

**STRONG CONVERGENCE OF A MULTI-STEP ITERATIVE
PROCESS FOR RELATIVELY QUASI-NONEXPANSIVE
MULTIVALUED MAPPINGS AND EQUILIBRIUM PROBLEM IN
BANACH SPACES**

M. Eslamian¹, A. Abkar²

In this paper, we introduce a multi-step iterative process which converges strongly to a common element of a set of common fixed points of a finite family of relatively quasi-nonexpansive multivalued mappings and the solution set of an equilibrium problem in Banach spaces. Our results extend some important recent results.

Keywords: Relatively quasi-nonexpansive, multivalued mapping, equilibrium problem, common fixed point.

MSC2010: 47H10, 47H09

1. Introduction

Let E be a real Banach space with norm $\|\cdot\|$ and let J be the normalized duality mapping from E into 2^{E^*} given by

$$Jx = \{x^* \in E^* : \langle x, x^* \rangle = \|x\| \|x^*\|, \|x\| = \|x^*\|\}$$

for all $x \in E$, where E^* denotes the dual space of E and $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing between E and E^* . A Banach space E is said to be strictly convex if $\|\frac{x+y}{2}\| < 1$ for all $x, y \in E$ with $\|x\| = \|y\| = 1$ and $x \neq y$. It is said to be uniformly convex if $\lim_{n \rightarrow \infty} \|x_n - y_n\| = 0$ for any two sequences $\{x_n\}$ and $\{y_n\}$ in E such that $\|x_n\| = \|y_n\| = 1$ and $\lim_{n \rightarrow \infty} \|\frac{x_n + y_n}{2}\| = 1$. Let $U = \{x \in E : \|x\| = 1\}$ be the unit sphere of E . Then the Banach space E is said to be smooth provided that

$$\lim_{t \rightarrow 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists for each $x, y \in U$. It is also said to be uniformly smooth if the limit is attained uniformly for $x, y \in E$. It is well known that if E^* is strictly convex then J is single valued, and if E is uniformly smooth then J is uniformly continuous on bounded subsets of E . Moreover, if E is a reflexive and strictly convex Banach space with a strictly convex dual, then J^{-1} is single valued, one-to-one, surjective, and it is the duality mapping from E^* into E and thus $JJ^{-1} = I_{E^*}$ and $J^{-1}J = I_E$. We note that in a Hilbert space H , J is the identity operator.

¹Corresponding author, Young Researchers Club, Babol Branch, Islamic Azad University, Babol, Iran, e-mail: mhmdeslamian@gmail.com

²Department of Mathematics, Imam Khomeini International University, Qazvin 34149, Iran.

Let E be a smooth Banach space and J be the normalized duality mapping from E to E^* . Alber [1] considered the following function $\phi : E \times E \rightarrow [0, \infty)$ defined by

$$\phi(x, y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2, \quad x, y \in E.$$

It is obvious from the definition of function ϕ that

$$(\|y\| - \|x\|)^2 \leq \phi(x, y) \leq (\|y\| + \|x\|)^2 \quad \forall x, y \in E. \quad (1.1)$$

Observe that in a Hilbert space H , $\phi(x, y) = \|x - y\|^2$, $x, y \in H$. Let E be a reflexive, strictly convex and smooth Banach space and let C be a nonempty closed and convex subset of E . The generalized projection mapping, introduced by Alber [1], is a mapping $\Pi_C : E \rightarrow C$, that assigns to an arbitrary point $x \in E$ the minimum point of the function $\phi(y, x)$, that is, $\Pi_C x = \bar{x}$, where \bar{x} is the solution to the minimization problem

$$\phi(\bar{x}, x) = \inf_{y \in C} \phi(y, x).$$

Lemma 1.1. (see [1]) *Let C be a nonempty closed and convex subset of a real reflexive and strictly convex Banach space E and let $x \in E$. Then there exists a unique element $x_0 \in C$ such that $\phi(x_0, x) = \inf_{y \in C} \phi(y, x)$.*

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space E , and let T be a mapping from C into itself. We denote by $F(T)$ the set of fixed points of T . A point $p \in C$ is said to be an asymptotic [2] fixed point of T , if C contains a sequence $\{x_n\}$ which converges weakly to p such that $\lim_{n \rightarrow \infty} \|x_n - Tx_n\| = 0$. The set of asymptotic fixed points of T will be denoted by $\widetilde{F}(T)$. A mapping T is said to be relatively nonexpansive [3, 4], if $\widetilde{F}(T) = F(T)$ and $\phi(p, Tx) \leq \phi(p, x)$ for all $x \in C$ and $p \in F(T)$. T is said to be relatively quasi-nonexpansive ([5, 6]) if $F(T) \neq \emptyset$ and $\phi(p, Tx) \leq \phi(p, x)$ for all $x \in C$ and $p \in F(T)$. The class of relatively quasi-nonexpansive mappings is bigger than the class of relatively nonexpansive mappings which requires the strong restriction: $\widetilde{F}(T) = F(T)$.

Let f be a bifunction from $C \times C$ into \mathbb{R} , where \mathbb{R} is the set of real numbers. The equilibrium problem for $f : C \times C \rightarrow \mathbb{R}$ is to find $x \in C$ such that

$$f(x, y) \geq 0, \quad \forall y \in C.$$

We shall denote the set of solutions of this equilibrium problem by $EP(f)$. The equilibrium problems include fixed point problems, optimization problems and variational inequality problems as special cases. Some methods have been proposed to solve the equilibrium problem, see for example, [7-10].

Recently, many authors studied the problem of finding a common element of the set of fixed points of nonexpansive or relatively nonexpansive single valued mappings and the set of solutions of an equilibrium problem in the framework of Hilbert or Banach spaces, respectively: see, for instance, [11-19] and the references therein.

A subset $C \subset E$ is called proximinal if for each $x \in E$, there exists an element $y \in C$ such that

$$\|x - y\| = dist(x, C) = \inf\{\|x - z\| : z \in C\}.$$

We denote by $N(C)$, $CB(C)$ and $P(C)$ the collection of all nonempty subsets, nonempty closed bounded subsets and nonempty proximinal bounded subsets of C , respectively. The Hausdorff metric H on $CB(C)$ is defined by

$$H(A, B) := \max\{\sup_{x \in A} \text{dist}(x, B), \sup_{y \in B} \text{dist}(y, A)\},$$

for all $A, B \in CB(C)$.

