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EXISTENCE OF THREE SOLUTIONS FOR ELLIPTIC
DIRICHLET PROBLEMS INVOLVING THE p-LAPLACIAN

G.A. Afrouzi', A. Hadjian? and T.A. Roushan?

The aim of this note is to establish the existence of at least three weak
solutions for a Dirichlet boundary value problem involving the p-Laplacian. The
approach is based on variational methods.
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1. Introduction

In this paper, we are interested in ensuring the existence of at least three weak
solutions for the following Dirichlet problem

—Apu = Af(x,u) inQ, (1)
u=20 on 052,

where Q ¢ RY (N > 3) is a non-empty bounded open set with a smooth boundary
00, 2 <p< N, \is a positive parameter and f : Q x R — R is a function.

Motivated by the fact that such problems are used to describe a large class of
physical phenomena, many authors have studied the existence and multiplicity of
solutions for (1).

The aim of this paper is to establish a precise interval of parameters \ for which
problem (1) admits at least three non-zero solutions. Our analysis is based mainly
on a three critical points theorem due to Bonanno and Marano [5] to transfer the
existence of critical points of the Euler functional to the existence of three solutions
to problem (1).

In the literature many papers (see, for instance, the papers [1, 2, 3, 4, 6, 9, 10]
and references therein) deal with nonlinear elliptic problems with Dirichlet boundary
conditions. For example, Li and Tang in [10], using a three critical points theorem
of Ricceri [11], established the existence of an interval A C [0, +o0o[ and a positive
real number p such that for each A € A the quasilinear elliptic system

—Apu = AFy(z,u,v) in Q,
—Ayv = AFy(z,u,v) inQ,
u=v=>0 on 0}
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admits at least three weak solutions whose norms in W, 7() x W, 9(Q) are less
than p, and in [1] some similar results for the quasilinear elliptic system

Apui + AFy, (z,ur,. .., u,) =0 in Q, @)
u; =0 on Jf2

for 1 < ¢ < n, were obtained. In [2], the authors using a three critical points theorem
of Averna and Bonanno [3], proved the existence of a definite interval, in which A
lies, system (2) admits at least three weak solutions. Also in [4], the authors based
on a very recent three critical points theorem due to Bonanno and Maranno [5],
established the existence of an open interval A; for each A\ of which, the quasilinear
elliptic system

—Apu + a(z)|ulP~?u = AF,(z,u,v) in Q,
—Agv + b(2)|v|97 %0 = AFy(x,u,v)  in Q,
u=v=0 on 01},

where Q@ € RY(N > 1) is a non-empty bounded open set with a smooth boundary
090, p,q > N, X\ is a positive parameter, a,b € L>*(Q) with essinfoa > 0 and
essinfq b > 0, and F : Q x R? = R is a function such that F(-,t1,t2) is continuous
in Q for all (t1,t2) € R? and F(x,-,-) is C* in R? for every x € Q, admits at least
three distinct weak solutions in W, () x W, ().

We note that the ideas used here are motivated by the corresponding ones in
[6].

This paper is arranged as follows. In Section 2, we recall some basic notations
and definitions and our main tool (Theorem 2.1), while Section 3 is devoted to our
main result (Theorem 3.1) and a consequence in the autonomous case.

2. Preliminaries

Our main tool is the following three critical points theorem due to
Bonanno and Marano [5]. Here, X* denotes the dual space of X.

Theorem 2.1 (Theorem 3.6 of [5]). Let X be a reflexzive real Banach space;
®: X — R a coercive, continuously Gateaux differentiable and sequentially weakly
lower semicontinuous functional whose Gateaux derivative admits a continuous in-
verse on X*; and ¥ : X — R be a continuously Gateauzx differentiable functional
whose Gateauz derivative is compact such that

®(0) = ¥(0) = 0.

Assume that there exist r > 0 and * € X, with r < ®(Z), such that:
swpg (<, ¥(z) _ 0(z
(a1) = )TS < q>g—g;

(ag) for each A € A, =] igg, Supa; )r< \y(z)[ the functional ® — AV is coercive.

