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STRONG CONVERGENCE OF A MULTI-STEP ITERATIVE

PROCESS FOR RELATIVELY QUASI-NONEXPANSIVE

MULTIVALUED MAPPINGS AND EQUILIBRIUM PROBLEM IN

BANACH SPACES
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In this paper, we introduce a multi-step iterative process which converges
strongly to a common element of a set of common fixed points of a finite family
of relatively quasi-nonexpansive multivalued mappings and the solution set of an
equilibrium problem in Banach spaces. Our results extend some important recent
results.
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1. Introduction

Let E be a real Banach space with norm ∥.∥ and let J be the normalized
duality mapping from E into 2E

∗
given by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥∥x∗∥, ∥x∥ = ∥x∗∥}

for all x ∈ E, where E∗ denotes the dual space of E and ⟨., .⟩ denotes the generalized
duality pairing between E and E∗. A Banach space E is said to be strictly convex if
∥x+y

2 ∥ < 1 for all x, y ∈ E with ∥x∥ = ∥y∥ = 1 and x ̸= y. It is said to be uniformly
convex if limn→∞ ∥xn−yn∥ = 0 for any two sequences {xn} and {yn} in E such that
∥xn∥ = ∥yn∥ = 1 and limn→∞ ∥xn+yn

2 ∥ = 1. Let U = {x ∈ E : ∥x∥ = 1} be the unit
sphere of E. Then the Banach space E is said to be smooth provided that

lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is attained
uniformly for x, y ∈ E. It is well known that if E∗ is strictly convex then J is single
valued, and if E is uniformly smooth then J is uniformly continuous on bounded
subsets of E. Moreover, if E is a reflexive and strictly convex Banach space with a
strictly convex dual, then J−1 is single valued, one-to-one, surjective, and it is the
duality mapping from E∗ into E and thus JJ−1 = IE∗ and J−1J = IE . We note
that in a Hilbert space H, J is the identity operator.
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Let E be a smooth Banach space and J be the normalized duality mapping
from E to E∗. Alber [1] considered the following function ϕ : E×E → [0,∞) defined
by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, x, y ∈ E.

It is obvious from the definition of function ϕ that

(∥y∥ − ∥x∥)2 ≤ ϕ(x, y) ≤ (∥y∥+ ∥x∥)2 ∀x, y ∈ E. (1.1)

Observe that in a Hilbert space H, ϕ(x, y) = ∥x−y∥2, x, y ∈ H. Let E be a reflexive,
strictly convex and smooth Banach space and let C be a nonempty closed and convex
subset of E. The generalized projection mapping, introduced by Alber [1], is a
mapping ΠC : E → C, that assigns to an arbitrary point x ∈ E the minimum point
of the function ϕ(y, x), that is, ΠCx = x, where x is the solution to the minimization
problem

ϕ(x, x) = inf
y∈C

ϕ(y, x).

Lemma 1.1. (see [1]) Let C be a nonempty closed and convex subset of a real
reflexive and strictly convex Banach space E and let x ∈ E. Then there exists a
unique element x0 ∈ C such that ϕ(x0, x) = infy∈C ϕ(y, x).

Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E, and let T be a mapping from C into itself. We denote
by F (T ) the set of fixed points of T . A point p ∈ C is said to be an asymptotic
[2] fixed point of T , if C contains a sequence {xn} which converges weakly to p
such that limn→∞ ∥xn − Txn∥ = 0. The set of asymptotic fixed points of T will

be denoted by F̃ (T ). A mapping T is said to be relatively nonexpansive [3, 4], if

F̃ (T ) = F (T ) and ϕ(p, Tx) ≤ ϕ(p, x) for all x ∈ C and p ∈ F (T ). T is said to
be relatively quasi-nonexpansive ([5, 6]) if F (T ) ̸= ∅ and ϕ(p, Tx) ≤ ϕ(p, x) for
all x ∈ C and p ∈ F (T ). The class of relatively quasi-nonexpansive mappings is
bigger than the class of relatively nonexpansive mappings which requires the strong

restriction: F̃ (T ) = F (T ).
Let f be a bifunction from C × C into R, where R is the set of real numbers.

The equilibrium problem for f : C × C → R is to find x ∈ C such that

f(x, y) ≥ 0, ∀y ∈ C.

We shall denote the set of solutions of this equilibrium problem by EP (f). The
equilibrium problems include fixed point problems, optimization problems and vari-
ational inequality problems as special cases. Some methods have been proposed to
solve the equilbrium problem, see for example, [7-10].

