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EXISTENCE OF THREE SOLUTIONS FOR ELLIPTIC

DIRICHLET PROBLEMS INVOLVING THE p-LAPLACIAN

G.A. Afrouzi1, A. Hadjian2 and T.A. Roushan2

The aim of this note is to establish the existence of at least three weak

solutions for a Dirichlet boundary value problem involving the p-Laplacian. The

approach is based on variational methods.
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1. Introduction

In this paper, we are interested in ensuring the existence of at least three weak

solutions for the following Dirichlet problem{
−∆pu = λf(x, u) in Ω,

u = 0 on ∂Ω,
(1)

where Ω ⊂ RN (N ≥ 3) is a non-empty bounded open set with a smooth boundary

∂Ω, 2 ≤ p < N , λ is a positive parameter and f : Ω× R → R is a function.

Motivated by the fact that such problems are used to describe a large class of

physical phenomena, many authors have studied the existence and multiplicity of

solutions for (1).

The aim of this paper is to establish a precise interval of parameters λ for which

problem (1) admits at least three non-zero solutions. Our analysis is based mainly

on a three critical points theorem due to Bonanno and Marano [5] to transfer the

existence of critical points of the Euler functional to the existence of three solutions

to problem (1).

In the literature many papers (see, for instance, the papers [1, 2, 3, 4, 6, 9, 10]

and references therein) deal with nonlinear elliptic problems with Dirichlet boundary

conditions. For example, Li and Tang in [10], using a three critical points theorem

of Ricceri [11], established the existence of an interval Λ ⊆ [0,+∞[ and a positive

real number ρ such that for each λ ∈ Λ the quasilinear elliptic system
−∆pu = λFu(x, u, v) in Ω,

−∆qv = λFv(x, u, v) in Ω,

u = v = 0 on ∂Ω
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admits at least three weak solutions whose norms in W 1,p
0 (Ω) × W 1,q

0 (Ω) are less

than ρ, and in [1] some similar results for the quasilinear elliptic system{
∆piui + λFui(x, u1, . . . , un) = 0 in Ω,

ui = 0 on ∂Ω
(2)

for 1 ≤ i ≤ n, were obtained. In [2], the authors using a three critical points theorem

of Averna and Bonanno [3], proved the existence of a definite interval, in which λ

lies, system (2) admits at least three weak solutions. Also in [4], the authors based

on a very recent three critical points theorem due to Bonanno and Maranno [5],

established the existence of an open interval Λ1 for each λ of which, the quasilinear

elliptic system 
−∆pu+ a(x)|u|p−2u = λFu(x, u, v) in Ω,

−∆qv + b(x)|v|q−2v = λFv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 1) is a non-empty bounded open set with a smooth boundary

∂Ω, p, q > N, λ is a positive parameter, a, b ∈ L∞(Ω) with ess infΩ a ≥ 0 and

ess infΩ b ≥ 0, and F : Ω× R2 → R is a function such that F (·, t1, t2) is continuous
in Ω for all (t1, t2) ∈ R2 and F (x, ·, ·) is C1 in R2 for every x ∈ Ω, admits at least

three distinct weak solutions in W 1,p
0 (Ω)×W 1,q

0 (Ω).

We note that the ideas used here are motivated by the corresponding ones in

[6].

This paper is arranged as follows. In Section 2, we recall some basic notations

and definitions and our main tool (Theorem 2.1), while Section 3 is devoted to our

main result (Theorem 3.1) and a consequence in the autonomous case.

2. Preliminaries

Our main tool is the following three critical points theorem due to

Bonanno and Marano [5]. Here, X∗ denotes the dual space of X.

Theorem 2.1 (Theorem 3.6 of [5]). Let X be a reflexive real Banach space;

Φ : X → R a coercive, continuously Gâteaux differentiable and sequentially weakly

lower semicontinuous functional whose Gâteaux derivative admits a continuous in-

verse on X∗; and Ψ : X → R be a continuously Gâteaux differentiable functional

whose Gâteaux derivative is compact such that

Φ(0) = Ψ(0) = 0.

Assume that there exist r > 0 and x̄ ∈ X, with r < Φ(x̄), such that:

(a1)
supΦ(x)≤r Ψ(x)

r < Ψ(x̄)
Φ(x̄) ;

(a2) for each λ ∈ Λr =]Φ(x̄)
Ψ(x̄) ,

r
supΦ(x)≤r Ψ(x) [ the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr, the functional Jλ := Φ−λΨ has at least three distinct critical

points in X.

In the sequel, f : Ω× R → R is a Carathéodory function such that
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(i) there exist two non-negative constants a1, a2 and q ∈]1, pN/(N − p)[ such that

|f(x, t)| ≤ a1 + a2|t|q−1,

for every (x, t) ∈ Ω× R.
Throughout this paper, X will denote the Sobolev space W 1,p

0 (Ω) with the

norm

∥u∥p =
(∫

Ω
|∇u(x)|pdx

)1/p

.

