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KINEMATIC ANALYSIS OF ASTEWART PLATFORM
BASED ON AFSA

Yuanhui TANGY3*, Yigi ZHUANG?, Leping SHI®, Yongguo JIA*

The direct kinematic problems (DKP) are of great importance for the design,
use and control of Stewart platforms. It is proved that finding the solutions to DKP
is still a basic and challenging problem. In this paper, the kinematics of a 6-6
Stewart platform has been investigated. The inverse and direct kinematic models
have been developed. By employing the artificial fish swarm algorithm (AFSA), the
solutions to the DKP are found. The results indicate that AFSA is an effective tool
for solving DKPs of Stewart platforms. AFSA can be extended to solve other parallel
mechanisms’ DKPs.
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List of symbols

Cai: Coordinates of nodes A; in the fixed reference frame O(X, Y, 2)

Ohi: Coordinates of nodes B; in the fixed reference frame O(X, Y, Z)

Ob;: Coordinates of nodes B; in the fixed reference frame O'(X', Y', Z')

R: The radius of the circumcircle of the base hexagon of the Stewart platform
r: The radius of the circumcircle of the mobile hexagon of the Stewart platform
T: The rotation matrix

St Step length of AFSA.

N: The number of artificial fishes.

V: Visual distance of AFSA.

Li: Length of AiB;

1. Introduction

The Stewart platform has the advantages of high load carrying capacity,
good dynamic performance, better accuracy, higher rigidity, higher load to weight
ratio and precise positioning capability. Due to these attractive characteristics, the
Stewart platform has been used in many disciplines, such as flight simulators [1],
vibration isolation system [2], mounting of telescopic equipment [3], etc.
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In the past decades, Stewart platforms have received great attention from
many researchers. Considerable research works have been carried out on
dynamics and motion control of Stewart platforms. Wang et al. [4] investigated
the active vibration isolation of a Stewart platform manipulator with piezoelectric
actuators. Geng [5] proposed an active vibration isolation system with Stewart
form and adopted robust adaptive filter algorithms for active vibration control.
Based on the principle of virtual work, Staicu [6] studied the dynamics of a 6-6
Stewart parallel manipulator. Huang and Fu [7] researched motion control of
Stewart platforms based on a sliding-mode control technique. Although the
control of the Stewart platform has been investigated by many researchers, the
control problem calls for the solution of the direct kinematics, which is still a
basic and challenging problem as well.

The direct kinematic problems, which is to determine the positions and
orientations of the moving platform given the lengths of the six legs, lead
naturally to system of nonlinear algebraic and transcendental equations. Many
scholars research the closed-form solutions for different types and geometry.
Griffis [8] and Inocenti [9] obtained a 16th degree univariate polynomial on the
general 3-6 Stewart platform. Innocenti [10] obtained all 32 solutions to the
forward kinematics of the type 4-6. However, devising a common algorithm to
find the solutions to the direct kinematic problem of any types of Stewart has
proved to be a challenging undertaking. Moreover, finding the solutions to the
direct kinematic problems by numerical techniques is quite practical in real time
controlling process. McAree [12] implemented impressive Newton-Raphson
scheme to obtain fast and reliable direct kinematic solution. Geng and Haynes
[13] and Yee and Lim [14] implemented the network on the direct kinematic
problem. By using Newton iterative method, a solution to any type of Stewart
platform can be found. However, the Newton iterative method has a shortcoming
that it is sensitive to the initial values. Recently, immune genetic algorithm is
employed to solve the direct kinematics of the Stewart platform [11], which can
be considered as an effective tool in solving the direct kinematic problems. In this
paper, artificial fish swarm algorithm (AFSA) is used to find the solutions to the
direct kinematic problem of a 6-6 Stewart platform, which has the potential to
obtain near-global minimum. AFSA has been successfully applied to many
complicated optimization problems.

This paper is organized as follows. First, the architecture of the 6-6
Stewart platform is presented in section 2. Secondly, the kinematics of the Stewart
platform is discussed in detail in section 3. Third, AFSA is described in section 4.
The numerical example is simulated in section 5. Finally, conclusion and the
future work are reported in section 6.
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2. Mechanism description

A diagram of the Stewart platform is shown in Fig. 1. It consists of two
platforms and six legs. The base platform denoted by nodes A1, Az, As, A4, As and
Ag is fixed to the ground. The mobile platform denoted by nodes B, B2, B3, Bs, Bs
and Be can generate translational and rotational movements. Moreover, the legs
AiBi (i=1, 2, 3, 4,5, 6) are prismatic actuators that are used to vary the distances
between nodes Ai and Bi. From Figure 1, it can be shown that the mobile and base
platforms are both regular hexagons. The radius of the circumcircle of the base
hexagon is R while the radius of the circumcircle of the mobile hexagon is r.
Furthermore, the legs AiBi of length L;i are jointing to the mobile and base
platforms by spherical joints.

