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EFFICIENCY ANALYSYS OF INFLATION ENVELOPE
DEVICES FOR UPPER-STAGE LEO DEORBITING

Alexandru IONEL!

This paper analyzes the possibility of implementing an inflation envelope
device for deorbiting a launch vehicle upper-stage at end-of-mission from low Earth
orbit. The analysis is made through a numerical simulation in MATLAB, in which
orbital perturbations such as geopotential, atmospheric drag, direct and indirect
solar radiation pressure, are integrated using the ode45 solver. Different envelope
sizes are considered, as well as the Earth and Moon shadow effect and the expansion
of the gravitational acceleration into spherical harmonics up to J4. A study on similar
deorbiting devices is made to better understand the feasibility of implementing this
deorbiting technology.
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1. Introduction

This paper has the purpose of analyzing the performance of a spherical
inflation envelope, or balloon, when used as a LEO deorbiting device for an upper-
stage at end-of-mission. The performance analysis is made via a MATLAB code,
which integrates the equations of motion, including the perturbing accelerations
acting on the spacecraft. These accelerations include geopotential, atmospheric drag
and direct and indirect solar radiation pressure. It is verified that the deorbiting time
meets the ’25 years’ orbital debris mitigation rule. The introduction of the article
includes a description of the orbital debris issue and also similar deorbiting devices.
Space debris is defined as any human made object in orbit, which is not used in any
way. The origin of debris can be inactive spacecraft, rocket fragments, or satellite
and launch vehicle parts. The sizes of debris varies from microscopic pieces, to
demised spacecraft tens of meters in length. The probability of orbital debris
striking and disabling satellites is considered to be low, but it certainly can happen
as it has been illustrated in the recent years by a few high profile events. At the
moment, the forefront of space management is the prevention of catastrophic
damage from space debris or propagating the mass of debris further. [1].
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2. Inflation deorbiting devices

Inflation structures used as passive deorbiting devices have been studied in
various papers. In this research paper, the models and techniques from [2] — [6] will
be discussed as examples. In [2], an inflatable reflective balloon acts to lower the
perigee through the use of solar radiation pressure, the J2 effect and aerodynamic
drag. This paper’s conclusion shows that their inflation devices, spherical and
conical, are superior to chemical propulsion, and can deorbit CubeSats from the
MEOQ region, being most efficient at 7,000 km altitude. In [3], a 1.22 diameter Mylar
balloon, acting as an inflatable aerodynamic brake for deorbiting a single-unit (1U)
CubeSat, is investigated. According to [4], a 0.5 meter diameter drag device
composed of 0.004” thick Kapton will deorbit a 1U CubeSat from 1000 km in less
than 25 years. Other analyzed examples include AeroCube 2 and AeroCube 3
Deorbit Balloons, made from 8 mm thick Kapton and having a 23 cm pillow shape,
and 1 mm thick aluminized Mylar, being 0.6 m in diameter. In [5] and [6], the
Gossamer Orbit Lowering Device (GOLD) applications include deorbiting
CubeSats, defunct satellites, and spent launch vehicle stages. It can be used in LEO
to about 1,500 km altitude, increasing cross-sectional area by inflation-maintained
ultra-thin envelope which accelerates natural atmospheric drag decay from
centuries to months. For example, from an altitude of 833 km, a CubeSat using
GOLD could reenter in about 8-12 months at solar mean conditions and in about 4
months at solar max conditions.

3. Numerical simulation methodology
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Fig. 1 MATLAB Numerical Simulation Methodology Scheme
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The current study focuses on assessing the feasibility of using an inflation
envelope (balloon) for deorbiting an upper stage at end-of-mission (EOM) in
low Earth orbit (LEO). The numerical investigation is performed via a
MATLAB simulation, projecting in time the orbital trajectory of the upper
stage equipped with the deorbiting device. The generic scheme of the
MATLAB code is shown in Figure 1 and features the functions inside the
integration ode45 function. This MATLAB built in ode45 solver integrates
second order differentials, and is used to integrate with respect to time the
accelerations acting upon the spacecraft, namely geopotential, atmospheric
drag, solar radiation pressure (SRP) and indirect solar radiation pressure
(iISRP). The shadow effect of the Earth and Moon are taken into account.
The equation of motion (1) is integrated by the MATLAB code. The equation
uses as initial values the upper-stage state vector (2) and (3).
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In (1), v, represents the total acceleration of the upper-stage on orbit. g, is
the gravitational acceleration acting upon the upper-stage. v, is the upper-
stage velocity, 1,s_sun IS the upper-stage — Sun vector, r, is the upper-stage
position vector, a,.q4 IS the atmospheric drag acceleration, aggp is the direct
solar radiation pressure acceleration magnitude, a;sgzp is the indirect solar
radiation pressure acceleration magnitude. The constants shown in Table 1
have been used in the calculation of the gravitational acceleration. The
constants shown in Table 1 have been used in the calculation of the
gravitational acceleration.



