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MINIMUM-NORM SOLUTIONS OF QUASIMONOTONE VARIATIONAL
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In this work, we propose a new self-adaptive extragradient projection method for
solving variational inequalities with Lipschitz continuous and quasimonotone mapping in
a real Hilbert space. Using the technique of inertial step into a single projection method,
we obtained strong convergence theorem for the proposed algorithm. Our results extend
and improve the existing results in the literature.
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1. Introduction

The paper deals with a new numerical approach for finding a solution of the quasi-
monotone variational inequality problem (VI) [16] [I7] in a real Hilbert space H.

Let C be a nonempty closed and convex subset in H and F': H — H be an operator.
Recall that the problem (VI) for the operator F' on C' is stated as follows:

Find z* € C such that (Fz*,y —z*) >0 for all y € C. (1)
The solution set of the problem (VI) is denoted by S.

The dual variational inequality problem of is to find a point z* € C such that
(Fr,x —2*) >0 Vo e C. (2)

We denote the solution set of dual variational inequality problem by Sp. It is obvious
that Sp is a closed convex set (possibly empty). In the case F' is continuous and C is convex,
we get

Sp CS.
If F is a pseudomonotone and continuous mapping, then S = Sp (see, Lemma 2.1 in
[12]). The inclusion S C Sp is false, if F' is a quasimonotone and continuous mapping (see,
Example 4.2 in [38]).
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Variational inequality theory is an important tool in economics, engineering mechan-
ics, mathematical programming, transportation and others (see, [1l 4 [ [7, 14} 24] 25| 26]).
Over the past decade, many numerical methods have been introduced for solving variational
inequalities and related optimization problems, see [9, [10} 1T}, 13, [15] 18] 28], 30} B36].

The simplest one for solving VI is the following gradient projection method:

vy € C,
Unt1 = Po(v, — 7Fvy,),

where Po denotes the metric projection of H onto the set C' and 7 is a positive real number.
The main restriction of gradient projection methods is that the operators require to be Lip-
schitz continuous and strongly monotone (or inverse strongly monotone). The extragradient
method which introduced by Korpelevich [27] and Antipin [3] overcomes this disadvantage
by performing an additional projection at each iteration in the following way:

vy € C,
un = Po(vn, — 7Fvy,), (3)
Un41 = PC(Un - TFun)a

where F': C — C is monotone and L-Lipschitz continuous, 7 € (0, %) Recently, the extra-
gradient method has given conclusive results assuming monotone and the Lipschitz contin-
uous mappings (see, e.g., [9, 13, 32]). It is well known that to implement the extragradient
method, one needs to calculate two projections onto C' in each iteration. In [9] Censor et al.
proposed the modified extragradient method which is called the subgradient extragradient
method. In their method, they replaced the second projection onto C' with a projection
onto a half-space. However, in the subgradient extragradient method, it requires the cost
mapping F' to be defined on the whole H. This is a barrier if the mapping F' is only Lipschitz
continuous on C.

In recent years, the class of pseudomonotone mappings has been studied for solving
the problem VI [ 20, [35] [37]. In particular, when the mapping associated with variational
inequality is pseudomonotone and sequentially weakly continuity, the extragradient method
is introduced for solving variational inequalities in real Hilbert spaces [32].

Recently, some authors have investigated some weak convergence results of the extra-
gradient methods when the assumption on F' is quasimonotone (or non-monotone), which is
weaker than the pseudomonotonicity assumption [2] 2T], 22] 29] 33], 34} B8]. This is of inter-
est because of the fact that the convergence analysis when F' is pseudomonotone cannot be
carried over to the case when F' is quasimonotone. For instance, when F' is quasimonotone,
the dual variational inequality of problem is not equivalent to problem . In [38], Ye
and He proposed a double projection method and proved that it converges to a solution of
problem when F' is only required to be continuous in a finite-dimensional space. Similar
results are obtained by Izuchukwu et al. [2I] 22], Alakoya et al. [2], Wang et al. [33] [34].
Recently, Liu et al. [29] proved that the forward-backward-forward method converges weakly
to a solution of when F' is quasimonotone, Lipschitz continuous and sequentially weakly
continuous in an infinite dimensional Hilbert space.

At the best knowledge of the authors, the study of the strong convergence of the
extragradient method for solving quasimonotone variational inequalities in the setting
of Hilbert space is still unexplored. This leads us to the following question.

