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EFFICIENCY ANALYSYS OF INFLATION ENVELOPE 

DEVICES FOR UPPER-STAGE LEO DEORBITING 

Alexandru IONEL1 

This paper analyzes the possibility of implementing an inflation envelope 

device for deorbiting a launch vehicle upper-stage at end-of-mission from low Earth 

orbit. The analysis is made through a numerical simulation in MATLAB, in which 

orbital perturbations such as geopotential, atmospheric drag, direct and indirect 

solar radiation pressure, are integrated using the ode45 solver. Different envelope 

sizes are considered, as well as the Earth and Moon shadow effect and the expansion 

of the gravitational acceleration into spherical harmonics up to J4. A study on similar 

deorbiting devices is made to better understand the feasibility of implementing this 

deorbiting technology. 
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1. Introduction 

This paper has the purpose of analyzing the performance of a spherical 

inflation envelope, or balloon, when used as a LEO deorbiting device for an upper-

stage at end-of-mission. The performance analysis is made via a MATLAB code, 

which integrates the equations of motion, including the perturbing accelerations 

acting on the spacecraft. These accelerations include geopotential, atmospheric drag 

and direct and indirect solar radiation pressure. It is verified that the deorbiting time 

meets the ’25 years’ orbital debris mitigation rule. The introduction of the article 

includes a description of the orbital debris issue and also similar deorbiting devices. 

Space debris is defined as any human made object in orbit, which is not used in any 

way. The origin of debris can be inactive spacecraft, rocket fragments, or satellite 

and launch vehicle parts. The sizes of debris varies from microscopic pieces, to 

demised spacecraft tens of meters in length. The probability of orbital debris 

striking and disabling satellites is considered to be low, but it certainly can happen 

as it has been illustrated in the recent years by a few high profile events. At the 

moment, the forefront of space management is the prevention of catastrophic 

damage from space debris or propagating the mass of debris further. [1].  
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2. Inflation deorbiting devices 

Inflation structures used as passive deorbiting devices have been studied in 

various papers. In this research paper, the models and techniques from [2] – [6] will 

be discussed as examples. In [2], an inflatable reflective balloon acts to lower the 

perigee through the use of solar radiation pressure, the J2 effect and aerodynamic 

drag. This paper’s conclusion shows that their inflation devices, spherical and 

conical, are superior to chemical propulsion, and can deorbit CubeSats from the 

MEO region, being most efficient at 7,000 km altitude. In [3], a 1.22 diameter Mylar 

balloon, acting as an inflatable aerodynamic brake for deorbiting a single-unit (1U) 

CubeSat, is investigated. According to [4], a 0.5 meter diameter drag device 

composed of 0.004” thick Kapton will deorbit a 1U CubeSat from 1000 km in less 

than 25 years. Other analyzed examples include AeroCube 2 and AeroCube 3 

Deorbit Balloons, made from 8 mm thick Kapton and having a 23 cm pillow shape, 

and 1 mm thick aluminized Mylar, being 0.6 m in diameter. In [5] and [6], the 

Gossamer Orbit Lowering Device (GOLD) applications include deorbiting 

CubeSats, defunct satellites, and spent launch vehicle stages. It can be used in LEO 

to about 1,500 km altitude, increasing cross-sectional area by inflation-maintained 

ultra-thin envelope which accelerates natural atmospheric drag decay from 

centuries to months. For example, from an altitude of 833 km, a CubeSat using 

GOLD could reenter in about 8-12 months at solar mean conditions and in about 4 

months at solar max conditions.  

3. Numerical simulation methodology 

 

Fig. 1 MATLAB Numerical Simulation Methodology Scheme 
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The current study focuses on assessing the feasibility of using an inflation 

envelope (balloon) for deorbiting an upper stage at end-of-mission (EOM) in 

low Earth orbit (LEO). The numerical investigation is performed via a 

MATLAB simulation, projecting in time the orbital trajectory of the upper 

stage equipped with the deorbiting device. The generic scheme of the 

MATLAB code is shown in Figure 1 and features the functions inside the 

integration ode45 function. This MATLAB built in ode45 solver integrates 

second order differentials, and is used to integrate with respect to time the 

accelerations acting upon the spacecraft, namely geopotential, atmospheric 

drag, solar radiation pressure (SRP) and indirect solar radiation pressure 

(iSRP). The shadow effect of the Earth and Moon are taken into account. 

