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COMPOSITE ALGORITHMS FOR SPLIT EQUILIBRIUM PROBLEMS
AND VARIATIONAL INEQUALITIES

Wei-Bo Zheng', Yeong-Cheng Liou?

Equilibrium is a central concept in numerous disciplines including economics,
management science/operations research, and engineering. In this paper, we investigate
iterative methods for solving a split problem related to equilibrium problems and varia-
tional inequalities in Hilbert spaces. We construct a composite algorithm for approxi-
mating a special solution of the split equilibrium problems and variational inequalities.
Convergence analysis is proved under some additional assumptions.
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1. Introduction

Equilibrium is a central concept in numerous disciplines including economics, manage-
ment science/operations research, and engineering. Methodologies that have been applied to
the formulation, qualitative analysis, and computation of equilibria have included: systems
of equations, optimization theory, complementarity theory, fixed point theory, variational
inequality, variational inclusion and so on. Some related background and works, please refer
to [9, 13, 15, 18-26, 29, 31, 33, 34, 37-39].

Recently, the split problem has attracted so much attention, see [1, 7, 8, 12, 30, 32, 40—
42]. The main purpose of this paper is to design iterative algorithms for solving split
equilibrium problems and variational inequalities in Hilbert spaces. Next, we recall the
background of issues. Recall that the SFP is to find a vector p* such that

p* € C and Ap* € Q, (1)

where C' and @) are two nonempty closed convex subsets of two real Hilbert spaces H; and
Hs, respectively, and A : H; — Hs is a bounded linear operator. The SFP arises in the
intensity-modulated radiation therapy [2]. A popular method to solve (1) is CQ method
([1]) which generates a sequence {x,} by

xo € Hy, Tpil = Pc(xn — TA*(I — PQ)Axn), n >0, (2)

where Pc : Hi — C and Py : Hy — @ are metric projection, 7 > 0 is a constant and A* is
the adjoint of A.

Further, if C' := Fix(S)(:= {z|S(z) = z}) and @ := Fix(T) are the fixed point sets of
nonlinear operators S and T, then problem (1) is extended to the SCFPP [4] which aims to
find a vector p* € Hy such that

p* € Fix(S) and Ap* € Fix(T). (3)
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A remarkable method to solve (3) was proposed in [4] which defines an iterative sequence
{zn} by
xo € Hy, xpr1 = S(xy, —TA*(I —T)Az,), n>0. (4)
Variant forms of methods (2) and (4) were proposed and constructed to solve the SFP and
the SCFPP, see [6, 10, 14, 16, 27]. Moreover, the split equilibrium problems and the split
variational inequalities have been studied extensively in the literature, see [3, 11, 17, 35, 36].
Let D be a nonempty closed convex subset of a real Hilbert space H. Recall that the
equilibrium problem is to find a vector z* € D such that

¢(z",x) >0, Vz € D, (5)

where ¢ : D x D — R is a bifunction. The solution set of (5) is denoted by EP(¢). Recall
also that the variational inequality is to find a vector ¢ € D such that

<f<Q)ax_Q>207 V‘TED? (6)

where f: D — H is an operator. The solution set of (6) is denoted by VI(D, f).

Let C and @ be two nonempty closed convex subsets of two real Hilbert spaces H;
and Hs, respectively. Let f; : C — Hj and f> : Q — Hs be two nonlinear operators. Let
A : Hy — Hy be a bounded linear operator. Let ¢ : C x C — R and ¢ : Q x Q@ — R be
two bi-functions. In this paper, we consider the following split equilibrium problems and
variational inequalities:

Find a point p* € VI(C, f1) N EP(¢) such that Ap* € VI(Q, f2) N EP(y). (7)

Motivated by the works in the literature, we construct a composite algorithm for approx-
imating a special solution of the above split problem (7). We show that the presented
algorithm converges strongly to a special solution of the split problem (7) under additional
assumptions. Our method and techniques provide a unified pattern for approximating the
solution of the split problem.