Let $T : E \rightarrow N(E)$ be a multivalued mapping. An element $x \in E$ is said to be a fixed point of T , if $x \in Tx$. The set of fixed points of T will be denoted by $F(T)$.

Definition 1.2. A multivalued mapping $T : E \rightarrow CB(E)$ is called

(i) nonexpansive if

$$H(Tx, Ty) \leq \|x - y\|, \quad x, y \in E.$$

(ii) quasi-nonexpansive if

$$F(T) \neq \emptyset \quad \text{and} \quad H(Tx, Tp) \leq \|x - p\|, \quad x \in E, \quad p \in F(T).$$

In recent years, approximation of fixed points of nonexpansive multivalued mappings by iteration has been studied by many authors, see [20-24]. The theory of multivalued mappings has applications in control theory, convex optimization, differential equations and economics.

In this paper we intend to modify the concept of relatively nonexpansiveness to incorporate the multivalued case as well. This will be done in the following definition.

Definition 1.3. Let C be a closed convex subset of a smooth Banach space E , and $T : C \rightarrow N(C)$ be a multivalued mapping. We set

$$\Phi(Tx, Tp) = \max\{\sup_{q \in Tp} \inf_{y \in Tx} \phi(y, q), \sup_{y \in Tx} \inf_{q \in Tp} \phi(y, q)\}.$$

We call T relatively quasi-nonexpansive multivalued mapping if $F(T) \neq \emptyset$ and

$$\Phi(Tx, Tp) \leq \phi(x, p), \quad \forall p \in F(T), \quad \forall x \in C.$$

Remark : In a Hilbert space, $\Phi(Tx, Ty) = H(Tx, Ty)^2$, and hence relatively quasi-nonexpansiveness is equivalent to quasi-nonexpansiveness.

In this paper, a multi-step iterative process by hybrid method is constructed. Strong convergence of the iterative process to a common element of the set of common fixed points of a finite family of relatively quasi-nonexpansive multivalued mappings and the solution set of an equilibrium problem in a uniformly convex real Banach space which is also uniformly smooth is proved. Our results extend some important recent results.

2. Preliminaries

Lemma 2.1. ([25, 26]) If E is a reflexive, strictly convex and smooth Banach space, then for $x, y \in E$, $\phi(x, y) = 0$ if and only if $x = y$.

Lemma 2.2. ([27]) Let E be a uniformly convex and smooth Banach space and let $\{x_n\}$ and $\{y_n\}$ be two sequences in E . If $\phi(x_n, y_n) \rightarrow 0$ and either $\{x_n\}$ or $\{y_n\}$ is bounded, then $x_n - y_n \rightarrow 0$.

Lemma 2.3. ([1]) Let C be a nonempty closed convex subset of a smooth Banach space E and $x \in E$. Then $x_0 = \Pi_C x$ if and only if

$$\langle x_0 - y, Jx - Jx_0 \rangle \geq 0, \quad \forall y \in C.$$

Lemma 2.4. ([1]) Let E be a reflexive, strictly convex and smooth Banach space, Let C be a nonempty closed convex subset of E and let $x \in E$. Then

$$\phi(y, \Pi_C x) + \phi(\Pi_C x, x) \leq \phi(y, x), \quad \forall y \in C.$$

Lemma 2.5. Let C be a nonempty closed convex subset of a uniformly convex and smooth Banach space E . Suppose $T : C \rightarrow P(C)$ is a multivalued mapping such that P_T is a relatively quasi-nonexpansive multivalued mapping where

$$P_T(x) = \{y \in Tx : \|x - y\| = \text{dist}(x, Tx)\}.$$

If $F(T) \neq \emptyset$, then $F(T)$ is closed and convex.

Proof. Let $\{p_n\}$ be a sequence in $F(T)$, such that $p_n \rightarrow p$ as $n \rightarrow \infty$. Then we have $P_T(p_n) = \{p_n\}$. Since P_T is relatively quasi-nonexpansive, we have

$$\sup_{z \in P_T(p)} \phi(p_n, z) = \Phi(P_T(p_n), P_T(p)) \leq \phi(p_n, p).$$

Hence for all $z \in P_T(p)$,

$$0 \leq \phi(p, z) = \lim_{n \rightarrow \infty} \phi(p_n, z) \leq \lim_{n \rightarrow \infty} \phi(p_n, p) \leq \phi(p, p) = 0.$$

This implies that $p = z \in P_T(p) \subset T(p)$. Therefore $F(T)$ is closed. Now, we show that $F(T)$ is convex. Let $p_1, p_2 \in F(T)$, then $P_T(p_1) = \{p_1\}$ and $P_T(p_2) = \{p_2\}$. Take $t \in (0, 1)$, and put $p = tp_1 + (1 - t)p_2$. Let $w \in P_T(p)$, then we have

$$\begin{aligned} \phi(p, w) &= \|p\|^2 - 2\langle p, Jw \rangle + \|w\|^2 \\ &= \|p\|^2 - 2\langle tp_1 + (1 - t)p_2, Jw \rangle + \|w\|^2 \\ &= \|p\|^2 - 2t\langle p_1, Jw \rangle - 2(1 - t)\langle p_2, Jw \rangle + \|w\|^2 \\ &= \|p\|^2 + t\phi(p_1, w) + (1 - t)\phi(p_2, w) - t\|p_1\|^2 - (1 - t)\|p_2\|^2 \\ &= \|p\|^2 + t \inf_{p_1 \in P_T(p_1)} \phi(p_1, w) + (1 - t) \inf_{p_2 \in P_T(p_2)} \phi(p_2, w) - t\|p_1\|^2 - (1 - t)\|p_2\|^2 \\ &\leq \|p\|^2 + t\Phi(P_T(p_1), P_T(p)) + (1 - t)\Phi(P_T(p_2), P_T(p)) - t\|p_1\|^2 - (1 - t)\|p_2\|^2 \\ &\leq \|p\|^2 + t\phi(p_1, p) + (1 - t)\phi(p_2, p) - t\|p_1\|^2 - (1 - t)\|p_2\|^2 \\ &= \|p\|^2 - 2\langle tp_1 + (1 - t)p_2, Jp \rangle + \|p\|^2 \\ &= \|p\|^2 - 2\langle p, Jp \rangle + \|p\|^2 = \phi(p, p) = 0. \end{aligned}$$

This implies, using Lemma 2.1, that $p = w \in P_T(p) \subset T(p)$, i.e., $p \in F(T)$. Hence $F(T)$ is convex. \square

Similarly we can prove the following lemma.