Recently, many authors studied the problem of finding a common element
of the set of fixed points of nonexpansive or relatively nonexpansive single valued
mappings and the set of solutions of an equilibrium problem in the framework of
Hilbert or Banach spaces, respectively: see, for instance, [11-19] and the references
therein.

A subset C ⊂ E is called proximinal if for each x ∈ E, there exists an element
y ∈ C such that

∥ x− y ∥= dist(x,C) = inf{∥ x− z ∥: z ∈ C}.
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We denote by N(C), CB(C) and P (C) the collection of all nonempty subsets,
nonempty closed bounded subsets and nonempty proximinal bounded subsets of
C, respectively. The Hausdorff metric H on CB(C) is defined by

H(A,B) := max{sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)},

for all A,B ∈ CB(C).
Let T : E → N(E) be a multivalued mapping. An element x ∈ E is said to be a
fixed point of T , if x ∈ Tx. The set of fixed points of T will be denoted by F (T ).

Definition 1.2. A multivalued mapping T : E → CB(E) is called

(i) nonexpansive if

H(Tx, Ty) ≤ ∥x− y∥, x, y ∈ E.

(ii) quasi-nonexpansive if

F (T ) ̸= ∅ and H(Tx, Tp) ≤ ∥x− p∥, x ∈ E, p ∈ F (T ).

In recent years, approximation of fixed points of nonexpansive multivalued
mappings by iteration has been studied by many authors, see [20-24]. The theory
of multivalued mappings has applications in control theory, convex optimization,
differential equations and economics.

In this paper we intend to modify the concept of relatively nonexpansivness
to incorporate the multivalued case as well. This will be done in the following
definition.

Definition 1.3. Let C be a closed convex subset of a smooth Banach space E, and
T : C → N(C) be a multivalued mapping. We set

Φ(Tx, Tp) = max{ sup
q∈Tp

inf
y∈Tx

ϕ(y, q), sup
y∈Tx

inf
q∈Tp

ϕ(y, q)}.

We call T relatively quasi-nonexpansive multivalued mapping if F (T ) ̸= ∅ and

Φ(Tx, Tp) ≤ ϕ(x, p), ∀p ∈ F (T ), ∀x ∈ C.

Remark : In a Hilbert space, Φ(Tx, Ty) = H(Tx, Ty)2, and hence relatively quasi-
nonexpansivness is equivalent to quasi-nonexpansivness.

In this paper, a multi-step iterative process by hybrid method is constructed.
Strong convergence of the iterative process to a common element of the set of com-
mon fixed points of a finite family of relatively quasi-nonexpansive multivalued map-
pings and the solution set of an equilibrium problem in a uniformly convex real
Banach space which is also uniformly smooth is proved. Our results extend some
important recent results.

2. Preliminaries

Lemma 2.1. ([25, 26]) If E is a reflexive, strictly convex and smooth Banach space,
then for x, y ∈ E, ϕ(x, y) = 0 if and only if x = y.

Lemma 2.2. ([27]) Let E be a uniformly convex and smooth Banach space and let
{xn} and {yn} be two sequences in E. If ϕ(xn, yn) → 0 and either {xn} or {yn} is
bounded, then xn − yn → 0.



120 M. Eslamian, A.Abkar

Lemma 2.3. ([1]) Let C be a nonempty closed convex subset of a smooth Banach
space E and x ∈ E. Then x0 = ΠCx if and only if

⟨x0 − y, Jx− Jx0⟩ ≥ 0, ∀y ∈ C.

Lemma 2.4. ([1]) Let E be a reflexive, strictly convex and smooth Banach space,
Let C be a nonempty closed convex subset of E and let x ∈ E. Then

ϕ(y,ΠCx) + ϕ(ΠCx, x) ≤ ϕ(y, x), ∀y ∈ C.

Lemma 2.5. Let C be a nonempty closed convex subset of a uniformly convex and
smooth Banach space E. Suppose T : C → P (C) is a multivalued mapping such that
PT is a relatively quasi-nonexpansive multivalued mapping where

PT (x) = {y ∈ Tx : ∥x− y∥ = dist(x, Tx)}.

If F (T ) ̸= ∅, then F (T ) is closed and convex.

Proof. Let {pn} be a sequence in F (T ), such that pn → p as n → ∞. Then we have
PT (pn) = {pn}. Since PT is relatively quasi-nonexpansive, we have

sup
z∈PT (p)

ϕ(pn, z) = Φ(PT (pn), PT (p)) ≤ ϕ(pn, p).