2. Preliminaries

Throughout this section, suppose that: (a) C' is a nonempty closed convex subset of
a real Hilbert space H; (b) S : C — H is a nonlinear operator; (¢) ¢ : C x C — R is a
bifunction.
Notations: We collect several related notations: (i) S is said to be
e [-Lipschitz if for some L > 0,

1S(z) = Sl < Lljz — yl|,Va,y € C.
S is nonexpansive when L = 1.
e firmly nonexpansive if
18(x) = S)II* < (S(z) = S(y), @ —y),Va,y € C
o yu-ism if for some p > 0,
(S(x) = S(y),z —y) = ul|S(x) = S)|? Vo, y € C.

(ii) Recall that the metric projection Pc is the nearest point projection from H onto
C, which satisfies
Jo* = Po(e)| = inf ly — 2", * € H
yel

and
2*eH, y=Po(z*) e (" —y, v —y) <0, Ve € C.
Conditions: Assume that ¢ satisfies the following conditions:
(epl): ¢(u,u) =0,YVu € C;
(ep2): ¢d(u,v) + ¢(v,u) < 0,Vu,v € C (monotonicity);
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(ep3): Hmtio (b(tp + (1 - t)u7 U) < qzﬁ(u, v),Vu, v,p € C;
(ep4): for each y € C, x — ¢(y,x) is convex and lower semicontinuous.

Tools: We gather some known results:
(i) If S: C — H is p-ism, then I — nS is nonexpansive when 7 € [0, 2.
(ii) If S : C — C is nonexpansive, then I — S is demiclosed at the origin.
(iii) In any Hilbert space H, there hold
lz + gl < llz]1* + 2(y, = + )
and
lz +yll* = llz[| +2(z, y) + [y
for all x,y € H.

At the end of this section, we give two useful lemmas.

Lemma 2.1 ([5]). If ¢ satisfies conditions (epl)-(ep4), then for X > 0 and x € C, there
exists ¢* € C such that

(q",y) + %(y —q¢",¢" —x)>0,Vy € C.
Set
JY(x) = {q" € C: d(q",y) + §<y— ¢, q" —x)>0,Vy € C}.
Then

(i) Jf is single-valued and Jf is firmly nonexpansive;
(ii) EP(¢) is closed and conver and EP(¢) = Fw;(Jf)

Lemma 2.2 ([28]). Let {a,} C (0,00), {bn} C (0,1) and {c,} be three real numbers se-
quences. If the following assumptions hold:

(Z) Opt1 < (1 - bn)an +cn,n 20,

(i) 3py bn = 00;

(iii) im sup,, oo 3> <0 or 377 | [en| < oo.

Then lim,,_yoo ay, = 0.

3. Main results

Let C' and @ be two nonempty closed convex subsets of two real Hilbert spaces H;
and Hs, respectively. Let A : H; — Hs be a bounded linear operator. Let f; : C' — H; and
f2: Q — Hs be pi-ism and po-ism, respectively. Let ¥ : C x C — Rand ¢ : Q@ x Q — R be
two bi-functions satisfying conditions (epl)-(ep4). Write

Q:={qlg € VI(C, 1) NEP(¢) and Aq € VI(Q, f2) N EP(¢)}-

Next, we construct an iterative algorithm for solving the split problem (7).

Algorithm 3.1. Fiz 4 € Hy. For an initial guess xo € Hy, let {x,} be a sequence generated
by for alln >0,

Tpp1 = Po(l — O‘lfl)J;\/}l [yt + (1 = yn)(zn — BA™(Azp — Po(I — a2f2>J;\p2Amn))]v (8)
where ay, 9, A1, A2, B are five constants and {y,} is a real number sequence in (0,1) such
that

(i) a1 € (0,2u1) and as € (0,2us);
(if) A1 € (0, oo) and Az € (0,00);
(iii) B € (0, HAH z);

)

o0 . _ _
(iv) Timy o0 Y = 0,071 Y = 00 and limy, o0 Y2221 = 0.
- n
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Now, we demonstrate the convergence of the sequence {x,} generated by Algorithm
3.1.