Then, for each A € A, the functional Jy := ® — AV has at least three distinct critical
points in X.

In the sequel, f: 2 x R — R is a Carathéodory function such that
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(i) there exist two non-negative constants ay,az and q €]1,pN /(N — p)| such that
|f(z,1)] < ar + azft|"™,

for every (z,t) € Q x R.
Throughout this paper, X will denote the Sobolev space I/VO1 P(Q) with the

norm
1/p
el = ( / rwwdx) .

We say that u: Q — R is a (weak) solution to problem (1) if u € X and

/ |Vu(z)[P~2Vu(z)Vo(z)ds — X / flz,u(x))v(z)de =0
Q Q

for all v € X.
Let p* = pN /(N — p) be the critical Sobolev exponent and denote, as usual,
with I" the Gamma function defined by

+o00
I(t) := / 2 lem2dz, Vi>0.
0

From the Sobolev embedding theorem (see, for instance [13, Theorem A.5])
there exists ¢ € R such that
[ull ooy < cllully,  weX. (3)

The best constant that appears in (3) is

(P 1\ I'(1+ N/2)T(N) N
c=r N () ey oy @

see, for instance, [14].
Fixing ¢ € [1,p*[, again from the Sobolev embedding theorem, there exists a
positive constant ¢, such that

[ulla@) < cqllullp, — weX, (5)

and, in particular, the embedding X — L%(Q2) is compact.
Since ¢ < p*, by using Holder’s inequality we have
p*;q
[ull Lagay < m(Q) 774 [|ul| Lo (g,

*
p*—

and due to (4), ¢g < ecm(Q) 7
set €.

Now, fix 2° € Q and pick 71,79 with 0 < r; < 73 such that S(2°,r;) C
S(z% 12) C Q, where S(2°,7;) denotes the ball with center at #° and radius r; for
i=1,2.

Finally, put

, where m(£2) denotes the Lebesgue measure of the

ro —r1 (pI'(1 4+ N/2)\1/p
B 7TN/21’< ry —rlV > ’ (6)
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and
1-p a=p
p 7 ci((ra/r)V —1) p 7 cg((ra/r)™ = 1)
Ky = s Ky = . (7)
(rg —r1)P q(rg —r1)P

3. Main results

We need the following proposition in the proof of our main result.
Proposition 3.1. LetT : X — X* be the operator defined by T'(u)(v) = [ |[Vu(z)[P~2

Vu(z)Vu(x)dx for every u,v € X. Then T admits a contmuous inverse on X*.

Proof. If z,y € R™ and (-, -) denotes the usual inner product in R", owing to (2.2) of
[12], there exists a positive constant ¢, such that (|z[P~2z—|y|[P~2y, z—y) > cplz—yP.
Thus, it is easy to verify that (T'(u) — T'(v))(u—v) > cpllu—v||b, for every u,v € X.
This actually means that T is a uniformly monotone operator in X. For every
u € X \ {0} we have

(T(u),u) fQ |Vu(z)Pdx
[[ullp [Jwllp

hence T is coercive. Also, T is hemicontinuous, since it is continuous. Therefore,
the conclusion follows immediately by applying Theorem 26.A of [15]. g

= |lullp™"

By standard arguments, we can prove the following result.

Proposition 3.2. Let f: QxR — R be a Carathéodory function such that assump-
tion (i) holds and F defined by

Fa,€) = / o tdt, € € QxR (8)
Then ¥ : X — R defined by V(u) := [ F( ))dz is a Gateaux differentiable
functional on X with compact derwatwe v( fQ Ju(x)dx for every

veX.