Question: Can we give strong convergence results of the extragradient method
with the inertial technique for solving solving quasimonotone variational inequalities?
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Our aim in this paper is to answer the above question. We propose a new extragradient
method with an inertial step and self-adaptive step sizes for solving the problem , with
the following contributions: We introduce a novel extragradient method and obtain a strong
convergence result when F' is quasimonotone and Lipschitz continuous. Unlike the other
projections, our proposed algorithm requires the cost mapping F' to be calculated only on
the closed convex set C in each iteration, rather than on the entire H, and utilizes self-
adaptive step sizes to approximate a solution to the quasimonotone variational inequality
problem.

This paper is organized as follows: In Sect. 2, we recall some definitions and prelim-
inary results for further use. Sect. 3 deals with analyzing the convergence of the proposed
algorithms. we prove strong convergence results under the conditions that F' is Lipschitz
continuous and quasi-monotone on H and the solution set Sp is nonempty.

2. Preliminaries

Let H be a real Hilbert space and C' be a nonempty closed convex subset of H.
The weak convergence of {x,}°2 to z is denoted by z,, — x as n — oo, while the strong
convergence of {z,,}22; to z is written as x, — x as n — oo. For all z,y € H, we have

2+ ylI* <l + 2(y, « + ). (4)
For all x € H, there exists a unique nearest point in C, denoted by Pcx, such that
lo = Poz|| < [z -yl Vy € C.
Pc is called the metric projection of H onto C'. It is known that P¢ is nonexpansive.

Lemma 2.1 ([I9]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Gien x € H and z € C. Then we have

z=Pox<—=(x—z,2—y)>0 VyeC.

Lemma 2.2 ([0 [19]). Let C be a closed convex subset in a real Hilbert space H and x € H.
Then we have the following:

(1) [[Pcx — Peyll? < (Pox — Py, —y) Yy e H;
(2) [[Pex —y|?* < [lz —yl|* — ||z — Pez||* Vy e C.

Definition 2.1. Let F: H — H be a mapping. Then the mapping F is said to be:
(1) L-Lipschitz continuous with L > 0 if

|1Fz— Fy|| < Lz —y|| Va,y € H.
(2) monotone if
(Fx — Fy,x —y) >0 Vz,y € H.

(3) pseudomonotone in the sense of Karamardian [23] if

(Fx,y—z) >0 = (Fy,y—x) >0 Vz,y € H.
(4) quasimonotone, if

(Fe,y—z) >0= (Fy,y —z) >0 Va,y € H.
(5) d-strongly pseudomonotone if there exists a constant § > 0 such that

(Fe,z —y) > 0= (Fy,y —z) > 6|z —y||* Va,y € H.

(6) sequentially weakly continuous if, for each sequence {x,} in H, {x,,} converges weakly
to a point « € H implies {Fx, } converges weakly to Fz.

It is easy to see that every implication (2) = (3) = (4) hold, but the converse is
not true.
The following lemma gives a situation when Sp is nonempty.
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Lemma 2.3 ([38]). If either

(1) F is pseudomonotone on C and S # 0,

(2) F is the gradient of G, where G is a differential quasiconvex function on an open set
K,C C K and attains its global minimum on C,

(3) F is quasi-monotone on C, F # 0 on C and C is bounded,

(4) F is quasi-monotone on C, F # 0 on C and there exists a positive number r such that,
for every v € C with ||v|| > r, there exists y € C such that ||y|| < r and (Fv,y—v) <0,

(5) F is quasimonotone on C and Sy # 0, with Sy := S\Sr, where Sy = {z* €
C|{F(z*),y —x*) =0 Vy € C}.

(6) F is quasi-monotone on C, intC is nonempty and there exists v* € S such that Fv* # 0.

Then, Sp is nonempty.

Lemma 2.4 ([31]). Let {a,} be a sequence of nonnegative real numbers, {ay,} be a sequence
of real numbers in (0,1) with > > | a,, = oo and {b,} be a sequence of real numbers. Assume
that

ant1 < (1 —ap)an + anby,, ¥n>1,

If limsupy,_, o by, < 0 hold for every subsequence {an,} of sequence {a,} which satisfyies
liminfy oo (@ny,+1 — an,) > 0, then lim, o ap = 0.