Theorem 3.1. If Q # 0, then the sequence {x,} generated by Algorithm 3.1 converges
strongly to Po(1).

Proof. Let ¢* be any point in Q. Hence, ¢* € VI(C, f1)NEP(¢) and Aq* € VI(Q, f2)NEP(p).
It follows that ¢* = Pe(q¢* — a1 f1(q%)), ¢ = J;\pl * Agq* = Po(Aq* — azf2(Ag*)) and
Agt = J3 Ag*.

Set z, = J;\azAxn, Up = PQ(I - a2f2)zm Yn = Ynl + (1 - 'Yn)(xn - BA*(Axn - Un))v
and u, = J{ y, for all n > 0. Note that Pg(I — azf2)J{, is nonexpansive and Jy and J{,
are firmly-nonexpansive. Then, we have

lzn = Ag™|| = I, Awn — IS, Aq”|| < [|Azn — Aq”|l, (9)

lun =g = 1T yn — I @ < llyn — 7|, (10)
and
low — AG°I = | Po(I — azf2) IS, A — Po(I — az f2)J5, Ad”
< |5, Az, — IS, Ag*|1? (11)
<N Azp — Ag*|)? — [|zn — Az .
From (8) and (10), we have
201 = ¢*|I> = [|Po(I — ea fr)un — Pe(I — a1 fi)q*|)?
< lun — ¢* | (12)
<lyn —a*II*.
Since
(Azx,, — Aq*, v, — Axy) = (v, — Aq* v — Azy) — vy, — A:an2
1 * *
= 5(lon — Aq 12+ [|on — Azn® — || A2y — Ag*[|?)
- Ilvn - A$n||27

it follows from (11) that

1
(Azp — Ag",vp — Azy) < 5(“Axn — Ag*|P? = llzn — Azn ||* + |lvp — Azp|?

— Az = Ag*|?) = llon — Az, |? (13)

1 1
= _§||2n - AmnHQ - 5””71 - AmnHQ-

Set wy, =z, — BA*(Azy, —vy,),n > 0. From (13), we have
lwn = *|1* = l|lzn — ¢" — BA*(Azy — v,)|?
= 2o — || = 26(Azy — Aq”, Az, — vn) + B[ A™(Azy, — )|
<lwn = ¢*ll = Blllzn — Azal® + llvn — Aza|®) + B2 AP [ Azy — va]*  (14)
= llwn = "Il = Bllza — Azall* + (B*[|A]I* - B)||Azn — va]?
< llon = "%
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Thanks to the definition of y,, we have y, = Y4 + (1 — v, )wp,n > 0. It follows from (14)

that

1yn — @* 1> = [ (@ — ¢%) + (1 = ) (wn — ¢*)|1?
< (1= yn)llwn — ¢ + nlld — |2 (15)
< (1= y)llen — ¢*[I> +mlla - ¢*|>.