Hence for all z ∈ PT (p),

0 ≤ ϕ(p, z) = lim
n→∞

ϕ(pn, z) ≤ lim
n→∞

ϕ(pn, p) ≤ ϕ(p, p) = 0.

This implies that p = z ∈ PT (p) ⊂ T (p). Therefore F (T ) is closed. Now, we show
that F (T ) is convex. Let p1, p2 ∈ F (T ), then PT (p1) = {p1} and PT (p2) = {p2}.
Take t ∈ (0, 1), and put p = tp1 + (1− t)p2. Let w ∈ PT (p), then we have

ϕ(p, w) = ∥p∥2 − 2⟨p, Jw⟩+ ∥w∥2

= ∥p∥2 − 2⟨tp1 + (1− t)p2, Jw⟩+ ∥w∥2

= ∥p∥2 − 2t⟨p1, Jw⟩ − 2(1− t)⟨p2, Jw⟩+ ∥w∥2

= ∥p∥2 + tϕ(p1, w) + (1− t)ϕ(p2, w)− t∥p1∥2 − (1− t)∥p2∥2

= ∥p∥2 + t inf
p1∈PT (p1)

ϕ(p1, w) + (1− t) inf
p2∈PT (p2)

ϕ(p2, w)− t∥p1∥2 − (1− t)∥p2∥2

≤ ∥p∥2 + tΦ(PT (p1), PT (p)) + (1− t)Φ(PT (p2), PT (p))− t∥p1∥2 − (1− t)∥p2∥2

≤ ∥p∥2 + tϕ(p1, p) + (1− t)ϕ(p2, p)− t∥p1∥2 − (1− t)∥p2∥2

= ∥p∥2 − 2⟨tp1 + (1− t)p2, Jp⟩+ ∥p∥2

= ∥p∥2 − 2⟨p, Jp⟩+ ∥p∥2 = ϕ(p, p) = 0.

This implies, using Lemma 2.1, that p = w ∈ PT (p) ⊂ T (p), i.e., p ∈ F (T ). Hence
F (T ) is convex. �

Similarly we can prove the following lemma.

Lemma 2.6. Let C be a nonempty closed convex subset of a uniformly convex and
smooth Banach space E. Suppose T : C → N(C) is a relatively quasi- nonexpansive
multivalued mapping. If F (T ) ̸= ∅ and T (p) = {p} for all p ∈ F (T ), then F (T ) is
closed and convex.
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Now we present an example of a multivalued mapping such that PT is relatively
quasi-nonexpansive, but T is not relatively quasi-nonexpansive.
Example : Let I = [0, 1], E = Lp(I), 1 < p < ∞ and C = {f ∈ E : f(x) ≥ 0, ∀x ∈
I}. Let T : C → CB(C) be defined by

T (f) = {g ∈ C : f(x) ≤ g(x) ≤ 3 f(x)}.

Then we have

PT (f) = {g ∈ T (f), ∥g − f∥p = dist(T (f), f)} = {f}

and hence

Φ(PT (f1), PT (f2)) ≤ ϕ(f1, f2), ∀f1, f2 ∈ C.

Therefore PT is relatively quasi-nonexpansive. Now putting f1(x) = 0 and f2(x) = 1
we have T (f1) = 0 and T (f2) = {g ∈ C : 1 ≤ g(x) ≤ 3}, hence Φ(T0, T1) =
supg∈T1 ϕ(0, g) = ϕ(0, 3). On the other hand ϕ(0, 1) = ∥1∥2p = 1 and ϕ(0, 3) =

∥3∥2p = 9, which shows that

Φ(T0, T1) > ϕ(0, 1).

Hence T is not relatively quasi-nonexpansive.

Definition 2.7. Amultivalued mapping T is called closed if xn → w and limn→∞ dist(xn, Txn) =
0, then w ∈ T (w).

Lemma 2.8. ([28]) Let E be a uniformly convex Banach space and let Br(0) = {x ∈
E :∥ x ∥≤ r}, for r > 0. Then there exists a continuous, strictly increasing convex
function φ : [0,∞) → [0,∞) with φ(0) = 0 such that

∥tx+ (1− t)y∥2 ≤ t∥x∥2 + (1− t)∥y∥2 − t(1− t)φ(∥x− y∥)

for all x, y ∈ Br(0).