Lemma 2.6. Let C be a nonempty closed convex subset of a uniformly convex and smooth Banach space E . Suppose $T : C \rightarrow N(C)$ is a relatively quasi- nonexpansive multivalued mapping. If $F(T) \neq \emptyset$ and $T(p) = \{p\}$ for all $p \in F(T)$, then $F(T)$ is closed and convex.

Now we present an example of a multivalued mapping such that P_T is relatively quasi-nonexpansive, but T is not relatively quasi-nonexpansive.

Example : Let $I = [0, 1]$, $E = L^p(I)$, $1 < p < \infty$ and $C = \{f \in E : f(x) \geq 0, \forall x \in I\}$. Let $T : C \rightarrow CB(C)$ be defined by

$$T(f) = \{g \in C : f(x) \leq g(x) \leq 3f(x)\}.$$

Then we have

$$P_T(f) = \{g \in T(f), \|g - f\|_p = \text{dist}(T(f), f)\} = \{f\}$$

and hence

$$\Phi(P_T(f_1), P_T(f_2)) \leq \phi(f_1, f_2), \quad \forall f_1, f_2 \in C.$$

Therefore P_T is relatively quasi-nonexpansive. Now putting $f_1(x) = 0$ and $f_2(x) = 1$ we have $T(f_1) = 0$ and $T(f_2) = \{g \in C : 1 \leq g(x) \leq 3\}$, hence $\Phi(T(0), T(1)) = \sup_{g \in T(1)} \phi(0, g) = \phi(0, 3)$. On the other hand $\phi(0, 1) = \|1\|_p^2 = 1$ and $\phi(0, 3) = \|3\|_p^2 = 9$, which shows that

$$\Phi(T(0), T(1)) > \phi(0, 1).$$

Hence T is not relatively quasi-nonexpansive.

Definition 2.7. A multivalued mapping T is called closed if $x_n \rightarrow w$ and $\lim_{n \rightarrow \infty} \text{dist}(x_n, Tx_n) = 0$, then $w \in T(w)$.

Lemma 2.8. ([28]) Let E be a uniformly convex Banach space and let $B_r(0) = \{x \in E : \|x\| \leq r\}$, for $r > 0$. Then there exists a continuous, strictly increasing convex function $\varphi : [0, \infty) \rightarrow [0, \infty)$ with $\varphi(0) = 0$ such that

$$\|tx + (1-t)y\|^2 \leq t\|x\|^2 + (1-t)\|y\|^2 - t(1-t)\varphi(\|x - y\|)$$

for all $x, y \in B_r(0)$.

For solving the equilibrium problem, let us assume that the bifunction f satisfies the following conditions:

- (A1) $f(x, x) = 0$ for all $x \in C$,
- (A2) f is monotone, i.e. $f(x, y) + f(y, x) \leq 0$ for any $x, y \in C$,
- (A3) f is upper-hemicontinuous, i.e. for each $x, y, z \in C$,

$$\limsup_{t \rightarrow 0^+} f(tz + (1-t)x, y) \leq f(x, y),$$

- (A4) $f(x, .)$ is convex and lower semicontinuous for each $x \in C$.

The following lemma was proved in [7].

Lemma 2.9. Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive Banach space E , let f be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1) – (A4). Let $r > 0$ and $x \in E$. Then, there exists $z \in C$ such that

$$f(z, y) + \frac{1}{r} \langle y - z, Jz - Jx \rangle \geq 0 \quad \forall y \in C.$$

The following lemma was given in [12].

Lemma 2.10. *Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive Banach space E , let f be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1) – (A4). Let $r > 0$ and $x \in E$. Define a mapping $T_r : E \rightarrow C$ as follows:*

$$T_r x = \{z \in C : f(z, y) + \frac{1}{r} \langle y - z, Jz - Jx \rangle \geq 0, \forall y \in C\}.$$

Then, the following hold:

- (i) T_r is single valued,
- (ii) T_r is a firmly nonexpansive-type mapping, i.e., for any $x, y \in E$,

$$\langle T_r x - T_r y, JT_r x - JT_r y \rangle \leq \langle T_r x - T_r y, Jx - Jy \rangle,$$

- (iii) $F(T_r) = EP(f)$,
- (iv) $EP(f)$ is closed and convex.

Lemma 2.11. ([12]) *Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive Banach space E , let f be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1) – (A4), and let $r > 0$. Then for all $x \in E$ and $q \in F(T_r)$,*

$$\phi(q, T_r x) + \phi(T_r x, x) \leq \phi(q, x).$$

3. Main Result

Theorem 3.1. *Let E be a uniformly smooth and uniformly convex Banach space, and let C be a nonempty closed convex subset of E . Let f be a bifunction from $C \times C$ into \mathbb{R} satisfying (A1) – (A4). Let $T_i : C \rightarrow N(C)$, $i = 1, 2, \dots, m$, be a finite family of closed relatively quasi-nonexpansive multivalued mappings such that $\mathcal{F} = \bigcap_{i=1}^m F(T_i) \cap EP(f) \neq \emptyset$ and $T_i(p) = \{p\}$ for all $p \in \mathcal{F}$. For $x_0 \in C$ and $C_0 = C$, let $\{x_n\}$ be a sequence generated by the following algorithm:*

$$\begin{cases} y_{n,1} = J^{-1}((1 - a_{n,1})Jx_n + a_{n,1}Jz_{n,1}), \\ y_{n,2} = J^{-1}((1 - a_{n,2})Jx_n + a_{n,2}Jz_{n,2}), \\ \dots \\ y_{n,m} = J^{-1}((1 - a_{n,m})Jx_n + a_{n,m}Jz_{n,m}), \\ u_n \in C \text{ such that } f(u_n, y) + \frac{1}{r_n} \langle y - u_n, Ju_n - Jy_{n,m} \rangle \geq 0, \quad \forall y \in C, \\ C_{n+1} = \{z \in C_n : \phi(z, u_n) \leq \phi(z, x_n)\}, \\ x_{n+1} = \prod_{C_{n+1}} x_0, \quad \forall n \geq 0 \end{cases}$$

where $z_{n,1} \in T_1 x_n$ and $z_{n,i} \in T_i y_{n,i-1}$ for $i = 2, \dots, m$ and J is the duality mapping on E . Assume that $\sum_{i=1}^m a_{n,i} = 1$, $\{a_{n,i}\} \in [a, b] \subset (0, 1)$ and $\{r_n\} \subset [c, \infty)$ for some $c > 0$. Suppose that each T_i is uniformly continuous with respect to the Hausdorff metric for $i = 2, \dots, m$. Then $\{x_n\}$ converges strongly to $\Pi_{\mathcal{F}} x_0$, where $\Pi_{\mathcal{F}}$ is the projection of E onto \mathcal{F} .