By (12) and (15), we have
lns1 = 1 < (1 =) l2n — ¢l + ynlla — "1

< max{|lz, — ¢"|*, @ — ¢"[*}

< max{|lzo — [, & — ¢"[*}-
Hence, the sequence {x,} is bounded. It is easily to check that the sequences {y,}, {z.},
{un}, {vn} and {w,} are also bounded. By the definition of w,, we have
lwntr = wall* = llznts — @0 — BIA"(Azp4r — vng1) — A" (Azn — vn)]|?
= ||Tny1 — x| = 28(Axp 11 — Azyy, Axp1 — A2y — (Ung1 — Un))
+ B A (Azpsr = vngr) = A" (Azn — vg)|?
< ng1 — Tnl|® + 26(Azp i1 — ATy, Vng1 — Vp — (ATpyy — Azy))
+ B AP [vn+1 = vn = (Azni1 — Azy)|
= l[@ns1 = 2l + B2 AN [vns1 = vn = (AZnir — Azn)|? (16)
+ B([vn+1 — vnHQ + vn41 — v — (ATpy1 — Azn)||2
— Azni1 = Awnll?) = 2B||vns1 — vn — (Azns1 — Azy)|
= l[@ns1 =zl + (B2 AI* = B)lvns1 — vn — (Anis — Azy)||?
+ B([vns1 = vall? = [[Azns1 — Aznll?)
< Nemsr — 2l + Blonsr — vall® — [ Aznss — Azy?).
Meanwhile,
[on41 = vnll = [P — a2 f2) I, Azni — Po(I — a2 f2) JX, Axy |
< [[Azpir — Azal,
which together with (16) implies that
[wni1 = wnl| < [lenis — zall (17)
Next, we estimate ||z,+1 — z,|. In fact, we have
1 = 2ol = [Pe(l = as )Y, B+ (1= 7))
— Pc(I - Cllfl)Jf\p1 (Y10 + (1 = Y1) wn_1]||
< vt 4+ (1 = y)wn — Y1 — (1 = Yp—1)wp—1]]| (18)
< Ivm = Y-l (@l + llwn-all) + 1 = o) [wn — wn—a |

— —1
< (1 a V”)Hx” - JCn—l” +V”MM

)
n

where M > sup, {||@]| + ||wn—1]|}. Applying Lemma 2.2, we deduce that

nh_{gc [Zns1 — 2nl = nh_%o |2n — Po(I — a1 fi)us]| = 0. (19)
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According to (12), we have
n1 = a*1* < flun — ¢*[|?
= 193y = T3 a" |17
< llyn = ¢ I1” = llun — ynll®
< (L= ya)llen = @ 1* +yalla = a*1° = llun = yall?,
which results in that
un =yl < 1 =)0 = ¢*1* +Wmlla = ¢ = |zt — ¢*|1?
< (l#n = ¢l + l#ns1 = @D llzna — zn

+mlla = a1 = llen = a1

*||2

(20)

Note that v, — 0 and the sequence {z,} is bounded. Take into account of (19) and (20),

we have
Jim lup —yall = Jim [T, g0 — yall = 0.
Thanks to (14) and (15), we have
Jonsr — @12 < g — "1
< lwn = ¢ I1* +ulla - ¢*|
< llwn = "I + (B[ ANl = B)llvn — Az ?
= Blizn = Aznll* +nllt — g7
It follows that
0< (8= BNAIM)vn — Az + Bllzn — Awnl|?
<l = @I = lznsr = @7 + lla - ¢
< (lon = a*ll + lenss = a*IDlznss = zall +nlla — "1

— 0.
Hence,
nlgigo v — Azy|| = nlgl;o |z — Azy|| = nh};o |J, Azy, — Az || = 0,
and
nll)rréo [lvn — 2|l = nh_)rréo |Po(I — aaf2)zn — 2zn| = 0.

Noticing that ||w, — z,| < B||A|[|Az, — v,]|, from (22), we conclude that

lim ||w, — z,| = 0.
n—oo

Since Y, = Yt + (1 — yn)wy, it follows that
[y — zall < nlld — znll + (1 — y)llwn — @n].
Thus,

lim ||y, — x| = 0.
n— o0

Combining (19), (21) and (25), we deduce
lim [[Po(l — ayfi)z, — 2, = 0.
n—oo

Write z* = Pq(@). Next, we prove

lim sup(t — «*, w, —z*) <0.
n—0o0

(21)
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Since {w,} is bounded, there exists a subsequence {wy,} of {w,} such that

limsup(i — 2", w, — z*) = lim (4 — %, w,, — ") (27)
n—00 1—00
and w,, — p,i — co. Based on the facts, we have z,,, — p, Az, = AP, Yn, = D, Un, — D

and z,, — Ap. Then,

p}  peVI(C, ),

T, —

| Po(I — a1 fi)Tn, — Tn,| = 0

and
Zn, — Ap

7

HPQ(I - O‘2f2)zm — Zn;

On the other hand, since u,, = Jf\pl Yn, We have

} = Ap € VI(Q, f2).