For solving the equilibrium problem, let us assume that the bifunction f sat-
isfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C,
(A2) f is monotone, i.e. f(x, y) + f(y, x) ≤ 0 for any x, y ∈ C,
(A3) f is upper-hemicontinuous, i.e. for each x, y, z ∈ C,

lim sup
t→0+

f(tz + (1− t)x, y) ≤ f(x, y),

(A4) f(x, .) is convex and lower semicontinuous for each x ∈ C.

The following lemma was proved in [7].

Lemma 2.9. Let C be a nonempty closed convex subset of a smooth, strictly convex,
and reflexive Banach space E, let f be a bifunction of C × C into R satisfying
(A1)− (A4). Let r > 0 and x ∈ E. Then, there exists z ∈ C such that

f(z, y) +
1

r
⟨y − z, Jz − Jx⟩ ≥ 0 ∀y ∈ C.

The following lemma was given in [12].
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Lemma 2.10. Let C be a nonempty closed convex subset of a smooth, strictly con-
vex, and reflexive Banach space E, let f be a bifunction of C × C into R satisfying
(A1)− (A4). Let r > 0 and x ∈ E. Define a mapping Tr : E → C as follows:

Trx = {z ∈ C : f(z, y) +
1

r
⟨y − z, Jz − Jx⟩ ≥ 0, ∀y ∈ C}.

Then, the following hold:

(i) Tr is single valued,
(ii) Tr is a firmly nonexpansive-type mapping, i.e., for any x, y ∈ E,

⟨Trx− Try, JTrx− JTry⟩ ≤ ⟨Trx− Try, Jx− Jy⟩,

(iii) F (Tr) = EP (f),
(iv) EP (f) is closed and convex.

Lemma 2.11. ([12]) Let C be a nonempty closed convex subset of a smooth, strictly
convex, and reflexive Banach space E, let f be a bifunction of C×C into R satisfying
(A1)− (A4), and let r > 0. Then for all x ∈ E and q ∈ F (Tr),

ϕ(q, Trx) + ϕ(Trx, x) ≤ ϕ(q, x).

3. Main Result

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach space,
and let C be a nonempty closed convex subset of E. Let f be a bifunction from
C × C into R satisfying (A1) − (A4). Let Ti : C → N(C), i = 1, 2, ...,m, be a
finite family of closed relatively quasi-nonexpansive multivalued mappings such that
F =

∩m
i=1 F (Ti)

∩
EP (f) ̸= ∅ and Ti(p) = {p} for all p ∈ F. For x0 ∈ C and

C0 = C, let {xn} be a sequence generated by the following algorithm:

yn,1 = J−1((1− an,1)Jxn + an,1Jzn,1),

yn,2 = J−1((1− an,2)Jxn + an,2Jzn,2),

...

yn,m = J−1((1− an,m)Jxn + an,mJzn,m),

un ∈ C such that f(un, y) +
1
rn
⟨y − un, Jun − Jyn,m⟩ ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : ϕ(z, un) ≤ ϕ(z, xn)},
xn+1 =

∏
Cn+1

x0, ∀n ≥ 0

where zn,1 ∈ T1xn and zn,i ∈ Tiyn,i−1 for i = 2, ...,m and J is the duality mapping
on E. Assume that

∑m
i=1 an,i = 1, {an,i} ∈ [a, b] ⊂ (0, 1) and {rn} ⊂ [c,∞) for some

c > 0. Suppose that each Ti is uniformly continuous with respect to the Hausdorff
metric for i = 2, ...,m. Then {xn} converges strongly to ΠFx0, where ΠF is the
projection of E onto F.

Proof. At first, we show that Cn is closed and convex for each n ≥ 0. From the
definition, it is obvious that Cn is closed. Moreover, since ϕ(z, un) ≤ ϕ(z, xn) is
equivalent to

2⟨z, Jxn − Jun⟩ − ∥xn∥2 + ∥un∥2 ≤ 0,

it follows that Cn is convex for each n ≥ 0. Next, we show by induction that
F =

∩m
i=1 F (Ti)

∩
EP (f) ⊂ Cn for all n ≥ 0. From C0 = C, we have F ⊂ C0. We
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suppose that F ⊂ Cn for some n ≥ 0. Let u ∈ F. Since for each 1 ≤ i ≤ m, Ti is
relatively quasi- nonexpansive, we have

ϕ(u, yn,1) = ϕ(u, J−1((1− an,1)Jxn + an,1Jzn,1))

= ∥u∥2 − 2⟨u, (1− an,1)Jxn + an,1Jzn,1⟩+ ∥(1− an,1)Jxn + an,1Jzn,1∥2

≤ ∥u∥2 − 2(1− an,1)⟨u, Jxn⟩ − 2an,1⟨u, Jzn,1⟩+ (1− an,1)∥xn∥2 + an,1∥zn,1∥2

= (1− an,1)ϕ(u, xn) + an,1ϕ(u, zn,1)

