuously Gâteaux differentiable functional with $\Psi'(u)(v) = \int_{\Omega} f(x, u(x))v(x)dx$ for every $u, v \in X$, and Ψ' is a compact operator (see Proposition 3.2).

A critical point of the functional $\Phi - \lambda\Psi$ is a function $u \in X$ such that

$$\Phi'(u)(v) - \lambda\Psi'(u)(v) = 0,$$

for every $v \in X$. Hence the critical points of the functional $\Phi - \lambda\Psi$ are weak solutions of problem (1).

Clearly Φ is coercive and $\Phi(0) = \Psi(0) = 0$. By (i), we have

$$F(x, \xi) \leq a_1|\xi| + a_2 \frac{|\xi|^q}{q}, \quad (9)$$

for every $(x, \xi) \in \Omega \times \mathbb{R}$. Taking into account (5) and (9) it follows that

$$\Psi(u) = \int_{\Omega} F(x, u(x)) dx \leq a_1 \|u\|_{L^1(\Omega)} + \frac{a_2}{q} \|u\|_{L^q(\Omega)}^q \leq a_1 c_1 \|u\|_p + \frac{a_2}{q} c_q^q \|u\|_p^q.$$

Then, for every $u \in X$ such that $\Phi(u) \leq r$, we get

$$\Psi(u) \leq a_1 c_1 \sqrt[p]{rp} + \frac{a_2}{q} c_q^q (rp)^{q/p}.$$

Hence

$$\sup_{u \in \Phi^{-1}([-\infty, r])} \Psi(u) \leq a_1 c_1 \sqrt[p]{rp} + \frac{a_2}{q} c_q^q (rp)^{q/p}. \quad (10)$$

So, according to (10), we have

$$\frac{\sup_{u \in \Phi^{-1}([-\infty, r])} \Psi(u)}{r} \leq a_1 c_1 \sqrt[p]{\frac{p}{r^{p-1}}} + \frac{a_2}{q} c_q^q p^{q/p} r^{q/p-1}, \quad (11)$$

for every $r > 0$.

Next, put

$$w(x) := \begin{cases} 0 & \text{if } x \in \Omega \setminus B(x^0, r_2), \\ \frac{\delta}{r_2 - r_1} \left(r_2 - \sqrt{\sum_{j=1}^N (x_j - x_j^0)^2} \right) & \text{if } x \in B(x^0, r_2) \setminus B(x_0, r_1), \\ \delta & \text{if } x \in B(x^0, r_1). \end{cases}$$

It is easy to verify that $w \in X$ and we have

$$\begin{aligned} \Phi(w) &= \frac{1}{p} \int_{B(x^0, r_2) \setminus B(x^0, r_1)} \frac{\delta^p}{(r_2 - r_1)^p} dx \\ &= \frac{\delta^p}{p(r_2 - r_1)^p} (m(B(x^0, r_2)) - m(B(x^0, r_1))) \\ &= \frac{\delta^p}{p(r_2 - r_1)^p} \frac{\pi^{N/2}}{\Gamma(1 + N/2)} (r_2^N - r_1^N). \end{aligned} \quad (12)$$

Bearing in mind that $\delta > \gamma \kappa$, it follows that $\Phi(w) > \gamma^p =: r$.

At this point, thanks to (ii), we obtain

$$\Psi(w) \geq \int_{B(x^0, r_1)} F(x, \delta) dx \geq \inf_{x \in \Omega} F(x, \delta) \frac{r_1^N \pi^{N/2}}{\Gamma(1 + N/2)}. \quad (13)$$

Hence, in view of (12) and (13), one has $\frac{\Psi(w)}{\Phi(w)} \geq \frac{p(r_2 - r_1)^p}{(r_2/r_1)^N - 1} \frac{\inf_{x \in \Omega} F(x, \delta)}{\delta^p}$. By virtue of (11) and taking into account (iv), we get

$$\begin{aligned} \frac{\sup_{u \in \Phi^{-1}([-\infty, \gamma^p])} \Psi(u)}{\gamma^p} &\leq a_1 c_1 \sqrt[p]{\frac{1}{\gamma^{p-1}}} + \frac{a_2}{q} c_q^q p^{q/p} \gamma^{q-p} \\ &= \frac{p(r_2 - r_1)^p}{(r_2/r_1)^N - 1} \left(a_1 \frac{K_1}{\gamma^{p-1}} + a_2 K_2 \gamma^{q-p} \right) \\ &< \frac{p(r_2 - r_1)^p}{(r_2/r_1)^N - 1} \frac{\inf_{x \in \Omega} F(x, \delta)}{\delta^p} \\ &\leq \frac{\Psi(w)}{\Phi(w)}. \end{aligned}$$

Therefore, assumption (a₁) of Theorem 2.1 is satisfied.

Moreover, if $s < p$, for every $u \in X$, $|u|^s \in L^{p/s}(\Omega)$ and the Hölder's inequality gives

$$\int_{\Omega} |u(x)|^s dx \leq \|u\|_{L^p(\Omega)}^s m(\Omega)^{\frac{p-s}{p}}, \quad \forall u \in X.$$

Then, by (5), one has

$$\int_{\Omega} |u(x)|^s dx \leq c_p^s \|u\|_p^s m(\Omega)^{\frac{p-s}{p}}, \quad \forall u \in X. \quad (14)$$

Finally, from (14) and due to assumption (iii), we obtain

$$J_{\lambda}(u) \geq \frac{\|u\|_p^p}{p} - \lambda b c_p^s m(\Omega)^{\frac{p-s}{p}} \|u\|_p^s - \lambda b m(\Omega), \quad \forall u \in X.$$

Therefore, $\Phi - \lambda \Psi$ is a coercive functional for every positive parameter λ , in particular, for every $\lambda \in \Lambda_1 \subseteq \left[\frac{\Phi(w)}{\Psi(w)}, \frac{\gamma^p}{\sup_{\Phi(u) \leq \gamma^p} \Psi(u)} \right]$.