Proof. Suppose u,v € X and t 7& 0. Then, by the Mean Value Theorem
v tv)
(ut tv) / f(z,u(x))v(z)dr

glgﬂ%mw+mmwm»—ﬂ 2)|Jv(x)|dz

< lvlloo/Q |f (@, u(@) + t¢(2)v(2)) — f(2,u(@))|dz,

where 0 < ((z) < 1 for every x € 2 for which F(x,¢) is differentiable with respect
to . Since f is a Carathéodory function, we have lim;_,¢ f(z,u(z) + t¢(z)v(z)) =
f(z,u(z)) for a.e. z € 2. Then, by the assumption (i) on f(z,t) we have

| (@, u(@) + t(x)v(z)) = f(z,u(z))|

< 201 + aa((k + Du(@)[! + kfo(@) ")
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for any |t| < 1 and some k& > 0. Therefore the Lebesgue Convergence Theorem
implies lim;_sq W’iu = Jo f( Yo(z)dz. So, \If X — Risa Gateaux dif-
ferentiable functlonal at every u € X Wlth derivative U'( = Jo f( Yo(x)dz
for every v € X. To show that ¥/ : X — X* is a compact operator 1t Sufﬁces to
show that ¥’ is strongly continuous on X. Let w, — w in X. Then u, — u uni-
formly on Q. Now since F(z,¢&) is differentiable with respect to £ for a.e. = € Q,
the derivative of F' is continuous in R for a.e. x € Q, so f(x,u,) — f(x,u). Thus
U (uy) — W'(u), i.e., ¥ is strongly continuous on X and this implies that ¥’ is a
compact operator by [15, Proposition 26.2]. ]

Our main result is the following theorem.

Theorem 3.1. Let f : QxR — R be a Carathéodory function such that assumption
(i) holds. Furthermore, assume that
(i) F(x,&) >0 for every (x,€) € Q x RT, where F is given by (8)
(iii) there exist two positive constants b and s < p such that F(x,§) < b(1 + [£|%),
for almost every x € Q and for every £ € R;
(iv) there exist two positive constants v and 0, with 6 > vk such that

inf,cq F(x,9) K, _
5P > a1 ,yp—l + CLQKQ”)/q p

where ay,a are given in (i) and K, K1, Ko are given by (6) and (7).

Then, for each A belonging to

(T’Q/T’l)N -1 5p (7’2/7’1)N -1 1
p(re — )P infyeq F(x,0)" p(ro — 1)

A1 =

problem (1) admits at least three weak solutions in X .

Proof. In order to apply Theorem 2.1, we define &, ¥ : X — R by

D(u) := ||1;”p, and  U(u):= /QF(x,u(x))dx, Vu € X.

The functional @ is continuously Gateaux differentiable with @' (u)(v) = [¢, |Vu(z)[P~2
Vu(z)Vu(x)dx for every u,v € X (see, e.g., [7, page 133]). By Proposmon 3.1, ¢
admits a continuous inverse on X*, and since @’ is monotone, ® is sequentially weakly
lower semicontinuous (see [15, Proposition 25. 20]) Also V¥ is continuously Gateaux
differentiable functional with W’( = [o f( Ju(z)dz for every u,v € X,
and U’ is a compact operator (see PI"OpOSlthD 3. 2)

A critical point of the functional ® — AW is a function u € X such that

O'(u)(v) — AW/ (u)(v) = 0,
for every v € X. Hence the critical points of the functional ® — AW are weak solutions
of problem (1).
Clearly ® is coercive and ®(0) = ¥(0) = 0. By (i), we have

IEI

F(z,8) < ailg] + az—— (9)
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for every (z,€&) € Q x R. Taking into account (5) and (9) it follows that
W) = [ Fleu@)de < ailulle + 2l < ol + 2l
Then, for every u € X such that ®(u) <r, we get
U(u) < ajer §rp+ %Cg(rp)q/p.
Hence

sup  W(u) < arer §p + —=cl(rp)?P. (10)
ued—1(]—o0,r]) q

So, according to (10), we have

SUPyed—1(]—oo,r \I](u) a _
o (]T D < e/ Tﬁl + fcgpq/qu/p g (11)
for every r > 0.
Next, put
0 if v € Q\ B(2% ),
w(x) = TQEH (rg - \/Zjvzl(:c] - a:?)2> if v € B(2%,7r3) \ B(wo,71),
0 if z € B(z% ).
It is easy to verify that w € X and we have
P
O(w) = ! / 67dx
P JB(@0ro\B(20,r1) (T2 — T1)P
5P
- B 0 o B 0
p(ra —r1)P <m( (2%, 72)) = m(B(x ’Tl))>
5P 7[.N/2