≤ (1− an,1)ϕ(u, xn) + an,1Φ(T1u, T1xn)

≤ (1− an,1)ϕ(u, xn) + an,1ϕ(u, xn) = ϕ(u, xn),

and

ϕ(u, yn,2) = ϕ(u, J−1((1− an,2)Jxn + an,2Jzn,2))

= ∥u∥2 − 2⟨u, (1− an,2)Jxn + an,2Jzn,2⟩+ ∥(1− an,2)Jxn + an,2Jzn,2∥2

≤ ∥u∥2 − 2(1− an,2)⟨u, Jxn⟩ − 2an,2⟨u, Jzn,2⟩+ (1− an,2)∥xn∥2 + an,2∥zn,2∥2

= (1− an,2)ϕ(u, xn) + an,2ϕ(u, zn,2)

≤ (1− an,2)ϕ(u, xn) + an,2Φ(T2u, T2yn,1)

≤ (1− an,2)ϕ(u, xn) + an,2ϕ(u, yn,1) = ϕ(u, xn).

By continuing this process we obtain

ϕ(u, un) = ϕ(u, Trnyn,m) ≤ ϕ(u, yn,m) = ϕ(u, J−1((1− an,m)Jxn + an,2mJzn,m))

= ∥u∥2 − 2⟨u, (1− an,m)Jxn + an,mJzn,m⟩+ ∥(1− an,m)Jxn + an,mJzn,m∥2

≤ ∥u∥2 − 2(1− an,m)⟨u, Jxn⟩ − 2an,m⟨u, Jzn,m⟩+ (1− an,m)∥xn∥2 + an,m∥zn,m∥2

= (1− an,m)ϕ(u, xn) + an,mϕ(u, zn,2)

≤ (1− an,m)ϕ(u, xn) + an,mΦ(Tmu, Tmyn,m−1)

≤ (1− an,m)ϕ(u, xn) + an,mϕ(u, yn,m−1)

≤ (1− an,m)ϕ(u, xn) + an,mϕ(u, xn) = ϕ(u, xn), (3.1)

hence, we have u ∈ Cn+1. This implies that

F =

m∩
i=1

F (Ti)
∩

EP (f) ⊂ Cn, ∀n ≥ 0.

From xn = ΠCnx0, we have

⟨xn − z, Jx0 − Jxn⟩ ≥ 0, ∀z ∈ Cn. (3.2)

Since F ⊂ Cn for all n ≥ 0, we obtain that

⟨xn − u, Jx0 − Jxn⟩ ≥ 0 ∀u ∈ F.

From Lemma 2.4 we have

ϕ(xn, x0) = ϕ(ΠCnx0, x0) ≤ ϕ(u, x0)− ϕ(u,ΠCnx0) ≤ ϕ(u, x0)

for all u ∈ F ⊂ Cn. Then the sequence ϕ(xn, x0) is bounded. Therefore {xn} is
bounded. We show that {zn,i} is bounded for i = 1, 2, ...,m. Indeed, for u ∈ F we
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have

(∥zn,i∥ − ∥u∥)2 ≤ ϕ(zn,i, u) ≤ ϕ(xn, u) ≤ (∥xn∥+ ∥u∥)2.
Since {xn} is bounded, we conclude that {zn,i} is bounded for i = 1, 2, ...,m. From
xn = ΠCnx0 and xn+1 ∈ Cn+1 ⊂ Cn we have

ϕ(xn, x0) ≤ ϕ(xn+1, x0), ∀n ≥ 0.

Thus, {ϕ(xn, x0)} is nondecreasing. So the limit of {ϕ(xn, x0)} exists. By the
construction of Cn for any positive integer m ≥ n we have

xm = ΠCmx0 ∈ Cm ⊂ Cn.

It follows that

ϕ(xm, xn) = ϕ(xm,ΠCnx0)

≤ ϕ(xm, x0)− ϕ(ΠCnx0, x0)

= ϕ(xm, x0)− ϕ(xn, x0)

Letting m,n → ∞ we have

lim
n→∞

ϕ(xm, xn) = 0. (3.3)

It follows from Lemma 2.2 that xm−xn → 0 as m,n → ∞. Hence {xn} is a Cauchy
sequence. Since C is a closed and convex subset of the Banach space E, we can
assume that xn → p as n → ∞. Next we show p ∈

∩m
i=1 F (Ti). By taking m = n+1

in (3.4) we get

lim
n→∞

ϕ(xn+1, xn) = 0. (3.4)

It follows from Lemma 2.2 that

lim
n→∞

∥xn+1 − xn∥ = 0. (3.5)

From xn+1 = ΠCn+1x ∈ Cn+1, we have

ϕ(xn+1, un) ≤ ϕ(xn+1, xn), n ≥ 0

It follows from (3.5) that

lim
n→∞

ϕ(xn+1, un) = 0.