3. The Main Results
We now introduce our algorithm.
Algorithm 3.1.

1
Initialization: Given 71 > 0,0 < a < A < 2 and {an}, {vn} are two nonnegative real

numbers sequences such that Zzo:l Yn < +00. Let xg,x1 € H be arbitrary. We assume
{0} C (0,1) is positive real numbers sequence that satisfies the following conditions:

lim (1 -6,) =0, > (1-6,) =occ.

n=1

Iterative Steps: Calculate x,41 as follows:
Step 1. Given the current iterates x,—1 and x, (n > 1), compute

Wpn = Ty + (T, — Tp—1),
yn = Po(w, — mnFwy,).
If y,, = w, then stop and w, is a solution of problem . Otherwise, go to Step 2.
Step 2. Compute
Tnt1 = (1 = X)(Onxn) + APo(wy, — 7 Fyn),
update

. lwn — yn | } .
min 4 pr————Tn + In if Fwy, # Fyn,
Tn4+1 = { HFwn - FynH

Tn + Vn otherwise.

Set n:=n+ 1 and return to Setp 1.
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3.1. Strong convergence

In order to analyze the convergence of the proposed algorithm, we assume the follow-
ing conditions:

Condition 3.1. Sp # 0.

Condition 3.2. The mapping F: C — C is L-Lipschitz continuous on H. However, the
information of L is not necessary to be known.

Condition 3.3. The mapping F is sequentially weakly continuous on C, i.e., for each
sequence {x,} C C, {z,} converges weakly to x* implies {Fx,} converges weakly to Fz*.

Condition 3.4. The mapping F is quasimonotone on C.
We need the following lemmas.

Lemma 3.1 ([29]). Let {r,} be a sequence generated by (5)). Then
lim 7, =7 with T € [min{ﬁ, E} ,T1 —|—o¢*],
n—oo L

where o =Y | v,. Moreover, we also obtain

[ Fw, — Fyn || <

Tn+1

Lemma 3.2. Assume that Conditions - hold. Let {w,} be a sequence generated
by Algorithm . If there exists a subsequence {wy,} convergent weakly to z € H and
limg o0 |Wn,, — Yn, |l = 0, then z € Sp or Fz = 0.

Proof. First, we see that {wy, } — 2z and limy_,o0 ||wn, — Yn, || = O this implies that y,, — z
and since y,, € C' we get z € C.

Now, we divide the proof into two cases.

Case 1: If limsup,_, . [|[F'yn, || = 0, then we have

lim || Fyp, || = liminf || Fyy,|| = 0.
k—oco k—oco
Since y,, converges weakly to z € C' and F' satisfies Condition we get
0 < ||| < liminf | Fyn, | =0.
k—o0
This implies that Fz = 0.
Case 2: If limsup,_, o [|[F'yn, || > 0. Without loss of generality, we take
lim ||Ayn, || =M > 0.
k— o0

M
It then follows that there exists a K € N such that ||Fy,,| > - for all kK > K. Since

Yn,, = Po(wp, — Tn, Fwy, ), we have
(Wny — T Fn, — Yng, @ — Yny) <0 Vo e C,

or, equivalently,

1
7<wnk _ynk7x_ynk> < <Fwnk’x _ynk> Vo € C.

ny
Consequently, we have

1
7<wnk _ynk7$_ynk> + <Fw'ﬂk7ynk _wnk> < <Fwnk7x_ wnk> vz € C. (6)

Tny,
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Since {wy, } is weakly convergent, {w,, } is bounded. Then, by the Lipschitz continuity of
F, {Fw,, } is bounded. AS |wn, — yn,| = 0, {yn,} is also bounded and 7,,, > min{ry, %}
Passing @ to the limit as kK — oo, we get

likminf(Fwn,c,x —wp,) >0 VzeC. (7)
— 00
Moreover, we have
<Fynk7x - ynk> = <Fynk - Fw"k’z - wnk> + <Fwnk7$ _wnk>
+<Fynk’wnk - ynk>' (8)
Since limg oo ||Wn, — Yn, || = 0 and F' is L-Lipschitz continuous on H, we get

lim ||Fwy, — Fyn, || =0
k—o0

which, together with and , implies that
liminf(Fyp,,z — yn,) > 0. 9)
k—o0

o If limsupy,_, oo (F¥Ynys T — Yn,,) > 0, then there exists a subsequence {ynkj} such that
limj_mo(Fynk,j , T — ynkj> > 0. Consequently, there exists jo € N such that