The equation of motion (1) is integrated by the MATLAB code. The equation 

uses as initial values the upper-stage state vector (2) and (3). 

𝒗̇𝑢𝑠 = 𝒈𝒖𝒔 −
𝒗𝒖𝒔

‖𝒗𝒖𝒔‖
𝑎𝑑𝑟𝑎𝑔 +

𝒓𝒖𝒔−𝑺𝒖𝒏

‖𝒓𝒖𝒔−𝑺𝒖𝒏‖
𝑎𝑆𝑅𝑃 −

𝒓𝒖𝒔

‖𝒓𝒖𝒔‖
𝑎𝑖𝑆𝑅𝑃 (1) 

𝑿𝑢𝑠 = [
𝒓𝑢𝑠
𝒗𝑢𝑠

] =

[
 
 
 
 
 
𝒙𝑢𝑠
𝒚𝑢𝑠
𝒛𝑢𝑠
𝒗𝒙𝑢𝑠
𝒗𝒚𝑢𝑠
𝒗𝒛𝑢𝑠]

 
 
 
 
 

     (2) 

𝑿̇𝑢𝑠 = [
𝒓̇𝑢𝑠
𝒗̇𝑢𝑠

] =

[
 
 
 
 
 
 
𝒙̇𝑢𝑠
𝒚̇𝑢𝑠
𝒛̇𝑢𝑠
𝒗̇𝒙𝑢𝑠
𝒗̇𝒚𝑢𝑠
𝒗̇𝒛𝑢𝑠]

 
 
 
 
 
 

     (3) 

In (1), 𝒗̇𝑢𝑠 represents the total acceleration of the upper-stage on orbit. 𝒈𝒖𝒔 is 

the gravitational acceleration acting upon the upper-stage. 𝒗𝒖𝒔 is the upper-

stage velocity, 𝒓𝒖𝒔−𝑺𝒖𝒏 is the upper-stage – Sun vector, 𝒓𝒖𝒔 is the upper-stage 

position vector, 𝑎𝑑𝑟𝑎𝑔 is the atmospheric drag acceleration, 𝑎𝑆𝑅𝑃 is the direct 

solar radiation pressure acceleration magnitude, 𝑎𝑖𝑆𝑅𝑃 is the indirect solar 

radiation pressure acceleration magnitude. The constants shown in Table 1 

have been used in the calculation of the gravitational acceleration. The 

constants shown in Table 1 have been used in the calculation of the 

gravitational acceleration. 
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Table 1 

Constants used in the geopotential model 

Mass of Earth 𝑀𝐸 = 5.972 ∙ 10
24 𝑘𝑔 

Earth Equatorial Radius 𝑅𝐸 = 6372.137 𝑘𝑚 

Gravitational Constant 𝐺 = 6.673 ∙ 10−20  
𝑘𝑚3

𝑘𝑔 ∙ 𝑠
 

J2 Parameter 𝐽2 = 1.08263 ∙ 10
−3 

J3 Parameter 𝐽3 = −2.5321 ∙ 10
−6 

J4 Parameter 𝐽4 = −1.610987 ∙ 10
−6 

Equations (4) – (15) are components of a function used to calculate the gravitational 

acceleration having the spacecraft position vector, 𝒓𝒖𝒔, as input, [7], 𝑅𝑚𝑎𝑔 is the 

magnitude of the upper-stage position vector, 𝒛𝒖𝒔 is the 𝑶𝒛 component of the 

position vector and 𝜇 is the gravitational parameter. The function outputs the 

gravitational acceleration in the x, y, z directions, for which (13), (14) and (15) are 

used. These outputs are used by the ode45 solver and integrated with respect to 

time.  