Proof. At first, we show that C_n is closed and convex for each $n \geq 0$. From the definition, it is obvious that C_n is closed. Moreover, since $\phi(z, u_n) \leq \phi(z, x_n)$ is equivalent to

$$2\langle z, Jx_n - Ju_n \rangle - \|x_n\|^2 + \|u_n\|^2 \leq 0,$$

it follows that C_n is convex for each $n \geq 0$. Next, we show by induction that $\mathcal{F} = \bigcap_{i=1}^m F(T_i) \cap EP(f) \subset C_n$ for all $n \geq 0$. From $C_0 = C$, we have $\mathcal{F} \subset C_0$. We

suppose that $\mathcal{F} \subset C_n$ for some $n \geq 0$. Let $u \in \mathcal{F}$. Since for each $1 \leq i \leq m$, T_i is relatively quasi- nonexpansive, we have

$$\begin{aligned} \phi(u, y_{n,1}) &= \phi(u, J^{-1}((1 - a_{n,1})Jx_n + a_{n,1}Jz_{n,1})) \\ &= \|u\|^2 - 2\langle u, (1 - a_{n,1})Jx_n + a_{n,1}Jz_{n,1} \rangle + \|(1 - a_{n,1})Jx_n + a_{n,1}Jz_{n,1}\|^2 \\ &\leq \|u\|^2 - 2(1 - a_{n,1})\langle u, Jx_n \rangle - 2a_{n,1}\langle u, Jz_{n,1} \rangle + (1 - a_{n,1})\|x_n\|^2 + a_{n,1}\|z_{n,1}\|^2 \\ &= (1 - a_{n,1})\phi(u, x_n) + a_{n,1}\phi(u, z_{n,1}) \\ &\leq (1 - a_{n,1})\phi(u, x_n) + a_{n,1}\Phi(T_1u, T_1x_n) \\ &\leq (1 - a_{n,1})\phi(u, x_n) + a_{n,1}\phi(u, x_n) = \phi(u, x_n), \end{aligned}$$

and

$$\begin{aligned} \phi(u, y_{n,2}) &= \phi(u, J^{-1}((1 - a_{n,2})Jx_n + a_{n,2}Jz_{n,2})) \\ &= \|u\|^2 - 2\langle u, (1 - a_{n,2})Jx_n + a_{n,2}Jz_{n,2} \rangle + \|(1 - a_{n,2})Jx_n + a_{n,2}Jz_{n,2}\|^2 \\ &\leq \|u\|^2 - 2(1 - a_{n,2})\langle u, Jx_n \rangle - 2a_{n,2}\langle u, Jz_{n,2} \rangle + (1 - a_{n,2})\|x_n\|^2 + a_{n,2}\|z_{n,2}\|^2 \\ &= (1 - a_{n,2})\phi(u, x_n) + a_{n,2}\phi(u, z_{n,2}) \\ &\leq (1 - a_{n,2})\phi(u, x_n) + a_{n,2}\Phi(T_2u, T_2y_{n,1}) \\ &\leq (1 - a_{n,2})\phi(u, x_n) + a_{n,2}\phi(u, y_{n,1}) = \phi(u, x_n). \end{aligned}$$

By continuing this process we obtain

$$\begin{aligned} \phi(u, u_n) &= \phi(u, T_{r_n}y_{n,m}) \leq \phi(u, y_{n,m}) = \phi(u, J^{-1}((1 - a_{n,m})Jx_n + a_{n,m}Jz_{n,m})) \\ &= \|u\|^2 - 2\langle u, (1 - a_{n,m})Jx_n + a_{n,m}Jz_{n,m} \rangle + \|(1 - a_{n,m})Jx_n + a_{n,m}Jz_{n,m}\|^2 \\ &\leq \|u\|^2 - 2(1 - a_{n,m})\langle u, Jx_n \rangle - 2a_{n,m}\langle u, Jz_{n,m} \rangle + (1 - a_{n,m})\|x_n\|^2 + a_{n,m}\|z_{n,m}\|^2 \\ &= (1 - a_{n,m})\phi(u, x_n) + a_{n,m}\phi(u, z_{n,m}) \\ &\leq (1 - a_{n,m})\phi(u, x_n) + a_{n,m}\Phi(T_mu, T_my_{n,m-1}) \\ &\leq (1 - a_{n,m})\phi(u, x_n) + a_{n,m}\phi(u, y_{n,m-1}) \\ &\leq (1 - a_{n,m})\phi(u, x_n) + a_{n,m}\phi(u, x_n) = \phi(u, x_n), \quad (3.1) \end{aligned}$$

hence, we have $u \in C_{n+1}$. This implies that

$$\mathcal{F} = \bigcap_{i=1}^m F(T_i) \bigcap EP(f) \subset C_n, \quad \forall n \geq 0.$$

From $x_n = \Pi_{C_n}x_0$, we have

$$\langle x_n - z, Jx_0 - Jx_n \rangle \geq 0, \quad \forall z \in C_n. \quad (3.2)$$

Since $\mathcal{F} \subset C_n$ for all $n \geq 0$, we obtain that

$$\langle x_n - u, Jx_0 - Jx_n \rangle \geq 0 \quad \forall u \in \mathcal{F}.$$

From Lemma 2.4 we have

$$\phi(x_n, x_0) = \phi(\Pi_{C_n}x_0, x_0) \leq \phi(u, x_0) - \phi(u, \Pi_{C_n}x_0) \leq \phi(u, x_0)$$

for all $u \in \mathcal{F} \subset C_n$. Then the sequence $\phi(x_n, x_0)$ is bounded. Therefore $\{x_n\}$ is bounded. We show that $\{z_{n,i}\}$ is bounded for $i = 1, 2, \dots, m$. Indeed, for $u \in \mathcal{F}$ we

have

$$(\|z_{n,i}\| - \|u\|)^2 \leq \phi(z_{n,i}, u) \leq \phi(x_n, u) \leq (\|x_n\| + \|u\|)^2.$$