<Fy’ﬂkj7x_ ynkj> >0 V] > jO-
Letting j — oo, we have z € Sp.

o If limsup,,_, oo (FYn, , & — Yn,) = 0. From @ implies that

lim <Fymc7x - ynk> =0.
k— 00

1

Let € := |[(FYny, T — Yny )| + Pl Then we obtain

(FYnpy @ — Yny) + €6 >0 Vk > K. (10)
Furthermore, for each k > 1, since {y,, } C C, we can suppose Fy,, # 0 (otherwise, y, is
a solution) and, setting
__Fyn,

[y, 127

we have (Fyy,,,qn,) = 1 for each k > K. Now, we can deduce from that, for each
k> K,

Any,

<Fynk7x + Ekan - ynk> > O
Since F' is quasimonotone on H, we get
(F(z + €xqn, ), T + €kGn;, — Yn,) > 0. (11)
Now, for all k¥ > K, using we get
<F$,.T + €kln, — ynk> = <F.’L‘ - F(l‘ + ekan)?x + €kdn, — y’ﬂk>
+ <F(.’I3 + qunk),ﬂf + €kdn;, — ynk>

2 <F$ - F(SC + Ekan),l' + Ekan - ynk>

2 —|[Fz = F(x + exgn)l[|2 + €xgn, — yn,l

> —ex Ll gn, |1z + €xqni — Yo, |l

1
—ep Lz + exgn, — v

Y

2
—erL o7 lle + endny — Ynell (12)
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In 7 letting £k — oo and using the fact that limg ,o, €, = 0 and the boundedness of
{llz + €xdn. — Yn. ||} we get
(Fz,z—2z) >0 VzeC.

This implies that z € Sp. a
Theorem 3.1. Assume that Conditions[3.1] -[3.4] hold and Fx # 0, for all z € C. Then, the

sequence {x,} generated by Algorithm converges strongly to an element x* € Sp C S,
where ||z*|| = min{||u|| : v € Sp} provided that

. On
A T2l =0t =0 19
Remark 3.1. Note that Sp is a closed and convex set, thus ||z*| = min{||u|| : v € Sp}
implies that 2* = Ps, (0).

Proof. Let z, := Po(wn — T Fyn)-
Claim 1.

T
lzn = 22 < = 2*)2 = (1= p="
Tn+

v = wall® e —wal®- (14)
Indeed, since x* € Sp C S C C, we have
ll2n — x*HQ = || Po(wp — TnFyn) — ch*HQ

S <Zn - .17*,111” - TnFyn - $*>

1 1 1

= 5”271 _x*HQ + §||wn = T Fyn — x*HQ - 5”271 — Wn +TnFyn||2
1 1 . 1

= 5llen = |1 + 3 llwn — 2 I + 57721||F3/n|\2 —(wn — 2, T Fyn)
1 1

- §||zn - wn||2 - §TE||Fyn”2 — (20 — Wn, T FYn)

= Sllzn = 2P 4 gl — 2" = Zllzn — wall? = (20 — ", T ).
This implies that
20 — I*”z < lwy, — 93*”2 —lzn — wn||2 — 2(zn — 2", T Fyn). (15)
Since z* € Sp and y, € C we get
(Fyn, 2" —yn) < 0.
Thus we have
(Fyn, @ = zn) =(Fyn, 2" = yn) + (Fyn, Yn = 2n) < (Fyn,Yn — 2n)- (16)
From and , we obtain
2o = 2*[1* < wn —&*[1* = |20 — wall + 270 (Fyn, yn — 20)
= [Jwn — 33*”2 —|l2n — ynHZ — llyn — wn||2 = 2(2n = Yns Yn — W)
+ 270 (FYny Yn — 2n)
= llwn — ™ [1* — llz0 = yall* = llyn — wa®
+ 2{wn, — T FYn — Yny 20 — Yn)- (17)
Using Lemma it’s easy to see that from y,, = Po(w, — 1, Fw,), and z, € T,,, we obtain
2{Yn + T Fwy — Wa, Yn — 2n) < 0.