𝑅𝑚𝑎𝑔 = ‖𝒓𝒖𝒔‖     (4) 

𝑅𝑅2 = (
𝑅𝐸

𝑅𝑚𝑎𝑔
)
2

     (5) 

𝑅𝑅3 = (
𝑅𝐸

𝑅𝑚𝑎𝑔
)
3

     (6) 

𝑅𝑅4 = (
𝑅𝐸

𝑅𝑚𝑎𝑔
)
4

     (7) 

𝑧𝑅 =
𝒛𝒖𝒔

𝑅𝑚𝑎𝑔
      (8) 

𝑧𝑅2 = (
𝒛𝒖𝒔

𝑅𝑚𝑎𝑔
)
2

      (9) 

𝑧𝑅4 = (
𝒛𝒖𝒔

𝑅𝑚𝑎𝑔
)
4

      (10) 

𝑞 = 1 + 1.5 ∙ 𝐽2 ∙ 𝑅𝑅2(1 − 5𝑧𝑅2) + 2.5 ∙ 𝐽3 ∙ 𝑅𝑅3(3 − 7𝑧𝑅2)𝑧𝑅 − 4.350 ∙ 𝐽4 ∙

𝑅𝑅4 (9𝑧𝑅4 − 6𝑧𝑅2 +
3

7
) (11) 

𝜇 = 𝐺𝐸𝑀𝐸      (12) 

𝑔𝑥 = −
𝜇

𝑅𝑚𝑎𝑔
3 𝒙𝒖𝒔𝑞     (13) 

𝑔𝑦 = −
𝜇

𝑅𝑚𝑎𝑔
3 𝒚𝒖𝒔𝑞     (14) 

 



Efficiency analysis of inflation envelope devices for upper-stages LEO deorbiting                7 

𝑔𝑧 = −
𝜇

𝑅𝑚𝑎𝑔
2 {[(1 + 1.5𝐽2𝑅𝑅2(3 − 5𝑧𝑅2))𝑧𝑅 + (2.5𝐽3𝑅𝑅3(6𝑧𝑅2 − 7𝑧𝑅4 −

0.6)) + (−4.350𝐽4𝑅𝑅4 (
15

7
− 10𝑧𝑅2 + 9𝑧𝑅4) 𝑧𝑅)]}   (15) 

(16) is used for the determination of the acceleration caused by the 

atmospheric drag force, in which 𝐶𝐷 is the drag coefficient and 𝜌 is the 

atmospheric density, with values taken from [8] and [9]. 

𝑎𝐷𝑟𝑎𝑔 = −
1

2𝑚
𝐶𝐷𝐴𝜌𝑣𝑢𝑠

2 𝒗𝒖𝒔

𝑣𝑢𝑠
    (16) 

Equation (17), from [10], was used for the calculation of the magnitude of the 

solar radiation pressure. 𝛽 = 0.15 is the coefficient of reflection of reflection 

of black Kapton, the solar sail material, 𝑆𝐹 is the solar flux which was 

calculated using (18), 𝑃𝑆 = 3.805 ∙ 10
20 𝑊 is the radiative power of the Sun, 

𝑟𝑆 is the upper-stage – Sun distance, 𝑎𝑒 = 149.6 ∙ 106 𝑘𝑚 is Earth’s semi-

major axis in heliocentric orbit, 𝑐 = 299 792.458 𝑘𝑚 𝑠⁄ , 𝐴 is the surface 

area of the solar sail, 𝑚 is the mass of the upper-stage, the solar sail and 

additional equipment, 𝑎𝑆 = 149 × 106 𝑘𝑚 is the Sun-Earth semi-major 

axis. 