We say that u : Ω → R is a (weak) solution to problem (1) if u ∈ X and∫
Ω
|∇u(x)|p−2∇u(x)∇v(x)dx− λ

∫
Ω
f(x, u(x))v(x)dx = 0

for all v ∈ X.

Let p∗ = pN/(N − p) be the critical Sobolev exponent and denote, as usual,

with Γ the Gamma function defined by

Γ(t) :=

∫ +∞

0
zt−1e−zdz, ∀ t > 0.

From the Sobolev embedding theorem (see, for instance [13, Theorem A.5])

there exists c ∈ R+ such that

∥u∥Lp∗ (Ω) ≤ c∥u∥p , u ∈ X. (3)

The best constant that appears in (3) is

c = π−1/2N−1/p
( p− 1

N − p

)1−1/p
{

Γ(1 +N/2)Γ(N)

Γ(N/p)Γ(1 +N −N/p)

}1/N

, (4)

see, for instance, [14].

Fixing q ∈ [1, p∗[, again from the Sobolev embedding theorem, there exists a

positive constant cq such that

∥u∥Lq(Ω) ≤ cq∥u∥p , u ∈ X, (5)

and, in particular, the embedding X ↪→ Lq(Ω) is compact.

Since q < p∗, by using Hölder’s inequality we have

∥u∥Lq(Ω) ≤ m(Ω)
p∗−q
p∗q ∥u∥Lp∗ (Ω),

and due to (4), cq ≤ cm(Ω)
p∗−q
p∗q , where m(Ω) denotes the Lebesgue measure of the

set Ω.

Now, fix x0 ∈ Ω and pick r1, r2 with 0 < r1 < r2 such that S(x0, r1) ⊂
S(x0, r2) ⊆ Ω, where S(x0, ri) denotes the ball with center at x0 and radius ri for

i = 1, 2.

Finally, put

κ :=
r2 − r1

πN/2p

(pΓ(1 +N/2)

rN2 − rN1

)1/p
, (6)
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and

K1 :=
p

1−p
p c1

(
(r2/r1)

N − 1
)

(r2 − r1)p
, K2 :=

p
q−p
p cqq

(
(r2/r1)

N − 1
)

q(r2 − r1)p
. (7)

3. Main results

We need the following proposition in the proof of our main result.

Proposition 3.1. Let T : X → X∗ be the operator defined by T (u)(v) =
∫
Ω |∇u(x)|p−2

∇u(x)∇v(x)dx for every u, v ∈ X. Then T admits a continuous inverse on X∗.

Proof. If x, y ∈ Rn and ⟨·, ·⟩ denotes the usual inner product in Rn, owing to (2.2) of

[12], there exists a positive constant cp such that ⟨|x|p−2x−|y|p−2y, x−y⟩ ≥ cp|x−y|p.
Thus, it is easy to verify that (T (u)−T (v))(u− v) ≥ cp∥u− v∥pp, for every u, v ∈ X.

This actually means that T is a uniformly monotone operator in X. For every

u ∈ X \ {0} we have

⟨T (u), u⟩
∥u∥p

=

∫
Ω |∇u(x)|pdx

∥u∥p
= ∥u∥p−1

p ,

hence T is coercive. Also, T is hemicontinuous, since it is continuous. Therefore,

the conclusion follows immediately by applying Theorem 26.A of [15]. �

By standard arguments, we can prove the following result.

Proposition 3.2. Let f : Ω×R → R be a Carathéodory function such that assump-

tion (i) holds and F defined by

F (x, ξ) :=

∫ ξ

0
f(x, t)dt, ∀(x, ξ) ∈ Ω× R. (8)

Then Ψ : X → R defined by Ψ(u) :=
∫
Ω F (x, u(x))dx is a Gâteaux differentiable

functional on X with compact derivative Ψ′(u)(v) =
∫
Ω f(x, u(x))v(x)dx for every

v ∈ X.