This is equivalent to
2<wn — TnF Wy, — Yn, 2n — yn> <0. (18)
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Using we deduce
2<wn - TnFyn — Yn,Zn — yn> = 2<wn — T Fw, — Yn,yZn — yn> + 27—n<Fwn - Fyrmzn - yn>

< 2Tn<Fwn - Fynazn - yn>
Tn Tn

Hwn_ynHZ‘f’N ||yn_ZnH2 (19)

Tn+1 Tn+1
Substituting into , we obtain

lzn = @1 < llwn = ¥ = (1-

<u

Tn

.
Yy = wall? = (1= 5= ) 20 = yall®
Tn+1 Tn+1

.
= flwn = 2* 2 = (1= p="
Tn+1

)l = wall® + 1120 = 9all?),

From lim,, o (1 —u Tn ) =1—p >0, it follows that there exists ng € N such that
Tn+1
Tn
1—p >0 VYn > ng.
Tn+41

Thus, we have
l2n — 2" < [lwn — 2™ Vn = no.

Claim 2. The sequence {z,} is bounded. Indeed, by Claim 1 then there exists ny € N such
that
om — 2l < llwn — 2| ¥n > no. (20)

On the other hand, from the definition of w,, we get
[wn — 2| = llzn + anlzn — Tp—1) — 27|

<wn — 2| + anllzn — Tn-1l

* On
= e — 2 (1= B) 2 — ] (21)
By the condition lim,, 1 %Hxn — zp—1|| = 0, it follows that there exists a constant
M > 0 such that "
- a"g |n — 2n_1]| < My, ¥n>1. (22)
Combining (20)), and (22), we obtain
[2n = 2| < llwp — &% < [Jon — 2" + (1 = 6n) M. (23)

Now, from the definition of {z,}, we get

[#nt1 = 2% = [[(1 = A)(Onzn) + A — 27
1=XN0p(xn —2) + Azn —2") = (1 = 6,)(1 — N)z™||
1—

( 6
<N =A)bn(wn —27) + Mzn =) + (1= ) (1 = Ml2"[l. - (24)
Now, we estimate ||(1 — A0, (z, — 2*) + Mz, — 2*)]]
11 = N (wn — @) + A(zn — 27)|I?
= (1= 2N)202 ||z, — 2" ||> + 2(1 = NNy — 2%, 20 — %) + N2 2, — 7|2
< A= X2 llen = 2" + 201 = M)Az — 2" [[zn — 27| + X[z — 27|
= [(1 = Nbnllzn — 2™ + Az — 2™

Thus

[(L =M (zn = 27) + Azn = 27)|| < (1= Mbnllzn — 27| + Allzn — 27 (25)
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Combining and , we deduce

[(1 = A)bn(@n — %) + Azn — 27)||
<(1- )\9Hxn—x||—|—)\||xn—x\|+(1—9)/\M1
=(1-01- 9n)(1 = )l — 27| + (1 = 0,)AM;
S =1 =0)A = A)llen — 2"+ (1 = 0n)(1 = A) My (26)

1
(by0<a§/\§§).

Substituting into , we get

[ent =2 < (1= (1= 0n)(1 = A))[[en — 27| + (1 = 6n) (1 = A)([|l2"[| + M)
< max{||z, — 2", 27| + M1}
< < maxt|zo — 27|, [l + M}

Therefore, the sequence {z,} is bounded. So, {z,} is also bounded.
Claim 3.

Tn * *
(1= 1= Y U = wall? 4+ lzm = ) < = 22 = 1 — 22
Tn+1
(1= 01— (1= A1 —6,)Mi + (1 — N Au],

for some A, > 0. Indeed, we have

241 =212 = [[(1 = Nbn (2 — ) + Azp — ) = (1= 0a) (1 = N)z*?
= [1(1 = N)bn(zn — %) + Mz — 22+ (1= 00)2(1 = 2)?[|z*|?
—2(1=0,)(1 = A){((1 = MOy (zn — ) + Mz — %), %)

<1 =X (@n —2") + Az — )7+ (1= 02)(1 = X) {(1 = 0n)(1 = A)[J"]]

21— Nl (0 — 2%) + Mz — x*>||||x*|]
<A =N (xp — %) + Mzp — 2)|* + (1 = 0,)(1 — N) Ay (27)