—0

1
¢(un7p) + )\7<p — Un, Up — yn> >0,VpeC.
1

Because 1 is monotone, we have
1
)\71<p — Un, Up — yn> > "/}(pa un)

It follows that

Un; — Yn;

A > Zw(p,uni), VPGC.
1

<p - unm

A1

Since — 0, up,, — P, we obtain 0 > ¥(p, D).

For t with 0 <t <1andpe€ C, write p =tp+ (1 —t)p € C. Then 9 (p;,p) < 0 and
0 =1(pe,pe) < t(pe,p) + (1 = )b(pe, p) < tW(pe, p),

which leads to 0 < ¢ (ps,p). So, 0 < ¥ (p,p) and p € EP(¢)). Using similar techniques, we can
conclude that Ap € EP(¢). Thus, p € VI(C, f1) NEP(v), Ap € VI(Q, f2) NEP(p) = p € Q.
In the light of (27), we have

limsup(t — 2™, w, — z*) = (4 — 2™, p — z*) <0. (28)

n—oo

Finally, we show x,, — x*. As a matter of fact, we have
241 = 2*[1? < [lyn — «*||

= |l (d —2%) + (1 = yn) (wn — x*)H2

* |2 ~ * * (29)
< (L =m)llwn =277 + 29,(0 — 27, wn — 27)
< (1= yp)||wn — 2| + 29 (2 — 2%, w,, — ).
Based on (28), (29) and Lemma 2.2, we deduce z,, — «*. This completes the proof. O

Algorithm 3.2. Fiz 4 € Hy. For an initial guess xo € Hy, let {x,,} be a sequence generated
by for alln >0,

Tat1 = J4 i+ (1= ) (@0 — BA*(Az, — IS, Axy))],
where A1, A, B are three constants and {v,} is a real number sequence in (0,1) such that
(ii) A1 € (0,00) and Ay € (0,00);
(iii) B € (0, W);
(iv) limy oo v = 0,307 1 Yn = 00 and lim,, 'Y"j/% =0.

Corollary 3.1. Suppose Q1 := {q|q¢ € EP(¢)) and Aq € EP(¢)} # 0. Then the sequence
{z,} generated by Algorithm 3.2 converges strongly to Pq, (i).
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Algorithm 3.3. Fiz 4 € Hy. For an initial guess xg € Hy, let {x,} be a sequence generated
by for alln > 0,

Tny1 = Po(l — arfi)[md + (1 — 7)) (zn — BA™(Azy, — Po(I — a2 f2)Axy))],
where a1, ag, B are three constants and {v,} is a real number sequence in (0,1) such that
(i) a1 € (0,2u1) and as € (0,2us);
(it}) B € (0, ri):
(iv) limp, oo v = 0,Y 00y Y0 = 00 and lim,,_,
Corollary 3.2. Suppose Qo := {q|lqg € VI(C, f1) and Aq € VIQ, f2)} # 0. Then the
sequence {x,} generated by Algorithm 3.3 converges strongly to Pq, ().

In=Vn—-1 __ 0
Tn .

4. Conclusion

In this paper, we investigate iterative techniques for solving a split problem regarding
equilibrium problems and variational inequalities in real Hilbert spaces. We design a com-
posite iterative algorithm by using hybrid techniques for finding a special solution of this
split problem. Under some mild assumptions, we show the constructed algorithm has strong
convergence.
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