By Lemma 2.1 we have

lim
n→∞

∥xn+1 − un∥ = 0. (3.6)

Combining (3.6) with (3.7) one observes that

lim
n→∞

∥xn − un∥ ≤ lim
n→∞

(∥xn+1 − xn∥+ ∥xn+1 − un∥) = 0. (3.7)

It follows from xn → p that un → p as n → ∞. Since J is uniformly norm-to-norm
continuous on bounded sets and limn→∞ ∥xn − un∥ = 0, we have

lim
n→∞

∥Jxn − Jun∥ = 0. (3.8)

Let

r = supn≥0{∥xn∥, ∥zn,i∥ : i = 1, 2, ...,m}.
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Since E is a uniformly smooth Banach space, we know that E∗ is a uniformly
convex Banach space. Therefore from Lemma 2.8 there exists a continuous strictly
increasing, and convex function g with g(0) = 0 such that for i = 1, 2, ...,m,

ϕ(u, yn,1) = ϕ(u, J−1((1− an,1)Jxn + an,1Jzn,1))

= ∥u∥2 − 2⟨u, (1− an,1)Jxn + an,1Jzn,1⟩+ ∥(1− an,1)Jxn + an,1Jzn,1∥2

≤ ∥u∥2 − 2(1− an,1)⟨u, Jxn⟩ − 2an,1⟨u, Jzn,1⟩
+ (1− an,1)∥xn∥2 + an,1∥zn,1∥2 − an,1(1− an,1)g(∥Jxn − Jzn,1∥)

= (1− an,1)ϕ(u, xn) + an,1ϕ(u, zn,1)− an,1(1− an,1)g(∥Jxn − Jzn,1∥)
≤ (1− an,1)ϕ(u, xn) + an,1Φ(T1u, T1xn)− an,1(1− an,1)g(∥Jxn − Jzn,1∥)

≤ (1− an,1)ϕ(u, xn) + an,1ϕ(u, xn)− an,1(1− an,1)g(∥Jxn − Jzn,1∥)
= ϕ(u, xn)− an,1(1− an,1)g(∥Jxn − Jzn,1∥)

and

ϕ(u, yn,2) = ϕ(u, J−1((1− an,2)Jxn + an,2Jzn,2))

= ∥u∥2 − 2⟨u, (1− an,2)Jxn + an,2Jzn,2⟩+ ∥(1− an,2)Jxn + an,2Jzn,2∥2

≤ ∥u∥2 − 2(1− an,2)⟨u, Jxn⟩ − 2an,2⟨u, Jzn,2⟩
+ (1− an,2)∥xn∥2 + an,2∥zn,2∥2 − an,2(1− an,2)g(∥Jxn − Jzn,2∥)

= (1− an,2)ϕ(u, xn) + an,2ϕ(u, zn,2)− an,2(1− an,2)g(∥Jxn − Jzn,2∥)
≤ (1− an,2)ϕ(u, xn) + an,2Φ(T2u, T2yn,1)− an,2(1− an,2)g(∥Jxn − Jzn,2∥)

≤ (1− an,2)ϕ(u, xn) + an,2ϕ(u, yn,1)− an,2(1− an,2)g(∥Jxn − Jzn,2∥)
≤ ϕ(u, xn)− an,2(1− an,2)g(∥Jxn − Jzn,2∥)− an,2an,1(1− an,1)g(∥Jxn − Jzn,1∥).