6 Alexandru lonel

Table 1

Constants used in the geopotential model

Mass of Earth Mg =5.972-10** kg
Earth Equatorial Radius Ry = 6372137 km

o km3
Gravitational Constant G = 6.673-1072°

kg-s

J2 Parameter J, =1.08263-1073

J3 Parameter J3 =—2.5321-10"°

J4 Parameter J, = —1.610987-10~°

Equations (4) — (15) are components of a function used to calculate the gravitational
acceleration having the spacecraft position vector, ry, as input, [7], Rpqg is the
magnitude of the upper-stage position vector, z, is the Oz component of the
position vector and u is the gravitational parameter. The function outputs the
gravitational acceleration in the X, y, z directions, for which (13), (14) and (15) are
used. These outputs are used by the ode45 solver and integrated with respect to
time.
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9z = Rmag {[(1 + 1. 5]2RR2(3 SZRZ))ZR + (2'5]3RR3(6ZR2 — 7ZR4 _

0.6)) + (—4.350/Res (= — 102p; + 9214 ) 21 |} (15)
(16) is used for the determination of the acceleration caused by the
atmospheric drag force, in which CD is the drag coefficient and p is the
atmospheric density, with values taken from [8] and [9].

Aprag = — 5~ CDA.Dvus2 ? (16)

us

Equation (17), from [10], was used for the calculation of the magnitude of the
solar radiation pressure. § = 0.15 is the coefficient of reflection of reflection
of black Kapton, the solar sail material, Sy is the solar flux which was
calculated using (18), P = 3.805 - 102° W is the radiative power of the Sun,
75 is the upper-stage — Sun distance, a, = 149.6 - 10° km is Earth’s semi-
major axis in heliocentric orbit, ¢ = 299 792.458 km/s, A is the surface
area of the solar sail, m is the mass of the upper-stage, the solar sail and
additional equipment, ag = 149 x 10° km is the Sun-Earth semi-major
axis.

2
_ (1 +ﬁ) SFAcosa(j;g) (17)
SF = 471_:_25 (18)

SRP acceleration acting upon the solar sail was considered null when the
angle between the Sun-Earth vector and the spacecraft-Earth vector was
outside the (-90°, 90°) interval. This was considered because the spacecraft
would be pushed outside the orbit, not towards Earth, as necessary. Because
the inflated envelope that makes use of SRP to lower the orbit of the upper
stage, is spherical, it is considered that at each moment, there is half of sphere
facing the Sun. The SRP computed from the semi-sphere surface facing the
Sun, is considered to be equal to the sphere cross-sectional area normal to the
Sun-Sphere direction. This was also considered for iSRP, with the disc always
facing the Earth. For the indirect solar radiation pressure formulation (19) was
used, in which a@ = 0.367 is Earth’s Albedo, E,, = 1367 W /m? is the
solar constant, i is the angle between the upper-stage and Sun position
vectors relative to Earth, [11].

Ri() = ZETRERn | 2 () Cosp + Sin) + 27| (19)
The Sun’s state vector is calculated at each instant using (20) and (21) having
supplied the initial values r,, and vy, [12]. This vector is used throughout
the MATLAB code, in the solar pressure functions and shadow effect. f and

g in (22) and (23) represent the Lagrange coefficient with f and g being their
time derivatives. C(z) and S(z) are Stumpff functions, y represents the
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universal anomaly, which at t, = 0 is x;, = 0. uy is the Sun’s gravitational
parameter and takes the value pu, = G(Mg + My,) with My, = 0.0732 X
10%* kg.