Since $\{x_n\}$ is bounded, we conclude that $\{z_{n,i}\}$ is bounded for $i = 1, 2, \dots, m$. From $x_n = \Pi_{C_n} x_0$ and $x_{n+1} \in C_{n+1} \subset C_n$ we have

$$\phi(x_n, x_0) \leq \phi(x_{n+1}, x_0), \quad \forall n \geq 0.$$

Thus, $\{\phi(x_n, x_0)\}$ is nondecreasing. So the limit of $\{\phi(x_n, x_0)\}$ exists. By the construction of C_n for any positive integer $m \geq n$ we have

$$x_m = \Pi_{C_m} x_0 \in C_m \subset C_n.$$

It follows that

$$\begin{aligned} \phi(x_m, x_n) &= \phi(x_m, \Pi_{C_n} x_0) \\ &\leq \phi(x_m, x_0) - \phi(\Pi_{C_n} x_0, x_0) \\ &= \phi(x_m, x_0) - \phi(x_n, x_0) \end{aligned}$$

Letting $m, n \rightarrow \infty$ we have

$$\lim_{n \rightarrow \infty} \phi(x_m, x_n) = 0. \quad (3.3)$$

It follows from Lemma 2.2 that $x_m - x_n \rightarrow 0$ as $m, n \rightarrow \infty$. Hence $\{x_n\}$ is a Cauchy sequence. Since C is a closed and convex subset of the Banach space E , we can assume that $x_n \rightarrow p$ as $n \rightarrow \infty$. Next we show $p \in \bigcap_{i=1}^m F(T_i)$. By taking $m = n+1$ in (3.4) we get

$$\lim_{n \rightarrow \infty} \phi(x_{n+1}, x_n) = 0. \quad (3.4)$$

It follows from Lemma 2.2 that

$$\lim_{n \rightarrow \infty} \|x_{n+1} - x_n\| = 0. \quad (3.5)$$

From $x_{n+1} = \Pi_{C_{n+1}} x \in C_{n+1}$, we have

$$\phi(x_{n+1}, u_n) \leq \phi(x_{n+1}, x_n), \quad n \geq 0$$

It follows from (3.5) that

$$\lim_{n \rightarrow \infty} \phi(x_{n+1}, u_n) = 0.$$

By Lemma 2.1 we have

$$\lim_{n \rightarrow \infty} \|x_{n+1} - u_n\| = 0. \quad (3.6)$$

Combining (3.6) with (3.7) one observes that

$$\lim_{n \rightarrow \infty} \|x_n - u_n\| \leq \lim_{n \rightarrow \infty} (\|x_{n+1} - x_n\| + \|x_{n+1} - u_n\|) = 0. \quad (3.7)$$

It follows from $x_n \rightarrow p$ that $u_n \rightarrow p$ as $n \rightarrow \infty$. Since J is uniformly norm-to-norm continuous on bounded sets and $\lim_{n \rightarrow \infty} \|x_n - u_n\| = 0$, we have

$$\lim_{n \rightarrow \infty} \|Jx_n - Ju_n\| = 0. \quad (3.8)$$

Let

$$r = \sup_{n \geq 0} \{\|x_n\|, \|z_{n,i}\| : i = 1, 2, \dots, m\}.$$

Since E is a uniformly smooth Banach space, we know that E^* is a uniformly convex Banach space. Therefore from Lemma 2.8 there exists a continuous strictly increasing, and convex function g with $g(0) = 0$ such that for $i = 1, 2, \dots, m$,

$$\begin{aligned}
\phi(u, y_{n,1}) &= \phi(u, J^{-1}((1 - a_{n,1})Jx_n + a_{n,1}Jz_{n,1})) \\
&= \|u\|^2 - 2\langle u, (1 - a_{n,1})Jx_n + a_{n,1}Jz_{n,1} \rangle + \|(1 - a_{n,1})Jx_n + a_{n,1}Jz_{n,1}\|^2 \\
&\leq \|u\|^2 - 2(1 - a_{n,1})\langle u, Jx_n \rangle - 2a_{n,1}\langle u, Jz_{n,1} \rangle \\
&\quad + (1 - a_{n,1})\|x_n\|^2 + a_{n,1}\|z_{n,1}\|^2 - a_{n,1}(1 - a_{n,1})g(\|Jx_n - Jz_{n,1}\|) \\
&= (1 - a_{n,1})\phi(u, x_n) + a_{n,1}\phi(u, z_{n,1}) - a_{n,1}(1 - a_{n,1})g(\|Jx_n - Jz_{n,1}\|) \\
&\leq (1 - a_{n,1})\phi(u, x_n) + a_{n,1}\Phi(T_1u, T_1x_n) - a_{n,1}(1 - a_{n,1})g(\|Jx_n - Jz_{n,1}\|) \\
&\leq (1 - a_{n,1})\phi(u, x_n) + a_{n,1}\phi(u, x_n) - a_{n,1}(1 - a_{n,1})g(\|Jx_n - Jz_{n,1}\|) \\
&= \phi(u, x_n) - a_{n,1}(1 - a_{n,1})g(\|Jx_n - Jz_{n,1}\|)
\end{aligned}$$

and

$$\begin{aligned}
\phi(u, y_{n,2}) &= \phi(u, J^{-1}((1 - a_{n,2})Jx_n + a_{n,2}Jz_{n,2})) \\
&= \|u\|^2 - 2\langle u, (1 - a_{n,2})Jx_n + a_{n,2}Jz_{n,2} \rangle + \|(1 - a_{n,2})Jx_n + a_{n,2}Jz_{n,2}\|^2 \\
&\leq \|u\|^2 - 2(1 - a_{n,2})\langle u, Jx_n \rangle - 2a_{n,2}\langle u, Jz_{n,2} \rangle \\
&\quad + (1 - a_{n,2})\|x_n\|^2 + a_{n,2}\|z_{n,2}\|^2 - a_{n,2}(1 - a_{n,2})g(\|Jx_n - Jz_{n,2}\|) \\
&= (1 - a_{n,2})\phi(u, x_n) + a_{n,2}\phi(u, z_{n,2}) - a_{n,2}(1 - a_{n,2})g(\|Jx_n - Jz_{n,2}\|) \\
&\leq (1 - a_{n,2})\phi(u, x_n) + a_{n,2}\Phi(T_2u, T_2y_{n,1}) - a_{n,2}(1 - a_{n,2})g(\|Jx_n - Jz_{n,2}\|) \\
&\leq (1 - a_{n,2})\phi(u, x_n) + a_{n,2}\phi(u, y_{n,1}) - a_{n,2}(1 - a_{n,2})g(\|Jx_n - Jz_{n,2}\|) \\
&\leq \phi(u, x_n) - a_{n,2}(1 - a_{n,2})g(\|Jx_n - Jz_{n,2}\|) - a_{n,2}a_{n,1}(1 - a_{n,1})g(\|Jx_n - Jz_{n,1}\|).
\end{aligned}$$