= T'N—TN .
N p(’r’g —Tl)p P(1+N/2)( 2 ! ) <12)

Bearing in mind that § > ~yk, it follows that ®(w) > P =:r.
At this point, thanks to (ii), we obtain

P2
v > F(x,0)dx > inf F(x,0) =—————. 13
(w)= /B(xom (e, ) = Ib F (e 0) 5 v (13)
Hence, in view of (12) and (13), one has gggg > (fi;il_)?’)fl infze%f(w’(s). By virtue of
(11) and taking into account (iv), we get
SUPyep—1(J—co?)) W (1) 1 a -
pv: < a101{/137p,1 + ;cgpq/pvq g

ro —1r1)P K
— (fg(/il)Nl—) : <a17p_11 - agKﬂq*p)
p(re —r1)P infeeq F(x,6)
(TQ/Tl)N -1 op
¥(w)

O (w)’

IN
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Therefore, assumption (a;) of Theorem 2.1 is satisfied.
Moreover, if s < p, for every u € X, |u|* € LP/*(Q) and the Holder’s inequality
gives

p—=s
/Q|u(a:)|5dx < ullze@ym() », Vue X.

Then, by (5), one has

/Q lu(z)|®dx < c§||u||;m(9)%, Vue X. (14)
Finally, from (14) and due to assumption (iii), we obtain
Jx(u) > ”1;”15 A m(Q) T ulls — Abm(Q),  Vue X.
Therefore, & — AWV is a coercive functional for every positive parameter )\, in partic-
ular, for every A € A; C i&”ug, Supq}(u;’;p T [

Then, also assumption (ag) holds. Hence all assumptions of Theorem 2.1 are
satisfied, so that, for each A € Ay, the functional ® — AV has at least three distinct
critical points that are weak solutions of problem (1). O

Remark 3.1. We note that if f(x,0) £ 0 in Q, then Theorem 3.1 ensures the
existence of at least three mon-zero weak solutions for problem (1). Moreover if,
in addition, f is a non-negative function, the Strong Maximum Principle (see [8,
Theorem 8.19]) and Theorem 3.1 guarantee the existence of at least three positive
weak solutions.

Finally, we give a particular consequence of Theorem 3.1 as follows.

Corollary 3.1. Let f : R — R be a non-negative function such that f(0) # 0.
Assume that

J ere exts wo non-nega we constants ai, a2 ana q - P Suc a
i) th st t ti tant d 1,p* h that
f(t) <ay +aglt|9,

for every t € R;
(jj) there exists a positive constant 6 with 0 > k such that

1)
t)dt
M > a1 K1 + asKo;
op
(iij)
lim 1) =0,
t—+oo t¢

for some 0 < a < 1.
Then, for each A\ belonging to

(T‘Q/T‘l)N —1 51? (Tg/Tl)N —1 1
p(ro —r)P F(6) p(re —m)P a1 K+ asKa |’

Ay =
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the problem

—Apu=Af(u) inQ,
u =0 on 01,

possesses at least three positive weak solutions in X.

Proof. The conclusion readily follows from Theorem 3.1 and Remark 3.1 by choosing
~v =1 and taking into account that assumption (jjj) implies (iii). O

4. Conclusion

Based on a recent three critical points theorem obtained by Bonanno and

Marano [5], we established the existence of an open interval ]A", \"[ for each X in the
interval a class of Dirichlet boundary value problems involving the p-Laplacian and

depending on A\ admits at least three weak solutions.
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