Figure 1 Stewart platform

As illustrated in Figure 1, a fixed reference frame O (X, Y, Z) is located at
the center of the base hexagon while a moving reference frame O' (X', Y ', Z ") is
located at the center of the mobile hexagon. The X axis of the fixed reference
frame is parallel to the line joining nodes O and A; while its Z axis is
perpendicular to the base hexagon. In the meantime, the X' axis of the moving
reference frame is parallel to the line joining nodes O' and B; while the Z' axis is
perpendicular to the mobile hexagon. Since the legs are connecting to the fixed
and mobile platforms by spherical joints, the mobile platform can generate
translations along X, Y and Z axis respectively and rotations around X, Y and Z
axis respectively. For this reason, it is appropriate to say that the mechanism has
six degrees of freedom. The coordinates of the point O' are defined as x, y and z.
The position and orientation of the mobile platform can be described by the
position vector P = [x, y, z]" and the rotation matrix T with respect to the fixed
reference frame. Here the rotation matrix T is defined by rotating the moving
reference frame « about Z' axis and followed f about Y' axis, y about Z' axis. As a
consequence, T takes the following form
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From Fig. 1, it can be seen that the shape of the Stewart platform can be
controlled by varying the legs’ lengths Li. Therefore, the lengths L; are chosen as
the Stewart platform’s input variables while the movements of the mobile
hexagon expressed by variables X, y, z, a, f and y are chosen as the Stewart
platform’s output. The relations between the input and output variables are of
great importance when such a mechanism is put to use. In the following sections,
the kinematic analysis of the Stewart platform will be discussed.

3. Kinematic analysis
3.1 Inverse kinematic problem

The inverse kinematic problem of the Stewart platform corresponding to
the computation of the legs’ lengths for given the position and orientation of the
mobile hexagon. For the Stewart platform studied here, the vectors specifying the
positions of nodes A; and B in the fixed reference frame are defined as aj and ©b;,
respectively. Also, the vectors specifying the positions of nodes B; in the moving
reference frame are defined as ©bi. From Figure 1, the vectors specifying the
positions of nodes A; in the fixed reference frame can be easily derived.

[R]  [.R] Rl R
R 2 2 -R 2 2
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Similarly, the vectors specifying the positions of nodes B; in the moving
reference frame can be easily computed.

b r r

—b

2 2 2
b, =(0],°b,=|3 |.%b, =3 |.%b,=| 0 |%b=| 3
0 2 2 2

0 0

r
2

°b=| B[O
2
0

0




Kinematic analysis of a Stewart platform based on AFSA 19

Considering the position vector P =[x, y, z]" and the rotation matrix T, the
position vectors of points B; (i = 1, 2, 3, 4) with respect to the fixed reference
frame can be obtained:

°b,=P+T-%b,i=1 2 3, 4,5, 6 4)

With the position vectors of points A; and Bi; now known, the vector of the
ith leg can be written as

L =% -Ca,i=1234756 (5)

Therefore, the length of the ith leg can be given as
L =|% - i=123 4,56 (6)

By substituting Egs. (2) and (4) into Eq. (6), the solutions to the inverse
kinematic problem can be obtained.

Eq, = [x— R-— r(sinozsiny—coswcosﬂcos;/)]2 +

(7)
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With the given input variables x, y, z, a, £ and y, the legs’ lengths L; (i = 1,
2,3, 4,5, 6) can be easily computed by using Egs. (7)-(12).

3.2 Direct kinematic problem

Direct kinematic problem consists in computing the position and rotation
variables for the legs’ lengths.

When the input variables L;j are given, the solutions to the direct
kinematic problem can be obtained by combining Egs. (7)-(12). Generally, the
analytical solutions to Egs. (7)-(12) do not exist. During the past half-century,
considerable research has been performed on finding numerical solutions to the
direct kinematic problem. However, less well-validated methods are found to
solve the direct kinematic problems of all kinds of Stewart platforms. With the
development of intelligent optimization algorithm, artificial fish swarm
algorithm are employed in this work to solve the direct kinematic problem to the
Stewart platform.