By continuing this process we obtain

ϕ(u, un) = ϕ(u, Trnyn,m) ≤ ϕ(u, yn,m) = ϕ(u, J−1((1− an,m)Jxn + an,mJzn,m))

= ∥u∥2 − 2⟨u, (1− an,m)Jxn + an,mJzn,m⟩+ ∥(1− an,m)Jxn + an,mJzn,m∥2

≤ ∥u∥2 − 2(1− an,m)⟨u, Jxn⟩ − 2an,m⟨u, Jzn,m⟩+ (1− an,m)∥xn∥2 + an,m∥zn,m∥2

− an,m(1− an,m)g(∥Jxn − Jzn,m∥)
= (1− an,m)ϕ(u, xn) + an,mϕ(u, zn,m)− an,m(1− an,m)g(∥Jxn − Jzn,m∥)

≤ 1− an,m)ϕ(u, xn) + an,mΦ(Tmu, Tmyn,m−1)− an,m(1− an,m)g(∥Jxn − Jzn,m∥)
≤ (1− an,m)ϕ(u, xn) + an,mϕ(u, yn,m−1)− an,m(1− an,m)g(∥Jxn − Jzn,m∥)
≤ (1− an,m)ϕ(u, xn) + an,mϕ(u, xn)− an,m(1− an,m)g(∥Jxn − Jzn,m∥)

−an,man,m−1(1−an,m−1)g(∥Jxn−Jzn,m−1∥)−...−an,man,m−1...an,1(1−an,1)g(∥Jxn−Jzn,1∥)
≤ ϕ(u, xn)− an,m(1− an,m)g(∥Jxn − Jzn,m∥)

− an,man,m−1(1− an,m−1)g(∥Jxn − Jzn,m−1∥)− ...

− an,man,m−1...an,1(1− an,1)g(∥Jxn − Jzn,1∥). (3.9)

It follows that

an,man,m−1...an,1(1−an,1)g(∥Jxn−Jzn,1∥) ≤ ϕ(u, xn)−ϕ(u, un) n ≥ 0. (3.10)
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On the other hand

ϕ(u, xn)− ϕ(u, un) = ∥xn∥2 − ∥un∥2 − 2⟨u, Jxn − Jun⟩
≤ | ∥xn∥2 − ∥un∥2 |+ 2|⟨u, Jxn − Jun⟩ |

≤ | ∥xn∥ − ∥un∥ |(∥xn∥+ ∥un∥) + 2∥u∥∥Jxn − Jun∥
≤ ∥xn − un∥(∥xn∥+ ∥un∥) + 2∥u∥∥Jxn − Jun∥.

It follows from (3.8) and (3.9) that

lim
n→∞

(ϕ(u, xn)− ϕ(u, un)) = 0. (3.11)

By our assumption we have

am(1− b)g(∥Jxn − Jzn,1∥) ≤ an,man,m−1...an,1(1− an,1)g(∥Jxn − Jzn,1∥),

which implies, by (3.10), that

lim
n→∞

g(∥Jxn − Jzn,1∥) = 0.

Therefore from the property of g, we have

lim
n→∞

∥Jxn − Jzn,1∥ = 0.

Since J−1 is uniformly norm-to-norm continuous on bounded subsets, we have

lim
n→∞

∥xn − zn,1∥ = 0.

By a similar way, for i = 2, ...m we obtain that

lim
n→∞

∥xn − zn,i∥ = 0.

Therefore we have

lim
n→∞

dist(xn, T1xn) ≤ lim
n→∞

∥xn − zn,1∥ = 0,

and also

lim
n→∞

dist(xn, Tiyn,i−1) ≤ lim
n→∞

∥xn − zn,i∥ = 0, i = 2, ...,m.

For k = 1, 2, ...,m we have

lim
n→∞

∥Jyn,k − Jxn∥ = lim
n→∞

an,k∥Jzn,k − Jxn∥ = 0.

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥xn − yn,k∥ = 0.

Since Ti is uniformly continuous for k = 2, 3, ...,m we have

dist(xn, Tkxn) ≤ dist(xn, Tkyn,k−1) +H(Tyn.k−1, Tkxn)

≤ ∥xn − zn,k∥+H(Tyn.k−1, Tkxn) → 0 n → ∞ (3.12)

Now by the closedness of Ti we obtain that p ∈
∩m

i=1 F (Ti). We shall show that
p ∈ EP (f). From (3.2) we have

ϕ(u, yn) ≤ ϕ(u, xn). (3.13)
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From un = Trnyn,m and Lemma 2.10 we have that

ϕ(un, yn,m) = ϕ(Trnyn,m, yn,m)

≤ ϕ(u, yn,m)− ϕ(u, Trnyn,m)

≤ ϕ(u, xn)− ϕ(u, Trnyn,m)

= ϕ(u, xn)− ϕ(u, un)

So, we have from (3.11) that

lim
n→∞

ϕ(un, yn,m) = 0.