Ty = fry, + gvy, (20)
Uy = ero + gy, (21)
f=1-2c@ (22)
g =At— r)ﬂS(Z) (23)
f= [Z)(S (2) — x] (24)
g=1—7C(z) (25)
2= ) (26)
vz —Sinvz,z>0
S(2) = Sln\/—_— V=2,z<0 (27)
,Z2=20
1- Cos\/— 2>0
C(Z) _ COSh\/—_Z 1 <0 (28)
k l ,Z2=20

ro}roxlzC(le(l‘_Toxl S(z)+roxi—Vult
Xiv1 = Xi — To”ro [1

S(Zl)] (1——r0))(lzc(zl)+r0 (29)
For the determination of the Sun s initial state vector, the constants in Table
2 were used. For simplicity, it was considered that the Sun orbited the Earth
and the Sun was considered to have initially the state vector with opposite
sign of the Earth at perigee on the solar orbit.

Table 2

Constants used inside the MATLAB function for calculating the Sun orbital position
around the Earth

Mass of Sun Ms = 1.989-103° kg
Mass of Earth Mg = 5.9726-10** kg
Global Gravitational Constant km3
G =6.673-1072°

kg-s
Earth orbital semi-major axis ag = 149.6 - 10° km
Earth orbit periapsis pp = 147.09 - 10° km
Earth orbit apoapsis agp = 152.1-10° km

Earth orbit eccentricity es = 0.0167
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Earth axis tilt (Sun orbital ig = 23.4°
inclination)

Argument of periapsis ws = 102.947°
Argument of ascending node O = —11.26°
Unit vector for non-rotated z axis k=[0 0 1]

(30) — (39) present the formulation used for the gravitational parameter (29),
the orbital angular momentum calculated at periapsis (30), the velocity of the
Sun on orbit at periapsis (31), the initial non rotated position vector (32), the
rotation matrix for the argument of periapsis rotation (33), the rotation matrix
for the inclination rotation (34), the rotation matrix for the argument of
ascending node rotation (35), the rotation equation (36), the equation for
rotation around the Z axis (37), and the equation for determining the initial
velocity (38).

ps = G(Mg + Mg) (30)
h = \/pgus(1 + eg cos 0) (31)
h
va —_ E (32)
Rg=[-pr 0 0] (33)
cosws Sinwg 0
R, = |—sinwg coswg 0] (34)
0 0 1
1 0 0
R;=|0 cosi sini (35)
0 —sini cosi
cos{ls sin{)s O
Rqg =|—sinQs cosQs O (36)
0 0 1
Rre = RyRiRqRE (37)
kg = R,R;Rqk (38)
— Re
Ve = vy (ke @ i) (39)

The Earth and Moon cylindrical shadow effect acting on the upper-stage was
also taken into account, the SRP being considered to be zero, [10]. It was
considered that when the angle between the upper-stage — Earth vector and

the Sun — Earth vector was between 180-¢ and 180+¢ (¢ is sin‘lf—E, where

Rp is the Earth radius and r, is the Earth — upper-stage vector magnitude),
the upper-stage was in eclipse. Also, the Moon’s position in time was
calculated using the Lagrange functions. The following algorithm defines the
orbital elements, [12], where r is the Earth — Moon distance, v is the Moon’s
orbital speed, v, is the Moon’s radial speed, h is the Moon’s orbital angular
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momentum, N is the vector node line of the Moon’s orbit, Q is the right
ascension of the ascending node, e is the Moon’s orbit eccentricity vector, w
is the Moon’s orbit argument of periapsis, 8 is the Moon’s orbit true anomaly,
a is the Moon’s orbit semi-major axis, T is the Moon’s orbital period and M
is the Moon’s orbit mean motion.
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v=+v-v (41)
v =2 (42)
i j k
h=rxv=|(X Y Z (43)
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4. Results and discussion

In Table 4, the numerical simulation results are presented, showing the
deorbiting time necessary to deorbit a 418 kg upper-stage from 600 km and
1400 km, using 25 m, 50 m and 100 m radii deorbiting balloons. As it can be
seen from these results, the larger radii balloons are most efficient from either
600 or 1400 km, but even the smaller radius balloons deorbit the upper-stage
respecting the ’25 years’ mitigation rule.