4. Artificial fish swarm algorithm

The Artificial fish swarm algorithm (AFSA) is an intelligent optimization
algorithm proposed by Li [15] inspired by the social behaviors of fish swarm in
search of food. The fish swarm behaviors include praying behavior, leaping
behavior, swarming behavior and swallowing behavior. The AFSA is mainly used
to solve optimization problems. It works with a group of artificial fishes referred
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to as a swarm. Each individual called an artificial fish (AF) denotes a feasible
solution to the optimization problem. By evaluating AF’s behaviors, each AF
moves a step in the search space towards the better AF. After a number of
iteration times, AFs will be around the better solutions to the optimization
problem. The AFSA can search the global optimum effectively and adaptively.

4.1 Optimization model

In order to solve the direct kinematic problem of the Stewart platform, an
optimization model will be developed firstly. Egs. (7)-(12) can be rewritten as

Eq —L: =0, (k=1 2, 3, 4,5, 6) (13)
The equivalence model is constructed of Eq. (13) as
6
minimize f (X, y,z,oz,,B,y):Z(Eqk—Lﬁ)2
. (14)
subject to Xenin <X < Xios Yoin =Y = Voaxr Zoin S Z < Zpy

amin <a SOcmax’ﬂmin Sﬂ Sﬁmax!}/min Sj/ Symax
From Eq. (14), it can be seen that the minimum of f (X, y, z, @, £, y) is zero.
According to the AFSA, each AF denotes a feasible solution to the optimization
problem expressed by Eq. (14). The best AF will satisfy f (x, y, z, a, £, y) = 0.
Moreover, when the best AF is found, the corresponding values of x, y, z, «, £ and
y will be the solutions to the direct kinematic problem described by Egs. (7)-(12).

4.2 Behaviors of Artificial fish

Let N be the number of AFs. The AF; (ie{1, 2, ..., N}) is associated with a
vector Xi= [x', y', Z', &', £, »']" while the food consistence of the AF; is associated
with Y; = f (Xi). The realization of the behaviors in AFSA is as follows.

1) Praying behavior

It is assumed that the current position of an AF is denoted by X! . Before
the praying behavior occurs, the AF will select a state X; randomly within its
visual distance firstly.

X, = X! +V -Rand() (15)
Where Rand() is a random number within the interval [0, 1] and V is the visual
distance of the AF. For the minimum problem expressed by Eq. (14), if Yj <Yj, the
AF will go a step towards Yj. Let X** be the AF’s next position, it takes the

following form
t+l t Xj B Xit
Xi™ =X +1—"——-S,-Rand() (16)

- x=x]
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Where St is the AF’s moving step length. However, it Yj > Y, the AF will select
another state X; randomly again and judge whether it satisfies the forward
requirement. Moreover, if the forward requirement cannot be satisfied after
several times denoted by Ty, the AF will move step randomly.
X" =X!+V -Rand() (17)
2) Swarming behavior
Let ns be the numbers of the AF’s companions within its visual range. The
center position of the AFs including the AF itself and its companions is denoted
by Xc. If Y¢/ns < 6Yi, which means that more fitness values exist around the center
Xc and the surrounding environment is not very crowded, the AF will go a step
towards the center X from its current position Xi.
t+1 t xc - ><|t
X7 =X, +”Xc —Xit” S, -Rand() (18)
Otherwise, the AF will choose the preying behavior.
3) Following behavior
Let Xi be the AF’s current state. It explores its neighborhood area to find
the companion X; which has the best food consistence. If Yj/ns < 6Yi, which means
that the AF X has lower fitness value and the surrounding environment is not very
crowed, the AF X; will go a step towards X;.

XU = X +M-st -Rand() (19)

4) Moving behavior
The Moving behavior of an AF corresponds to the situation that the AF
moves randomly within its visual range, which is given by

X =X!+V-Rand() (20)
4.3 The procedure of AFSA

The procedure of AFSA is given as follows

Stepl. Initialize the parameters of the AFSA including the number of AFs
N, the current state of each AF Xi, AF’s step length St, AF’s visual distance V, try
numbers Tr and crowding factor o.

Step2. Compute the food consistence of each AF and record the state of
the best AF.

Step3. Evaluate the states of each AF and choose the behaviors of each AF
to be executed.

Step4. Execute each AF’s behavior and update its location information.

Step5. Update the state of the best AF.

Step6. Stop and display the result if the stop condition is satisfied,
otherwise, return to step 2.