Proof. Suppose u, v ∈ X and t ̸= 0. Then, by the Mean Value Theorem∣∣∣∣Ψ(u+ tv)−Ψ(u)

t
−

∫
Ω
f(x, u(x))v(x)dx

∣∣∣∣
≤

∫
Ω

∣∣f(x, u(x) + tζ(x)v(x))− f(x, u(x))
∣∣|v(x)|dx

≤ ∥v∥∞
∫
Ω

∣∣f(x, u(x) + tζ(x)v(x))− f(x, u(x))
∣∣dx,

where 0 < ζ(x) < 1 for every x ∈ Ω for which F (x, ξ) is differentiable with respect

to ξ. Since f is a Carathéodory function, we have limt→0 f(x, u(x) + tζ(x)v(x)) =

f(x, u(x)) for a.e. x ∈ Ω. Then, by the assumption (i) on f(x, t) we have∣∣f(x, u(x) + tζ(x)v(x))− f(x, u(x))
∣∣

≤ 2a1 + a2
(
(k + 1)|u(x)|q−1 + k|v(x)|q−1

)
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for any |t| < 1 and some k > 0. Therefore, the Lebesgue Convergence Theorem

implies limt→0
Ψ(u+tv)−Ψ(u)

t =
∫
Ω f(x, u(x))v(x)dx. So, Ψ : X → R is a Gâteaux dif-

ferentiable functional at every u ∈ X with derivative Ψ′(u)(v) =
∫
Ω f(x, u(x))v(x)dx

for every v ∈ X. To show that Ψ′ : X → X∗ is a compact operator, it suffices to

show that Ψ′ is strongly continuous on X. Let un ⇀ u in X. Then un → u uni-

formly on Ω. Now since F (x, ξ) is differentiable with respect to ξ for a.e. x ∈ Ω,

the derivative of F is continuous in R for a.e. x ∈ Ω, so f(x, un) → f(x, u). Thus

Ψ′(un) → Ψ′(u), i.e., Ψ′ is strongly continuous on X and this implies that Ψ′ is a

compact operator by [15, Proposition 26.2]. �

Our main result is the following theorem.

Theorem 3.1. Let f : Ω×R → R be a Carathéodory function such that assumption

(i) holds. Furthermore, assume that

(ii) F (x, ξ) ≥ 0 for every (x, ξ) ∈ Ω× R+, where F is given by (8);

(iii) there exist two positive constants b and s < p such that F (x, ξ) ≤ b(1 + |ξ|s),
for almost every x ∈ Ω and for every ξ ∈ R;

(iv) there exist two positive constants γ and δ, with δ > γκ such that

infx∈Ω F (x, δ)

δp
> a1

K1

γp−1
+ a2K2γ

q−p

where a1, a2 are given in (i) and κ,K1,K2 are given by (6) and (7).

Then, for each λ belonging to

Λ1 :=

]
(r2/r1)

N − 1

p(r2 − r1)p
δp

infx∈Ω F (x, δ)
,
(r2/r1)

N − 1

p(r2 − r1)p
1

a1
K1
γp−1 + a2K2γq−p

[
,

problem (1) admits at least three weak solutions in X.

Proof. In order to apply Theorem 2.1, we define Φ,Ψ : X → R by

Φ(u) :=
∥u∥pp
p

, and Ψ(u) :=

∫
Ω
F (x, u(x))dx, ∀u ∈ X.

The functional Φ is continuously Gâteaux differentiable with Φ′(u)(v) =
∫
Ω |∇u(x)|p−2

∇u(x)∇v(x)dx for every u, v ∈ X (see, e.g., [7, page 133]). By Proposition 3.1, Φ′

admits a continuous inverse onX∗, and since Φ′ is monotone, Φ is sequentially weakly

lower semicontinuous (see [15, Proposition 25.20]). Also, Ψ is continuously Gâteaux

differentiable functional with Ψ′(u)(v) =
∫
Ω f(x, u(x))v(x)dx for every u, v ∈ X,

and Ψ′ is a compact operator (see Proposition 3.2).

A critical point of the functional Φ− λΨ is a function u ∈ X such that

Φ′(u)(v)− λΨ′(u)(v) = 0,

for every v ∈ X. Hence the critical points of the functional Φ−λΨ are weak solutions

of problem (1).

Clearly Φ is coercive and Φ(0) = Ψ(0) = 0. By (i), we have

F (x, ξ) ≤ a1|ξ|+ a2
|ξ|q

q
, (9)
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for every (x, ξ) ∈ Ω× R. Taking into account (5) and (9) it follows that

Ψ(u) =

∫
Ω
F (x, u(x))dx ≤ a1∥u∥L1(Ω) +

a2
q
∥u∥qLq(Ω) ≤ a1c1∥u∥p +

a2
q
cqq∥u∥qp.

Then, for every u ∈ X such that Φ(u) ≤ r, we get

Ψ(u) ≤ a1c1 p
√
rp+

a2
q
cqq(rp)

q/p.

Hence

sup
u∈Φ−1(]−∞,r])

Ψ(u) ≤ a1c1 p
√
rp+

a2
q
cqq(rp)

q/p. (10)

So, according to (10), we have

supu∈Φ−1(]−∞,r])Ψ(u)

r
≤ a1c1

p

√
p

rp−1
+

a2
q
cqqp

q/prq/p−1, (11)

for every r > 0.