Table 3

Numerical simulation results - deorbiting time for 25m, 50m and 100m radius
deorbiting balloons used from starting altitudes of 600 km and 1400 km

Deorbiting Balloon radius Deorbiting
altitude [km] [m] time
600 25 18 days
600 50 5 days
600 100 2 days
1400 25 46 days
1400 50 13 days
1400 100 4 days

In Fig. 2 the deorbiting time for balloons with 25m, 50m and 100m is
presented, when deorbiting from a starting altitude of 600 km. In Fig. 3 the
SRP acceleration variation for balloons with 25m, 50m and 100m radii is
presented, when deorbiting from a starting altitude of 600 km.

——Balloc 5 1Y Balloon radius = 50 m — —— Ball

Ballo: 100 m

Altitude [km]

100 0 500000 1000000 1500000 2000000

Time [s] Time [s]

Fig. 2 SRP values for deorbiting balloon
different radii, when used from a 600 km  with different radii, when used from a 600
initial altitude km initial altitude

In Fig. 4 the iISRP acceleration variation for balloons with 25m, 50m and
100m radii is presented, when deorbiting from a starting altitude of 600 km.
In Fig. 5 the atmospheric drag acceleration variation for balloons with 25m,
50m and 100m radii is presented, when deorbiting from a starting altitude of
600 km.

Fig. 1 Deorbiting time for balloons with
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Fig. 3 Indirect SRP Acceleration values for
deorbiting balloons with different radii,
when used from a 600 km initial altitude

Fig. 4 Atmospheric Drag Acceleration
values for deorbiting balloons with
different radii, when used from a

600 km initial altitude
In Fig. 6 the altitude acceleration variation for balloons with 25m, 50m and
100m radii is presented, when deorbiting from a starting altitude of 1400 km.
In Fig. 7 the SRP acceleration variation for balloons with 25m, 50m and 100m

radii is presented, when deorbiting from a starting altitude of 1400
km.
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Fig. 5 Deorbiting time for balloons with different radii,
when used from a 1400 km initial altitude

Fig. 6 SRP values for deorbiting balloons with
different radii, when used from a 1400 km initial
altitude

In Fig. 8 the iSRP acceleration variation for balloons with 25m, 50m and
100m radii is presented, when deorbiting from a starting altitude of 1400 km.
In Fig. 8 the atmospheric drag acceleration variation for balloons with 25m,
50m and 100m radii is presented, when deorbiting from a starting altitude of
1400 km.
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Fig. 7 Indirect SRP Acceleration values
for deorbiting balloons with different
radii, when used from a 1400 km initial
altitude
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Figu. 8 Atmospheric Drag Acceleration
values for deorbiting balloons with
different radii, when used from a 1400
km initial altitude
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For a detailed analysis of the perturbing action of SRP, iSRP and atmospheric
drag onto the spacecraft equipped with the balloon deorbiting device, the
main orbital elements variation over the course of the deorbiting is given in
Figs. 10-14, for the balloon with a 25 m radius, when deorbiting from 1400
km altitude. In Fig. 10 the inclination variation for balloon with 25m radius
Is presented, when deorbiting from a starting altitude of 1400 km. In Fig. 11
the argument of periapsis variation for balloons with 25m, 50m and 100m
radii is presented, when deorbiting from a starting altitude of 1400 km. In Fig.
12 the RAAN variation for a deorbiting balloon with 25m radius is presented,
when deorbiting from a starting altitude of 1400 km. In Fig. 13 the true
anomaly acceleration variation for a deorbiting balloon with a 25m radius is
presented, when deorbiting from a starting altitude of 1400 km.
£ il
o] 1000000 )OOO(?:‘?“E E:JOOOOO 4000000 5000000 2 e
Fig. 9 Inclination variation in the case of ~ Fig. 10 Argument of periapsis variation
using a 25 m radius balloon from an in the case of using a 25 m radius balloon
initial altitude of 1400 km from an initial altitude of 1400 km
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Fig. 11 RAAN variation in the case of Fig. 12 True anomaly variation in the case of
using a 25 m radius balloon from an using a 25 m radius balloon from an initial

initial altitude of 1400 km altitude of 1400 km

5. Conclusions

This paper has concluded that deorbiting inflation envelopes (balloons) are
efficient in deorbiting a 418 upper-stage from 600 km and 1400 km, and
meeting the 25 years’ mitigation rule. The best results were obtained for the
100 m radius balloon, which deorbited the upper-stage from 1400 km altitude
in 4 days.
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