Then, also assumption (a₂) holds. Hence all assumptions of Theorem 2.1 are satisfied, so that, for each $\lambda \in \Lambda_1$, the functional $\Phi - \lambda \Psi$ has at least three distinct critical points that are weak solutions of problem (1). \square

Remark 3.1. *We note that if $f(x, 0) \not\equiv 0$ in Ω , then Theorem 3.1 ensures the existence of at least three non-zero weak solutions for problem (1). Moreover if, in addition, f is a non-negative function, the Strong Maximum Principle (see [8, Theorem 8.19]) and Theorem 3.1 guarantee the existence of at least three positive weak solutions.*

Finally, we give a particular consequence of Theorem 3.1 as follows.

Corollary 3.1. *Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative function such that $f(0) \neq 0$. Assume that*

(j) *there exist two non-negative constants a_1, a_2 and $q \in]1, p^*[$ such that*

$$f(t) \leq a_1 + a_2 |t|^{q-1},$$

for every $t \in \mathbb{R}$;

(jj) *there exists a positive constant δ with $\delta > \kappa$ such that*

$$\frac{\int_0^{\delta} f(t) dt}{\delta^p} > a_1 K_1 + a_2 K_2;$$

(jjj)

$$\lim_{t \rightarrow +\infty} \frac{f(t)}{t^{\alpha}} = 0,$$

for some $0 \leq \alpha < 1$.

Then, for each λ belonging to

$$\Lambda_2 := \left[\frac{(r_2/r_1)^N - 1}{p(r_2 - r_1)^p} \frac{\delta^p}{F(\delta)}, \frac{(r_2/r_1)^N - 1}{p(r_2 - r_1)^p} \frac{1}{a_1 K_1 + a_2 K_2} \right],$$

the problem

$$\begin{cases} -\Delta_p u = \lambda f(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

possesses at least three positive weak solutions in X .

Proof. The conclusion readily follows from Theorem 3.1 and Remark 3.1 by choosing $\gamma = 1$ and taking into account that assumption (jjj) implies (iii). \square

4. Conclusion

Based on a recent three critical points theorem obtained by Bonanno and Marano [5], we established the existence of an open interval λ', λ'' for each λ in the interval a class of Dirichlet boundary value problems involving the p -Laplacian and depending on λ admits at least three weak solutions.

REFERENCES

- [1] *G.A. Afrouzi and S. Heidarkhani*, Existence of three solutions for a class of Dirichlet quasilinear elliptic systems involving the (p_1, \dots, p_n) -Laplacian, *Nonlinear Anal.*, **70**(2009), 135-143.
- [2] *G.A. Afrouzi and S. Heidarkhani*, Multiplicity theorems for a class of Dirichlet quasilinear elliptic systems involving the (p_1, \dots, p_n) -Laplacian, *Nonlinear Anal.*, **73**(2010), 2594-2602.
- [3] *D. Averna and G. Bonanno*, A three critical points theorem and its applications to the ordinary Dirichlet problem, *Topol. Methods Nonlinear Anal.*, **22**(2003), 93-103.
- [4] *G. Bonanno, S. Heidarkhani and D. O'Regan*, Multiple solutions for a class of Dirichlet quasilinear elliptic systems driven by a (p, q) -Laplacian operator, *Dynam. Systems Appl.*, **20**(2011), 89-100.
- [5] *G. Bonanno and S.A. Marano*, On the structure of the critical set of non-differentiable functions with a weak compactness condition, *Appl. Anal.*, **89**(2010), 1-10.
- [6] *G. Bonanno and G. Molica Bisci*, Three weak solutions for elliptic Dirichlet problems, *J. Math. Anal. Appl.*, **382**(2011), 1-8.
- [7] *P. Drábek and J. Milota*, *Methods of Nonlinear Analysis: Applications to Differential Equations*, Birkhäuser, Basel-Boston-Berlin, 2007.
- [8] *D. Gilbarg and N.S. Trudinger*, *Elliptic Partial Differential Equations of Second Order*, 2nd edition, Springer-Verlag, Berlin, 1983.
- [9] *J.R. Graef, S. Heidarkhani and L. Kong*, A critical points approach for the existence of multiple solutions of a Dirichlet quasilinear system, *J. Math. Anal. Appl.*, **388**(2012), 1268-1278.
- [10] *C. Li and C.-L. Tang*, Three solutions for a class of quasilinear elliptic systems involving the (p, q) -Laplacian, *Nonlinear Anal.*, **69**(2008), 3322-3329.
- [11] *B. Ricceri*, On a three critical points theorem, *Arch. Math. (Basel)*, **75**(2000), 220-226.
- [12] *J. Simon*, Régularité de la solution d'une équation non linéaire dans \mathbb{R}^N , in: *Journées d'Analyse Non Linéaire* (Proc. Conf., Besançon, 1977), in: *Lecture Notes in Math.*, Vol. 665, Springer, (1978), 205-227.
- [13] *M. Struwe*, *Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems*, 4th edition, Springer-Verlag, Berlin, 2008.
- [14] *G. Talenti*, Best constant in Sobolev inequality, *Ann. Mat. Pura Appl.*, **110**(1976), 353-372.
- [15] *E. Zeidler*, *Nonlinear Functional Analysis and its Application*, Vol. II/B, Berlin-Heidelberg-New York, 1990.