The last inequality obtains by the boundness of {x,}, {z,}, and {6, }, implies there exists
A+ > 0 such that

(1= 62)(1 = N2 | + 2((1 = Nall (50 — ) + A0 — 27 l27]| < Ay Vi
Now, we estimate (1 — A\)f,(z, — %) + A(2, — 2%)||2. We have

[(1 = N)O0n(2n —2") + A2 — 1‘*)”2

= (1= N202 ||z — 2™ +2(1 = N0 My — %, 2 — %) + N2|25 — 2|2
(1= N)202 ||lzn — 2|1 4+ 2(1 = N0y — |||z — 2™ || + X2|| 2, — ||
(1= X202 |z — [ + (1 = NOpA|[zn — 2|2 + (1 = M) A||z, — ¥
A2

(1-

IN

IN

l2n — 2™

IN +

N (1= (1= N1 = 0n)lzn — 2™ [* + M1 = (1= A)(1 = b)) ll20 —2*|*. (28)
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Combining and , we get
(1 - )Hn(acn—x*)—f—)\(zn—x*)HQ
< (1= N0l = (1= A)(1 = 00)) | — 27| + A1 - (1
— ML= (=1 = 00)) (1= 1= ) (lyn = wal® + 120 = yul2).
+1
< (1= 01 = (1= N1 = 00) | — 2" 2 + A1 = (1= A)(1 = 0)) |2 — 2"
+ A= (1= N1 = 02))(1 = )My
= A= (1= A1 = 02)) (1= 8= ) (lyn = wall® + 120 = yul?)
Tn+1
= (1= (1= A1 = )%l — 2" |2 + AL = (1= N)(1 = 6,))(1 = )M,

A= (== ) (1= )l = wnl” 4z = gl

= (1 = )l — 2"

On
0

n

Substituting into , we get

lznr1 = 2% < (1= (1= XA = 0))?[lwn — 2"
+ (1 - Hn)o‘( (1 - /\)(1 Hn))Ml + (1 - )‘)Ax*)

= A= (=N =) (1= )l =l + 2 = )

<l — 2" (by (1= (1= A)(1 - 6,))* < Land A > a)
(1= 0,)[ML = (1= A) (1= 6,))M, + (1= N A,-]

= a1~ (=)0 = 0)) (1= 1 )l = w0l + 120 = ).

This implies that

a(l = (1= (1= ) (1= 1= ) (g — wall® + |20 — vall*
n+1

<wn = 2*? = |lznpr — 2%
F (1= 0L — (1= N1 = 6,)) M + (1 — A)A,-].

Claim 4.

lnen — 2| < (1= (1= M)A = 0n))[Jwn — 2|

ap AM;

(=N =) | 7 [@n = 2| = (1= N = 0n)) 1+ 207, Znga =27,

for some M3 > 0. Indeed, using the inequality and we have

[Zns1 — 2% = |(1 = X)bn(zn — %) + A(zn — %) — (1= 0,)(1 — N)z*||
<L = N (@n — %) + Az — )17 +2(1 = 0,) (1 = A) (2", Tpg1 — 2%)
< (1= N1 = (1= A)(1 = 0,))[|zn — 2*|?

FAL = (1= A1 = 0n))llwn — 2" +2(1 = 00)(1 = N) (2", 2np1 — z7).
(29)
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On the other hand, by the definition of {w, }, we have
[wn = 2*[|? = [l — 2™ + an (e, — zp1)|

= [lzn — ¥ + alllen — zna|” + 200 @y — 2, 20 — 20 1)

< |lwn — $*||2 + O‘inn - xn—1||2 + 2an [Ty — 2| ||2n — Tn-1l

< Jlzn — 2|

< lan — 2*|° + anllen — 2n_1]|Ms, (30)

+anl|Ty — 21 (loan s — zp-al| + 2[|2n — 27))

for some Mz > 0.
Substituting into we deduce

lzns1 = 2% < (1= N)0n(1 = (1= XA = b)) 2n — "]

F A= (1= )1 = )z — 2°

+A1 =1 =XM1 =0p)an|lzn — Tn-1||Ms, +2(1 — 0,)(1 — A){z™, Tpy1 — x™)
= (1= (1= (1= 0) Pl — 2"