By continuing this process we obtain

$$\begin{aligned}
\phi(u, u_n) &= \phi(u, T_{r_n}y_{n,m}) \leq \phi(u, y_{n,m}) = \phi(u, J^{-1}((1 - a_{n,m})Jx_n + a_{n,m}Jz_{n,m})) \\
&= \|u\|^2 - 2\langle u, (1 - a_{n,m})Jx_n + a_{n,m}Jz_{n,m} \rangle + \|(1 - a_{n,m})Jx_n + a_{n,m}Jz_{n,m}\|^2 \\
&\leq \|u\|^2 - 2(1 - a_{n,m})\langle u, Jx_n \rangle - 2a_{n,m}\langle u, Jz_{n,m} \rangle + (1 - a_{n,m})\|x_n\|^2 + a_{n,m}\|z_{n,m}\|^2 \\
&\quad - a_{n,m}(1 - a_{n,m})g(\|Jx_n - Jz_{n,m}\|) \\
&= (1 - a_{n,m})\phi(u, x_n) + a_{n,m}\phi(u, z_{n,m}) - a_{n,m}(1 - a_{n,m})g(\|Jx_n - Jz_{n,m}\|) \\
&\leq 1 - a_{n,m}\phi(u, x_n) + a_{n,m}\Phi(T_mu, T_my_{n,m-1}) - a_{n,m}(1 - a_{n,m})g(\|Jx_n - Jz_{n,m}\|) \\
&\leq (1 - a_{n,m})\phi(u, x_n) + a_{n,m}\phi(u, y_{n,m-1}) - a_{n,m}(1 - a_{n,m})g(\|Jx_n - Jz_{n,m}\|) \\
&\leq (1 - a_{n,m})\phi(u, x_n) + a_{n,m}\phi(u, x_n) - a_{n,m}(1 - a_{n,m})g(\|Jx_n - Jz_{n,m}\|) \\
&\quad - a_{n,m}a_{n,m-1}(1 - a_{n,m-1})g(\|Jx_n - Jz_{n,m-1}\|) - \dots - a_{n,m}a_{n,m-1} \dots a_{n,1}(1 - a_{n,1})g(\|Jx_n - Jz_{n,1}\|) \\
&\leq \phi(u, x_n) - a_{n,m}(1 - a_{n,m})g(\|Jx_n - Jz_{n,m}\|) \\
&\quad - a_{n,m}a_{n,m-1}(1 - a_{n,m-1})g(\|Jx_n - Jz_{n,m-1}\|) - \dots \\
&\quad - a_{n,m}a_{n,m-1} \dots a_{n,1}(1 - a_{n,1})g(\|Jx_n - Jz_{n,1}\|). \quad (3.9)
\end{aligned}$$

It follows that

$$a_{n,m}a_{n,m-1} \dots a_{n,1}(1 - a_{n,1})g(\|Jx_n - Jz_{n,1}\|) \leq \phi(u, x_n) - \phi(u, u_n) \quad n \geq 0. \quad (3.10)$$

On the other hand

$$\begin{aligned}
\phi(u, x_n) - \phi(u, u_n) &= \|x_n\|^2 - \|u_n\|^2 - 2\langle u, Jx_n - Ju_n \rangle \\
&\leq |\|x_n\|^2 - \|u_n\|^2| + 2|\langle u, Jx_n - Ju_n \rangle| \\
&\leq \|x_n\| - \|u_n\| (\|x_n\| + \|u_n\|) + 2\|u\| \|Jx_n - Ju_n\| \\
&\leq \|x_n - u_n\| (\|x_n\| + \|u_n\|) + 2\|u\| \|Jx_n - Ju_n\|.
\end{aligned}$$

It follows from (3.8) and (3.9) that

$$\lim_{n \rightarrow \infty} (\phi(u, x_n) - \phi(u, u_n)) = 0. \quad (3.11)$$

By our assumption we have

$$a^m(1-b)g(\|Jx_n - Jz_{n,1}\|) \leq a_{n,m}a_{n,m-1} \dots a_{n,1}(1-a_{n,1})g(\|Jx_n - Jz_{n,1}\|),$$

which implies, by (3.10), that

$$\lim_{n \rightarrow \infty} g(\|Jx_n - Jz_{n,1}\|) = 0.$$

Therefore from the property of g , we have

$$\lim_{n \rightarrow \infty} \|Jx_n - Jz_{n,1}\| = 0.$$

Since J^{-1} is uniformly norm-to-norm continuous on bounded subsets, we have

$$\lim_{n \rightarrow \infty} \|x_n - z_{n,1}\| = 0.$$

By a similar way, for $i = 2, \dots, m$ we obtain that

$$\lim_{n \rightarrow \infty} \|x_n - z_{n,i}\| = 0.$$

Therefore we have

$$\lim_{n \rightarrow \infty} \text{dist}(x_n, T_1 x_n) \leq \lim_{n \rightarrow \infty} \|x_n - z_{n,1}\| = 0,$$

and also

$$\lim_{n \rightarrow \infty} \text{dist}(x_n, T_i y_{n,i-1}) \leq \lim_{n \rightarrow \infty} \|x_n - z_{n,i}\| = 0, \quad i = 2, \dots, m.$$

For $k = 1, 2, \dots, m$ we have

$$\lim_{n \rightarrow \infty} \|Jy_{n,k} - Jx_n\| = \lim_{n \rightarrow \infty} a_{n,k} \|Jz_{n,k} - Jx_n\| = 0.$$