Kinematic analysis of a Stewart platform based on AFSA 23

5 Numerical simulations

For the Stewart platform shown in Fig. 1, the given input variables are
selected as L1 =20 m, Lo =18 m, Ls =23 m, Ly =28 m, Ls = 2.8 m and
Ls = 2.5m. Moreover, the parameters of the fixed and mobile hexagons are set to
be R =2 mand r =1 m. Solving the optimization model described by Eq. (14), the
output variables X, y, z, a, # and y can be obtained. The coefficients of Eq. (14)
and the parameters of AFSA are listed in Table 1.

Table 1
Coefficients of the optimization and parameters of AFSA
Coefficient Value Unit

Xmin '4 m
Xmax 4 m
Ymin -4 m
Ymax 4 m
Zmin 0 m
Zmax 4 m
Omin '71:/2 -
Omax TE/2 -
Pmin -1/2 -
Bmax /2 -
Ymin -1t/2 -
PYmax 7'[/2 -
T, 5 --
St 0.2 --
V 6 --
N 20 --

Let Xnest be the best AF for each iteration. Solving Eq. (14) by AFSA, the

obtained food consistence of Xpest iS sShown in Figure 2.
2 T T T T T
0

f (Xest)

2
4 - — — - f(0=0
6
8

f (Xees)

-10
-12
-14
-16
-18
-20

0 50 100 150 200 250 300
Tr
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In Fig. 2, Tr denotes the iterate times. From Fig. 2, it can be seen that after
50 iterations, the consistence of Xpest approximates to zero. This means that the
obtained Xpest by AFSA approaches the true solution to Eq. (14). Then, Xpest Can
be considered as the solution to the direct kinematic problem. After 300 iterations,
the obtained Xpest IS Xbest = [Xbest, Yoest, Zbest, Olbest, Pbest, ybest]T= [0-5, 05,15, 0.52,
0.53, 0.52]".
Since the minimum of f(X) is zero, the error of AFSA is defined as the
difference between f(Xnest) and zero, which is given by
g:|f(x)min_ f(Xbest)|:|f(Xbest)| (21)
Keeping the number of AFs N and the visual distance V constant (N = 20
and V = 6), the variation of the error ¢ with the step length S; is shown in Figure 3.
Keeping St and N constant (St = 0.1 and N = 20), the variation of the error ¢ with
the visual distance V is shown in Fig. 4. Moreover, Fig. 5 shows variation of the
error £ with number of AFs with S;=0.1and V = 6.
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From Fig. 3, it can be seen that AFSA has better precision when the step
length is 0.1. When this is the case, the difference between f(Xpest) and f(X)min is
0.0177. From Fig. 4, it can be seen that AFSA has better precision when V = 6. In
order to obtain a better solution to the direct kinematic problem, appropriate step
length and visual distance should be chosen. Moreover, from Figure 5, it can be
seen that the error ¢ decreases with an increase in the number of AFs. This means
that the precision increases with N. However, if the number of AFs increases, the
time needed for computation will be increased. When solving the direct kinematic
problem by AFSA, less AFs should be chosen under meeting the condition of
precision.

Furthermore, AFSA can also be used to detect the singularities of the
Stewart platform. By differentiating Egs. (7)-(12), the Jacobian, J, relating a set of
infinitesimal changes of the Stewart platform’s input variables (JL) to the
infinitesimal changes of its output variables (6X) can be obtained.

oL=J-6X (22)
where

X=[XYZ0{,37]T

L=[L L L L L L]
In EQ. (22), the elements J can be expressed by the output variables. The singular
configurations of the Stewart platform correspond to situations where the
determinant of J is zero, goes to infinity or is indeterminate. Since the output
variables is obtained by AFSA for the given input variables. Afterwards, by
substituting the output variables into Eq. (22) and computing the determinant of J,
the singular configurations of the Stewart platform can be detected.

(23)

6 Conclusion

A numerical approach for finding the solutions of a 6-6 Stewart platform
has been researched based on AFSA. Firstly, the architecture of the Stewart
platform is introduced. Then, the direct and inverse kinematic equations have
been developed. Afterwards, by converting the direct kinematic problem into an
optimization model, AFSA is employed to find the solutions to the direct
kinematic problems. Finally, the numerical simulations have been completed. The
results indicate that AFSA is an effective tool for solving the direct kinematics of
a Stewart platform. Moreover, the appropriate coefficients of AFSA have been
determined for the given geometric parameters of the Stewart platform. Generally,
precision of AFSA increases with the number of AFs. Furthermore, the results
confirmed that AFSA can be considered an alternative approach for the direct
kinematic problems of the Stewart platform.
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