𝑅 = (1 + 𝛽)
𝑆𝐹

𝑐

𝐴 cos𝛼

𝑚
(
𝑎𝑆

𝑟𝑆
)
2

    (17) 

𝑆𝐹 =
𝑃𝑆

4𝜋𝑎𝑒
2     (18) 

SRP acceleration acting upon the solar sail was considered null when the 

angle between the Sun-Earth vector and the spacecraft-Earth vector was 

outside the (-90°, 90°) interval. This was considered because the spacecraft 

would be pushed outside the orbit, not towards Earth, as necessary. Because 

the inflated envelope that makes use of SRP to lower the orbit of the upper 

stage, is spherical, it is considered that at each moment, there is half of sphere 

facing the Sun. The SRP computed from the semi-sphere surface facing the 

Sun, is considered to be equal to the sphere cross-sectional area normal to the 

Sun-Sphere direction. This was also considered for iSRP, with the disc always 

facing the Earth. For the indirect solar radiation pressure formulation (19) was 

used, in which 𝛼 = 0.367 is Earth’s Albedo, 𝐸𝑠𝑢𝑛 = 1367 𝑊 𝑚2⁄  is the 

solar constant, 𝜓 is the angle between the upper-stage and Sun position 

vectors relative to Earth, [11]. 

𝑅𝑖(𝜓) =
𝐴

𝑚

𝛽

𝑐

𝜋𝑅𝐸𝐸𝑠𝑢𝑛

𝑟𝑢𝑠
[
2𝛼

3𝜋2
((𝜋 − 𝜓) Cos𝜓 + Sin𝜓) +

1−𝛼

4𝜋
] (19) 

The Sun’s state vector is calculated at each instant using (20) and (21) having 

supplied the initial values 𝒓𝑀0 and 𝒗𝑀0, [12]. This vector is used throughout 

the MATLAB code, in the solar pressure functions and shadow effect. 𝑓 and 

𝑔 in (22) and (23) represent the Lagrange coefficient with 𝑓̇ and 𝑔̇ being their 

time derivatives. 𝐶(𝑧) and 𝑆(𝑧) are Stumpff functions, 𝜒 represents the 
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universal anomaly, which at 𝑡0 = 0 is 𝜒𝑡0 = 0. 𝜇𝑀 is the Sun’s gravitational 

parameter and takes the value 𝜇𝑀 = 𝐺(𝑀𝐸 +𝑀𝑀) with 𝑀𝑀 = 0.0732 ×
 1024 𝑘𝑔. 

𝒓𝑀 = 𝑓𝒓𝑀0 + 𝑔𝒗𝑀0     (20) 

𝒗𝑀 = 𝑓̇𝒓𝑀0 + 𝑔̇𝒗𝑀0     (21) 

𝑓 = 1 −
𝜒2

𝑟𝑀0
𝐶(𝑧)     (22) 

𝑔 = Δ𝑡 −
1

√𝜇
𝜒3𝑆(𝑧)     (23) 

𝑓̇ = √𝜇

𝑟𝑀𝑟𝑀0
[𝑧𝜒𝑆(𝑧) − 𝜒]    (24) 

𝑔̇ = 1 −
𝜒2

𝑟
𝐶(𝑧)     (25) 

𝑧 =
1

𝑎𝑀
𝜒2      (26) 

𝑆(𝑧) = {

√𝑧 − Sin√𝑧 , 𝑧 > 0

Sin√−𝑧 − √−𝑧, 𝑧 < 0
1

6
, 𝑧 = 0

    (27) 

𝐶(𝑧) =

{
 
 

 
 

1−Cos√𝑧

𝑧
, 𝑧 > 0

Cosh√−𝑧−1

−𝑧
, 𝑧 < 0

1

2
, 𝑧 = 0

     (28) 

𝜒𝑖+1 = 𝜒𝑖 −

𝑟0𝑣𝑟0

√𝜇
𝜒𝑖
2𝐶(𝑧𝑖)+(1−

1

𝑎𝑀
𝑟0)𝜒𝑖

3𝑆(𝑧𝑖)+𝑟0𝜒𝑖−√𝜇∆t

𝑟0𝑣𝑟0

√𝜇
𝜒𝑖[1−

1

𝑎𝑀
𝑆(𝑧𝑖)]+(1−

1

𝑎𝑀
𝑟0)𝜒𝑖

2𝐶(𝑧𝑖)+𝑟0
  (29) 

For the determination of the Sun’s initial state vector, the constants in Table 

2 were used. For simplicity, it was considered that the Sun orbited the Earth 

and the Sun was considered to have initially the state vector with opposite 

sign of the Earth at perigee on the solar orbit. 