Next, put

w(x) :=


0 if x ∈ Ω \B(x0, r2),

δ
r2−r1

(
r2 −

√∑N
j=1(xj − x0j )

2

)
if x ∈ B(x0, r2) \B(x0, r1),

δ if x ∈ B(x0, r1).

It is easy to verify that w ∈ X and we have

Φ(w) =
1

p

∫
B(x0,r2)\B(x0,r1)

δp

(r2 − r1)p
dx

=
δp

p(r2 − r1)p

(
m
(
B(x0, r2)

)
−m

(
B(x0, r1)

))
=

δp

p(r2 − r1)p
πN/2

Γ(1 +N/2)
(rN2 − rN1 ). (12)

Bearing in mind that δ > γκ, it follows that Φ(w) > γp =: r.

At this point, thanks to (ii), we obtain

Ψ(w) ≥
∫
B(x0,r1)

F (x, δ)dx ≥ inf
x∈Ω

F (x, δ)
rN1 πN/2

Γ(1 +N/2)
. (13)

Hence, in view of (12) and (13), one has Ψ(w)
Φ(w) ≥

p(r2−r1)p

(r2/r1)N−1
infx∈Ω F (x,δ)

δp . By virtue of

(11) and taking into account (iv), we get

supu∈Φ−1(]−∞,γp])Ψ(u)

γp
≤ a1c1 p

√
p

1

γp−1
+

a2
q
cqqp

q/pγq−p

=
p(r2 − r1)

p

(r2/r1)N − 1

(
a1

K1

γp−1
+ a2K2γ

q−p
)

<
p(r2 − r1)

p

(r2/r1)N − 1

infx∈Ω F (x, δ)

δp

≤ Ψ(w)

Φ(w)
.
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Therefore, assumption (a1) of Theorem 2.1 is satisfied.

Moreover, if s < p, for every u ∈ X, |u|s ∈ Lp/s(Ω) and the Hölder’s inequality

gives ∫
Ω
|u(x)|sdx ≤ ∥u∥sLp(Ω)m(Ω)

p−s
p , ∀u ∈ X.

Then, by (5), one has∫
Ω
|u(x)|sdx ≤ csp∥u∥spm(Ω)

p−s
p , ∀u ∈ X. (14)

Finally, from (14) and due to assumption (iii), we obtain

Jλ(u) ≥
∥u∥pp
p

− λbcspm(Ω)
p−s
p ∥u∥sp − λbm(Ω), ∀u ∈ X.

Therefore, Φ− λΨ is a coercive functional for every positive parameter λ, in partic-

ular, for every λ ∈ Λ1 ⊆
]
Φ(w)
Ψ(w) ,

γp

supΦ(u)≤γp Ψ(u)

[
.

Then, also assumption (a2) holds. Hence all assumptions of Theorem 2.1 are

satisfied, so that, for each λ ∈ Λ1, the functional Φ− λΨ has at least three distinct

critical points that are weak solutions of problem (1). �

Remark 3.1. We note that if f(x, 0) ̸≡ 0 in Ω, then Theorem 3.1 ensures the

existence of at least three non-zero weak solutions for problem (1). Moreover if,

in addition, f is a non-negative function, the Strong Maximum Principle (see [8,

Theorem 8.19]) and Theorem 3.1 guarantee the existence of at least three positive

weak solutions.

Finally, we give a particular consequence of Theorem 3.1 as follows.

Corollary 3.1. Let f : R → R be a non-negative function such that f(0) ̸= 0.

Assume that

(j) there exist two non-negative constants a1, a2 and q ∈]1, p∗[ such that

f(t) ≤ a1 + a2|t|q−1,

for every t ∈ R;
(jj) there exists a positive constant δ with δ > κ such that∫ δ

0 f(t)dt

δp
> a1K1 + a2K2;

(jjj)

lim
t→+∞

f(t)

tα
= 0,

for some 0 ≤ α < 1.

Then, for each λ belonging to

Λ2 :=

]
(r2/r1)

N − 1

p(r2 − r1)p
δp

F (δ)
,
(r2/r1)

N − 1

p(r2 − r1)p
1

a1K1 + a2K2

[
,
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the problem {
−∆pu = λf(u) in Ω,

u = 0 on ∂Ω,

possesses at least three positive weak solutions in X.

Proof. The conclusion readily follows from Theorem 3.1 and Remark 3.1 by choosing

γ = 1 and taking into account that assumption (jjj) implies (iii). �

4. Conclusion

Based on a recent three critical points theorem obtained by Bonanno and

Marano [5], we established the existence of an open interval ]λ
′
, λ

′′
[ for each λ in the

interval a class of Dirichlet boundary value problems involving the p-Laplacian and

depending on λ admits at least three weak solutions.
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