(=N 6,) [ﬁ’;ﬂnxn I = (1= N)(1 = 6.)
< (1- (=X - )l — "
000 = 0|2 = a1 - (- - 012

Claim 5. {|lz,, — 2*||*} converges to zero. Indeed, by Lemma [2.4] it suffices to show that
lim supy,_, oo (™, T, +1 —2*) < 0 for every subsequence {||z,, —z*||} of {||z, —z*||} satisfying

AM;
1—\

+2(x", xpg1 — x*)]

+2(z*, xpyy — x*)] .

lin inf (1 — 27— om, — 2°) 2 0.
k—o0

For this, suppose that {||z,, — =*||} is a subsequence of {||x, — z*||} such that
lminfy oo (|Zn,+1 — 2*|| = [|€n, — 2*||) > 0. Then

i inf (|| 2, 11 — 2% = |20, — 2*]?)
k—o0
= Iminf{([lzn, +1 — 2% = llen, = 2" [)(|2ner1 = 27| + [l2n, —27[)] 2 0.
—00

By Claim 3 we obtain

. Tny,

timsup(1 = 0, (1= 1= ) (g, = a1 + 12, = v )
k— o0 Tnp+1

< limsup]z,, — 2" I

k— o0

+ (1= 0,) A1 = (1 = X)(1 = 0n, ) A1 + (1 = X) Ay

<limsup[||zn, —2*||* = |11 — 2*?]
k—o0

- ||xnk+1 -z

F limsup(L— 0, )AL — (1= AL~ 6, )M + (1= N A,-]

k—oco

x, —z*|?] <o.

= —liminf[||z,, 11 — z*]* — ||z,
k—o0 *

This implies that
lim ([[yn, —wn |I* + 120, =y, [?) = 0. (31)

k—o0

Tt follows from that

lm ||yn, — wn, ]| =0 and lim
k—o0 k—ro0

120 = Yns || = 0. (32)
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Now, we show that

|Zn,+1 — Tn, || — 0 as n — oco. (33)
Indeed, from , it follows that

”an - wnk” < ”an - ynk” + Hynk - wnk” — 0. (34)
and
Qnp,,
||z"k - wnk” = Qpy, ||xnk - znk—ln = (1 - ank) 1 _ng Hxnk - xnk—lH — 0. (35)
ng
Combining and , we deduce
Therefore, we have
||z"k+1 - x”k” = H(l - /\)onkxnk + /\an — Tny ”

= HA(an - mnk) - (1 - onk)(]‘ - )\)xnk ”

Since the sequence {x,, } is bounded, without any loss of generality we may assume that
{$n, } converges weakly to some z € H, such that

limsup(z*, x,, — ) = (¥, z — z™). (36)
k— o0

From we get

Wy, — Z,

this together with , using Lemma and assumption F'z # 0 Vo € C we obtain z € Sp
and, from and the definition of z* = Pg,, (0), we have

limsup(z*, &, — %) = (2™, 2z —2™) <O0. (37)

k—o0

Combining and (37)), we have
lim sup(z*, 2, 41 — 2*) < limsup(z™, z,,, — ™)
k—o0 k—o0
= <£E*, Z = $*>
<0. (38)
Hence, by || lim,, — o0 %Hxn — Zp—1] = 0. Apply Lemma to Claim 4, we obtain

n
limy, o0 || 2, — 2*|] = 0. That is the desired result.

Remark 3.2. 1. We can choose the sequence {a,,} that satisfies condition as follows:
€n

7} if LTn 7é$n—17
|20 — Zn_1l

« otherwise,

min {a,
n =

where @ > 0 and {e,} is a positive sequence such that e, = 0(1 — 6,,). This means that
€n
lim,, yo0o ——— = 0.
Hinoee 70
1
2. The parameter {0, } satisfies Algorithm|3.1|as follows: 6,, = 1—m, 0<p<l.
n

Then, it is easy to see that lim,, o (1 —6,) =0 and .2 (1 —6,) = +o0.
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4. Conclusions

In this paper, we investigate a new version of the inertial extragradient algorithm

for finding a solution of the variational inequality problem in Hilbert spaces where the
operator is assumed to be Lipschitz continuous and quasimonotone. The strong convergence
theorem of the proposed algorithm is presented under assumptions of the quasimonotonicity
and the Lipschitz continuity of the variational inequality mapping.
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