Table 2 

Constants used inside the MATLAB function for calculating the Sun orbital position 

around the Earth 

Mass of Sun 𝑀𝑆 = 1.989 ∙ 10
30 𝑘𝑔 

Mass of Earth 𝑀𝐸 = 5.9726 ∙ 10
24 𝑘𝑔 

Global Gravitational Constant 
𝐺 = 6.673 ∙ 10−20  

𝑘𝑚3

𝑘𝑔 ∙ 𝑠
 

Earth orbital semi-major axis 𝑎𝑆 = 149.6 ∙ 10
6 𝑘𝑚 

Earth orbit periapsis 𝑝𝐸 = 147.09 ∙ 10
6 𝑘𝑚 

Earth orbit apoapsis 𝑎𝐸 = 152.1 ∙ 10
6 𝑘𝑚 

Earth orbit eccentricity 𝑒𝑆 = 0.0167 



Efficiency analysis of inflation envelope devices for upper-stages LEO deorbiting                9 

Earth axis tilt (Sun orbital 
inclination) 

𝑖𝑆 = 23.4° 

Argument of periapsis 𝜔𝑆 = 102.947° 
Argument of ascending node Ω𝑆 = −11.26° 
Unit vector for non-rotated z axis 𝑘 = [0 0 1] 

(30) – (39) present the formulation used for the gravitational parameter (29), 

the orbital angular momentum calculated at periapsis (30), the velocity of the 

Sun on orbit at periapsis (31), the initial non rotated position vector (32), the 

rotation matrix for the argument of periapsis rotation (33), the rotation matrix 

for the inclination rotation (34), the rotation matrix for the argument of 

ascending node rotation (35), the rotation equation (36), the equation for 

rotation around the Z axis (37), and the equation for determining the initial 

velocity (38). 

𝜇𝑆 = 𝐺(𝑀𝑆 +𝑀𝐸)     (30) 

ℎ = √𝑝𝐸𝜇𝑆(1 + 𝑒𝑆 cos 0)     (31) 

𝑣𝑝𝐸 =
ℎ

𝑝𝐸
      (32) 

𝑅𝐸 = [−𝑝𝐸 0 0]     (33) 

𝑅𝜔 = [
cos𝜔𝑆 sin𝜔𝑆 0
− sin𝜔𝑆 cos𝜔𝑆 0

0 0 1
]    (34) 

𝑅𝑖 = [
1 0 0
0 cos 𝑖 sin 𝑖
0 − sin 𝑖 cos 𝑖

]     (35) 

𝑅Ω = [
cosΩ𝑆 sin Ω𝑆 0
− sinΩ𝑆 cosΩ𝑆 0

0 0 1
]     (36) 

𝑅𝑅𝐸 = 𝑅𝜔𝑅𝑖𝑅Ω𝑅𝐸      (37) 

𝑘𝐸 = 𝑅𝜔𝑅𝑖𝑅Ω𝑘      (38) 

𝑉𝐸 = 𝑣𝑝𝐸 (𝒌𝑬⊗
𝑹𝑬

‖𝑹𝑬‖
)     (39) 