Since E is uniformly convex and smooth and {un} is bounded, we have from Lemma
2.2 that

limn→∞∥un − yn,m∥ = 0. (3.14)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥Jun − Jyn,m∥ = 0. (3.15)

From the assumption rn ≥ c we have

lim
n→∞

∥Jun − Jyn,m∥
rn

= 0.

By un = Trnyn,m we have

f(un, y) +
1

rn
⟨y − un, Jun − Jyn,m⟩ ≥ 0 ∀y ∈ C.

From (A2), we have

∥y − un∥
∥Jun − Jyn,m∥

rn
≥ 1

rn
⟨y − un, Jun − Jyn,m⟩ ≥ −f(un, y) ≥ f(y, un).

By taking the limit as n → ∞, in the above inequality and from (A4) we have

0 ≥ f(y, p), ∀ y ∈ C.

For all t ∈ (0, 1) and y ∈ C, define yt = ty+(1− t)p. Since y, p ∈ C, and C is convex
we have yt ∈ C and hence f(yt, p) ≤ 0. So, from (A1) we have

0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, p) ≤ tf(yt, y),

which gives f(yt, y) ≥ 0. From (A3) we have 0 ≤ f(p, y), ∀y ∈ C which implies that
p ∈ EP (f), and therefore p ∈ F. Finally we prove p = ΠFx0. By taking limit in
(3.3) we have

⟨p− u, Jx0 − Jp⟩ ≥ 0, ∀u ∈ F.

Hence by Lemma 2.3 we have p = ΠFx0. �

As a result for single valued mappings we obtain the following corollary.

Theorem 3.2. Let E be a uniformly smooth and uniformly convex Banach space,
and let C be a nonempty closed convex subset of E. Let f be a bifunction from C×C
into R satisfying (A1) − (A4). Let Ti : C → C, i = 1, 2, ...,m be a finite family of
closed relatively quasi-nonexpansive mappings such that F =

∩m
i=1 F (Ti)

∩
EP (f) ̸=
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∅. For x0 ∈ C and C0 = C, let {xn} be a sequence generated by the following
algorithm:

yn,1 = J−1((1− an,1)Jxn + an,1JT1xn),

yn,2 = J−1((1− an,2)Jxn + an,2JT2yn,1),

...

yn,m = J−1((1− an,m)Jxn + an,mJTmyn,m−1),

un ∈ C such that f(un, y) +
1
rn
⟨y − un, Jun − Jyn,m⟩ ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : ϕ(z, un) ≤ ϕ(z, xn)},
xn+1 =

∏
Cn+1

x0, ∀n ≥ 0.

Assume that
∑m

i=1 an,i = 1, {an,i} ∈ [a, b] ⊂ (0, 1) and {rn} ⊂ [c,∞) for some
c > 0. Suppose that Ti is uniformly continuous for i = 2, 3, ...,m. Then {xn}
converges strongly to ΠFx0.

Theorem 3.3. Let E be a uniformly smooth and uniformly convex Banach space,
and let C be a nonempty closed convex subset of E. Let F be a bifunction from C×C
into R satisfying (A1)− (A4). Let Ti : C → P (C), i = 1, 2, ...,m, be a finite family
of multivalued mappings such that PTi is closed and relatively quasi-nonexpansive.
Assume that F =

∩m
i=1 F (Ti)

∩
EP (f) ̸= ∅. For x0 ∈ C and C0 = C, let {xn} be a

sequences generated by the following algorithm:

yn,1 = J−1((1− an,1)Jxn + an,1Jzn,1),

yn,2 = J−1((1− an,2)Jxn + an,2Jzn,2),

...

yn,m = J−1((1− an,m)Jxn + an,mJzn,m),

un ∈ C such that f(un, y) +
1
rn
⟨y − un, Jun − Jyn,m⟩ ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : ϕ(z, un) ≤ ϕ(z, xn)},
xn+1 =

∏
Cn+1

x0, ∀n ≥ 0

where zn,1 ∈ PT1xn and zn,i ∈ PTiyn,i−1 for i = 2, ...,m and J is the duality mapping
on E. Assume that

∑m
i=1 an,i = 1, {an,i} ∈ [a, b] ⊂ (0, 1) and {rn} ⊂ [c,∞) for

some c > 0. Suppose that PTi is uniformly continuous with respect to the Hausdorff
metric for i = 2, 3, ...,m. Then {xn} converges strongly to ΠFx0.

Proof. Let p ∈ F, then PTi(p) = {p}, (i=1,2,...,m). Also we have F (Ti) = F (PTi).
Now by substituting PTi instead of Ti and similar argument as in the proof of
Theorem 3.1 we obtain the result. �
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