Since J^{-1} is uniformly norm-to-norm continuous on bounded sets, we have

$$\lim_{n \rightarrow \infty} \|x_n - y_{n,k}\| = 0.$$

Since T_i is uniformly continuous for $k = 2, 3, \dots, m$ we have

$$\begin{aligned}
\text{dist}(x_n, T_k x_n) &\leq \text{dist}(x_n, T_k y_{n,k-1}) + H(T_k y_{n,k-1}, T_k x_n) \\
&\leq \|x_n - z_{n,k}\| + H(T_k y_{n,k-1}, T_k x_n) \rightarrow 0 \quad n \rightarrow \infty
\end{aligned} \quad (3.12)$$

Now by the closedness of T_i we obtain that $p \in \bigcap_{i=1}^m F(T_i)$. We shall show that $p \in EP(f)$. From (3.2) we have

$$\phi(u, y_n) \leq \phi(u, x_n). \quad (3.13)$$

From $u_n = T_{r_n}y_{n,m}$ and Lemma 2.10 we have that

$$\begin{aligned}\phi(u_n, y_{n,m}) &= \phi(T_{r_n}y_{n,m}, y_{n,m}) \\ &\leq \phi(u, y_{n,m}) - \phi(u, T_{r_n}y_{n,m}) \\ &\leq \phi(u, x_n) - \phi(u, T_{r_n}y_{n,m}) \\ &= \phi(u, x_n) - \phi(u, u_n)\end{aligned}$$

So, we have from (3.11) that

$$\lim_{n \rightarrow \infty} \phi(u_n, y_{n,m}) = 0.$$

Since E is uniformly convex and smooth and $\{u_n\}$ is bounded, we have from Lemma 2.2 that

$$\lim_{n \rightarrow \infty} \|u_n - y_{n,m}\| = 0. \quad (3.14)$$

Since J is uniformly norm-to-norm continuous on bounded sets, we have

$$\lim_{n \rightarrow \infty} \|Ju_n - Jy_{n,m}\| = 0. \quad (3.15)$$

From the assumption $r_n \geq c$ we have

$$\lim_{n \rightarrow \infty} \frac{\|Ju_n - Jy_{n,m}\|}{r_n} = 0.$$

By $u_n = T_{r_n}y_{n,m}$ we have

$$f(u_n, y) + \frac{1}{r_n} \langle y - u_n, Ju_n - Jy_{n,m} \rangle \geq 0 \quad \forall y \in C.$$

From (A2), we have

$$\|y - u_n\| \frac{\|Ju_n - Jy_{n,m}\|}{r_n} \geq \frac{1}{r_n} \langle y - u_n, Ju_n - Jy_{n,m} \rangle \geq -f(u_n, y) \geq f(y, u_n).$$

By taking the limit as $n \rightarrow \infty$, in the above inequality and from (A4) we have

$$0 \geq f(y, p), \quad \forall y \in C.$$

For all $t \in (0, 1)$ and $y \in C$, define $y_t = ty + (1-t)p$. Since $y, p \in C$, and C is convex we have $y_t \in C$ and hence $f(y_t, p) \leq 0$. So, from (A1) we have

$$0 = f(y_t, y_t) \leq tf(y_t, y) + (1-t)f(y_t, p) \leq tf(y_t, y),$$

which gives $f(y_t, y) \geq 0$. From (A3) we have $0 \leq f(p, y), \forall y \in C$ which implies that $p \in EP(f)$, and therefore $p \in \mathcal{F}$. Finally we prove $p = \Pi_{\mathcal{F}}x_0$. By taking limit in (3.3) we have

$$\langle p - u, Jx_0 - Jp \rangle \geq 0, \quad \forall u \in \mathcal{F}.$$

Hence by Lemma 2.3 we have $p = \Pi_{\mathcal{F}}x_0$. □

As a result for single valued mappings we obtain the following corollary.

Theorem 3.2. *Let E be a uniformly smooth and uniformly convex Banach space, and let C be a nonempty closed convex subset of E . Let f be a bifunction from $C \times C$ into \mathbb{R} satisfying (A1) – (A4). Let $T_i : C \rightarrow C$, $i = 1, 2, \dots, m$ be a finite family of closed relatively quasi-nonexpansive mappings such that $\mathcal{F} = \bigcap_{i=1}^m F(T_i) \cap EP(f) \neq \emptyset$*

\emptyset . For $x_0 \in C$ and $C_0 = C$, let $\{x_n\}$ be a sequence generated by the following algorithm:

$$\begin{cases} y_{n,1} = J^{-1}((1 - a_{n,1})Jx_n + a_{n,1}JT_1x_n), \\ y_{n,2} = J^{-1}((1 - a_{n,2})Jx_n + a_{n,2}JT_2y_{n,1}), \\ \dots \\ y_{n,m} = J^{-1}((1 - a_{n,m})Jx_n + a_{n,m}JT_my_{n,m-1}), \\ u_n \in C \text{ such that } f(u_n, y) + \frac{1}{r_n}\langle y - u_n, Ju_n - Jy_{n,m} \rangle \geq 0, \quad \forall y \in C, \\ C_{n+1} = \{z \in C_n : \phi(z, u_n) \leq \phi(z, x_n)\}, \\ x_{n+1} = \prod_{C_{n+1}} x_0, \quad \forall n \geq 0. \end{cases}$$

Assume that $\sum_{i=1}^m a_{n,i} = 1$, $\{a_{n,i}\} \in [a, b] \subset (0, 1)$ and $\{r_n\} \subset [c, \infty)$ for some $c > 0$. Suppose that T_i is uniformly continuous for $i = 2, 3, \dots, m$. Then $\{x_n\}$ converges strongly to $\Pi_{\mathcal{F}}x_0$.

Theorem 3.3. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a nonempty closed convex subset of E . Let F be a bifunction from $C \times C$ into \mathbb{R} satisfying (A1) – (A4). Let $T_i : C \rightarrow P(C)$, $i = 1, 2, \dots, m$, be a finite family of multivalued mappings such that P_{T_i} is closed and relatively quasi-nonexpansive. Assume that $\mathcal{F} = \bigcap_{i=1}^m F(T_i) \cap EP(f) \neq \emptyset$. For $x_0 \in C$ and $C_0 = C$, let $\{x_n\}$ be a sequences generated by the following algorithm:

$$\begin{cases} y_{n,1} = J^{-1}((1 - a_{n,1})Jx_n + a_{n,1}Jz_{n,1}), \\ y_{n,2} = J^{-1}((1 - a_{n,2})Jx_n + a_{n,2}Jz_{n,2}), \\ \dots \\ y_{n,m} = J^{-1}((1 - a_{n,m})Jx_n + a_{n,m}Jz_{n,m}), \\ u_n \in C \text{ such that } f(u_n, y) + \frac{1}{r_n}\langle y - u_n, Ju_n - Jy_{n,m} \rangle \geq 0, \quad \forall y \in C, \\ C_{n+1} = \{z \in C_n : \phi(z, u_n) \leq \phi(z, x_n)\}, \\ x_{n+1} = \prod_{C_{n+1}} x_0, \quad \forall n \geq 0 \end{cases}$$

where $z_{n,1} \in P_{T_1}x_n$ and $z_{n,i} \in P_{T_i}y_{n,i-1}$ for $i = 2, \dots, m$ and J is the duality mapping on E . Assume that $\sum_{i=1}^m a_{n,i} = 1$, $\{a_{n,i}\} \in [a, b] \subset (0, 1)$ and $\{r_n\} \subset [c, \infty)$ for some $c > 0$. Suppose that P_{T_i} is uniformly continuous with respect to the Hausdorff metric for $i = 2, 3, \dots, m$. Then $\{x_n\}$ converges strongly to $\Pi_{\mathcal{F}}x_0$.

Proof. Let $p \in \mathcal{F}$, then $P_{T_i}(p) = \{p\}$, ($i=1,2,\dots,m$). Also we have $F(T_i) = F(P_{T_i})$. Now by substituting P_{T_i} instead of T_i and similar argument as in the proof of Theorem 3.1 we obtain the result. \square

REFERENCES

1. Y. I. Alber, *Metric and generalized projection operators in Banach spaces: properties and applications*, in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, vol. 178 of Lecture Notes in Pure and Applied Mathematics, pp. 15-50, Marcel Dekker, New York, NY, USA, (1996).
2. D. Butnariu, S. Reich, A. J. Zaslavski, *Asymptotic behavior of relatively nonexpansive operators in Banach spaces*, J.Math. Anal. Appl. **7** (2001) 151-174.
3. S. Matsushita, W. Takahashi, *Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces*, Fixed Point Theory Appl. **2004** (2004) 37-47.

4. S. Matsushita , W. Takahashi, *A strong convergence theorem for relatively nonexpansive mappings in a Banach space*, Journal of Approximation Theory. **134** (2005) 257-266.
5. W. Nilsrakoo, S. Saejung, *Strong convergence to common fixed points of countable relatively quasi-nonexpansive mappings*, Fixed Point Theory Appl. **2008**, Article ID 312454, 19 pages doi:10.1155/2008/312454.
6. X. Qin, Y.J. Cho, S.M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math. 225 (2009) 20-30.
7. E. Blum, W. Oettli, *From optimization and variational inequalities to equilibrium problems*, Math. Student, **63** (1994) 123-145.
8. S.D. Flam, A.S. Antipin, *Equilibrium programming using proximal-link algolithms*, Math. Program. **78** (1997) 29-41.
9. A. Moudafi, M. Thera, *Proximal and dynamical approaches to equilibrium problems*, in: Lecture notes in Economics and Mathematical Systems, vol. **477**, Springer-Verlag, New York, (1999), 187-201.
10. P.L. Combettes, S.A. Hirstoaga, *Equilibrium programming in Hilbert spaces*, J. Nonlinear Convex Anal. **6** (2005) 117-136.
11. A. Tada, W. Takahashi, *Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem*, J. Optim. Theory Appl. **133** (2007) 359-370.
12. W. Takahashi, K. Zembayashi , *Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces*, Nonlinear Anal. **70** (2009) 45-57.
13. W. Takahashi, K. Zembayashi , *Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings*, Fixed Point Theory and Applications **2008**(2008) doi:10.1155/2008/528476.
14. Y. J.Cho, X. Qin, J. I. Kang, *Convergence theorems based on hybrid methods for generalized equilibrium problems and fixed point problems*, Nonlinear Anal., **71** (2009), 4203-4214.
15. Y. Su , M. Li, H. Zhang, *New monotone hybrid algorithm for hemi-relatively nonexpansive mappings and maximal monotone operators*, Applied Mathematics and Computation. **217** (2011) 5458- 5465.
16. K. Wattanawitoot and P. Kumam, Strong convergence theorems by a new hybrid projection algorithm for fixed point problems and equilibrium problems of two relatively quasi nonexpansive mappings, Nonlinear Analysis; Hybrid Systems. **3** (2009) 11-20.
17. Y. Su, D. Wang, M. Shang, *Strong convergence of monotone hybrid algorithm for hemi-relatively nonexpansive mappings*, Fixed Point Theory and Applications, vol. 2008, Article ID 284613, 8 pages, 2008.
18. H. Zegeye, N. Shahzad , *Strong convergence theorems for monotone mappings and relatively weak nonexpansive mappings*, Nonlinear Analysis. **70** (2009) 2707-2716.
19. Y. Shehu, *Iterative approximation method for finite family of relatively quasi nonexpansive mappings and systems of equilibrium problems*, J. Glob. Optim. doi:10.1007/s10898-010-9619-4.
20. N. Shahzad, N. Zegeye, *Strong convergence results for nonself multimap in Banach spaces*, Proc. Amer. Math. Soc. **136** (2008) 539-548.
21. Y. Song, H. Wang, *Convergence of iterative algorithms for multivalued mappings in Banach spaces*, Nonlinear Anal. **70** (2009) 1547-1556.
22. N. Shahzad, H. Zegeye, *On Mann and Ishikawa iteration schemes for multivalued maps in Banach space*. Nonlinear Anal., **71** (2009) 838-844.
23. A. Abkar, M. Eslamian, *Convergence theorems for a finite family of generalized nonexpansive multivalued mappings in CAT(0) spaces*, Nonlinear Analysis. **75** (2012) 1895-1903.
24. M. Eslamian, A. Abkar, *One-step iterative process for a finite family of multivalued mappings*, Math. Comput. Modell. **54** (2011) 105-111.

25. I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, vol. 62 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.
26. W. Takahashi, *Nonlinear Functional Analysis: Fixed Point Theory and Its Applications*, Yokohama Publishers, Yokohama, Japan, 2000.
27. S. Kamimura and W. Takahashi, *Strong convergence of a proximal-type algorithm in a Banach space*, SIAM Journal on Optimization. **13** (2002) 938-945.
28. H. K. Xu, Inequalities in Banach spaces with application, Nonlinear Anal. **16** (1991) 1127-1138. Applications. **2008**, Article ID 745010, 7 pages.