The Earth and Moon cylindrical shadow effect acting on the upper-stage was 

also taken into account, the SRP being considered to be zero, [10]. It was 

considered that when the angle between the upper-stage – Earth vector and 

the Sun – Earth vector was between 180-ϕ and 180+ϕ (ϕ is sin−1
𝑅𝐸

𝑟𝑢𝑠
, where 

𝑅𝐸 is the Earth radius and 𝑟𝑢𝑠 is the Earth – upper-stage vector magnitude), 

the upper-stage was in eclipse. Also, the Moon’s position in time was 

calculated using the Lagrange functions. The following algorithm defines the 

orbital elements, [12], where 𝑟 is the Earth – Moon distance, 𝑣 is the Moon’s 

orbital speed, 𝑣𝑟 is the Moon’s radial speed, 𝒉 is the Moon’s orbital angular 
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momentum, 𝑵 is the vector node line of the Moon’s orbit, Ω is the right 

ascension of the ascending node, 𝒆 is the Moon’s orbit eccentricity vector, 𝜔 

is the Moon’s orbit argument of periapsis, 𝜃 is the Moon’s orbit true anomaly, 

𝑎 is the Moon’s orbit semi-major axis, 𝑇 is the Moon’s orbital period and 𝑀 

is the Moon’s orbit mean motion. 

𝑟 = √𝒓 ∙ 𝒓     (40) 

𝑣 = √𝒗 ∙ 𝒗     (41) 

𝑣𝑟 =
𝒓∙𝒗

𝑟
      (42) 

𝒉 = 𝒓 × 𝒗 = |
𝒊̂ 𝒋̂ 𝒌̂
𝑋 𝑌 𝑍
𝑣𝑋 𝑣𝑌 𝑣𝑍

|    (43) 

ℎ = √𝒉 ∙ 𝒉     (44) 

𝑖 = Cos−1 (
ℎ𝑍

ℎ
)     (45) 

𝑵 = 𝒌̂ × 𝒉 = |
𝒊̂ 𝒋̂ 𝒌̂
0 0 0
ℎ𝑋 ℎ𝑌 ℎ𝑍

|    (46) 

𝑁 = √𝑵 ∙ 𝑵    (47) 

Ω = {
Cos−1 (

𝑁𝑋

𝑁
) , 𝑁𝑌 ≥ 0

360° − Cos−1 (
𝑁𝑋

𝑁
) , 𝑁𝑌 < 0

   (48) 

𝒆 =
1

𝜇
[(𝑣2 −

𝜇

𝑟
) 𝒓 − 𝑟𝑣𝑟𝒗]   (49) 

𝑒 = √𝒆 ∙ 𝒆    (50) 

𝜔 = {
Cos−1 (

𝑵∙𝒆

𝑁𝑒
) , 𝑒𝑍 ≥ 0

360° − Cos−1 (
𝑵∙𝒆

𝑁𝑒
) , 𝑒𝑍 < 0

   (51) 

𝜃 = {
Cos−1 (

𝒆∙𝒓

𝑒𝑟
) , 𝑣𝑟 ≥ 0

360° − Cos−1 (
𝒆∙𝒓

𝑒𝑟
) , 𝑣𝑟 < 0

   (52) 

𝑎 =
ℎ2

𝜇

1

1−𝑒2
     (53) 

𝑇 =
2𝜋

√𝜇
𝑎
3

2     (54) 

𝑀 =
2𝜋

𝑇
     (55) 
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 4. Results and discussion 

In Table 4, the numerical simulation results are presented, showing the 

deorbiting time necessary to deorbit a 418 kg upper-stage from 600 km and 

1400 km, using 25 m, 50 m and 100 m radii deorbiting balloons. As it can be 

seen from these results, the larger radii balloons are most efficient from either 

600 or 1400 km, but even the smaller radius balloons deorbit the upper-stage 

respecting the ’25 years’ mitigation rule. 

Table 3 

Numerical simulation results - deorbiting time for 25m, 50m and 100m radius 

deorbiting balloons used from starting altitudes of 600 km and 1400 km 

Deorbiting 
altitude [km] 

Balloon radius 
[m] 

Deorbiting 
time 

600 25 18 days 

600 50 5 days 

600 100 2 days 

1400 25 46 days 

1400 50 13 days 

1400 100 4 days 

In Fig. 2 the deorbiting time for balloons with 25m, 50m and 100m is 

presented, when deorbiting from a starting altitude of 600 km. In Fig. 3 the 

SRP acceleration variation for balloons with 25m, 50m and 100m radii is 

presented, when deorbiting from a starting altitude of 600 km. 

Fig. 1 Deorbiting time for balloons with 

different radii, when used from a 600 km 

initial altitude  

Fig. 2 SRP values for deorbiting balloon 

with different radii, when used from a 600 

km initial altitude  

In Fig. 4 the iSRP acceleration variation for balloons with 25m, 50m and 

100m radii is presented, when deorbiting from a starting altitude of 600 km. 

In Fig. 5 the atmospheric drag acceleration variation for balloons with 25m, 

50m and 100m radii is presented, when deorbiting from a starting altitude of 

600 km. 
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Fig. 3 Indirect SRP Acceleration values for 

deorbiting balloons with different radii, 

when used from a 600 km initial altitude  

Fig. 4 Atmospheric Drag Acceleration 

values for deorbiting balloons with 

different radii, when used from a        

600 km initial altitude  

In Fig. 6 the altitude acceleration variation for balloons with 25m, 50m and 

100m radii is presented, when deorbiting from a starting altitude of 1400 km. 

In Fig. 7 the SRP acceleration variation for balloons with 25m, 50m and 100m 

radii is presented, when deorbiting from a starting altitude of                 1400 

km. 

  
Fig. 5 Deorbiting time for balloons with different radii, 

when used from a 1400 km initial altitude 
Fig. 6 SRP values for deorbiting balloons with 

different radii, when used from a 1400 km initial 
altitude 

In Fig. 8 the iSRP acceleration variation for balloons with 25m, 50m and 

100m radii is presented, when deorbiting from a starting altitude of 1400 km. 

In Fig. 8 the atmospheric drag acceleration variation for balloons with 25m, 

50m and 100m radii is presented, when deorbiting from a starting altitude of 

1400 km. 

Fig. 7 Indirect SRP Acceleration values 

for deorbiting balloons with different 

radii, when used from a 1400 km initial 

altitude  

Figu. 8 Atmospheric Drag Acceleration 

values for deorbiting balloons with 

different radii, when used from a 1400 

km initial altitude  
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For a detailed analysis of the perturbing action of SRP, iSRP and atmospheric 

drag onto the spacecraft equipped with the balloon deorbiting device, the 

main orbital elements variation over the course of the deorbiting is given in 

Figs. 10-14, for the balloon with a 25 m radius, when deorbiting from 1400 

km altitude. In Fig. 10 the inclination variation for balloon with 25m radius 

is presented, when deorbiting from a starting altitude of 1400 km. In Fig. 11 

the argument of periapsis variation for balloons with 25m, 50m and 100m 

radii is presented, when deorbiting from a starting altitude of 1400 km. In Fig. 

12 the RAAN variation for a deorbiting balloon with 25m radius is presented, 

when deorbiting from a starting altitude of 1400 km. In Fig. 13 the true 

anomaly acceleration variation for a deorbiting balloon with a 25m radius is 

presented, when deorbiting from a starting altitude of 1400 km. 

 

Fig. 9 Inclination variation in the case of 

using a 25 m radius balloon from an 

initial altitude of 1400 km  

Fig. 10 Argument of periapsis variation 

in the case of using a 25 m radius balloon 

from an initial altitude of 1400 km  

Fig. 11 RAAN variation in the case of 

using a 25 m radius balloon from an 

initial altitude of 1400 km  

Fig. 12 True anomaly variation in the case of 

using a 25 m radius balloon from an initial 

altitude of 1400 km 

 5. Conclusions 

This paper has concluded that deorbiting inflation envelopes (balloons) are 

efficient in deorbiting a 418 upper-stage from 600 km and 1400 km, and 

meeting the ’25 years’ mitigation rule. The best results were obtained for the 

100 m radius balloon, which deorbited the upper-stage from 1400 km altitude 

in 4 days. 
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