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STATISTICAL TESTING OF THE INITIALIZING STAGE OF 

A BLOCK CIPHER, AS PART OF THE SECURITY 

ASSESSMENT 
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Abstract: Block ciphers are used on a large scale in cryptographic 

applications. The process of testing the security provided by the block algorithms is 

very complex and expensive. 

The paper focuses on the algorithm which generates the round keys, paying 

attention to the dependence relation between the master key and the round keys. 

Approaching some elements belonging to data testing stage, we analyze the two 

concepts identified by C. E.  Shannon, diffusion and confusion, on the mechanism of 

round key generation. 

This way, we evaluate (with statistical precision) the number of round keys 

and we assess the extent to which a proper statistic report between master key and 

round keys is reflected in the data processing stage of the cipher. 

In order to point out the importance of the applied testing methods and to 

highlight the findings relevant for the user, we present the experimental study based 

on AES (Advanced Encryption Standard). 
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frequency test 

1. Introduction 

Nowadays, the testing of a block cipher has to be carried out in two steps: 

the initialization procedure which implies round keys generation and the data 

processing procedure which implies plain text processing (encrypting/decrypting).  

Starting from the conclusion that block ciphers have problems with the 

initialization stage [1], [2] the paper pays special attention to the algorithm for 

generating the round keys (key scheduling). Our approach is to implement and 

adjust tests [3], [4] that are considered specific to the data processing stage and to 

use them in our search for the relation master key-round keys. 
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The initialization procedure - which represents the round keys generation - 

has an important share as regards the quality of an algorithm, thus the statistical 

testing of the keys becomes critical. Most attacks rely on finding out the round 

keys and on exploiting the statistical relations between round keys and master key 

from which the former ones were generated.  

We take into consideration some elements specific to data testing stage 

(encrypting / decrypting), analyzing the statistic properties, in order to be used in 

the initialization stage. In this respect, we analyze properties such as confusion 

and diffusion [5]. In our test procedure master key takes over the role of input data 

and the round keys stand for output data (as plaintext vs. ciphertext). 

To this end, we apply two types of known tests: in order to analyze the 

diffusion we develop three frequency of occurrence tests and for confusion we 

implemented dependence tests (looking for degree of completeness property, 

degree of avalanche and degree of strict avalanche effects).  

One of the basic principles that make the block cipher algorithms secure – 

the confusion – refers to the fact that almost each bit of the ciphertext depends on 

each bit of the plain text and of the key. As regards the new point of view, namely 

the relation master key - round keys, any minor alteration in the master key is 

expected to induce, at the same time, a major alteration of the round keys. 

Otherwise, the cryptanalysts may reach to some conclusions or even sense 

relations between these elements, all this leading to a significant contraction of 

key space. In order to assess how this basic criterion is met, several adequate 

measuring parameters are defined.  

A cryptographic function (the algorithm) is considered to be complete 

when each output bit (in the ciphertext) depends on each input bit (of the plain 

text) [4]. The avalanche criterion is considered to be met if changing one input bit 

will change on average half of the output bits. Strict avalanche criterion (SAC), 

means that changing each input bit implies the change of each output bit with a 

50% probability for all possible values of the plain text and of the key.  

For the initialization stage (when the round keys are generated) we follow 

the same requirements; the mechanism of round keys generation is valid if it 

meets the conditions [6] mentioned below:  

• By knowing some relations between two master keys it is “difficult” to 

infer the relations between the round keys derived from the two master 

keys; 

• By knowing m bits from the r round key, derived from an unknown master 

key, it is difficult to find out the other bits of the round keys; 

• By knowing all the round keys it is impossible to identify the master key; 

• Changing a single input bit from the master key will change half of the bits 

of each round key – as an average – in an unpredictable manner.   
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AES block cipher, which is nowadays the encryption standard in force, 

does not entirely meet these requirements, as shown in our experiments.  

The algorithm for generating the keys may become the target of 

cryptanalytic attacks, such as related-key-attacks [7]. There are ciphers that have 

weak keys [8], [9]; consequently, the search area diminishes and so does the effort 

of the cryptanalyst.  

The paper is structured as follows. In Section 2, we present a short 

description of the algorithm which generates the round keys for AES-128, as it is 

the most frequently used block type symmetrical algorithm. In Section 3, we 

present the experiments and we describe the testing procedure applied to verify 

the relationship between the master key and the round keys, by taking into 

account the same requirements and view-points as in the data processing stage. In 

Section 4 we display the results we have obtained. 

2. Description of the initialization procedure for AES-128 algorithm  

In this section, we provide a short description of the algorithm which 

generates the round keys for AES algorithm. AES is a cipher designed on SPN 

basis (SPN - substitution permutation network) which supports key lengths of 128 

bits, 192 bits and 256 bits. The number of rounds varies according to the key 

length; thus, for a key of 128 bits there are 10 rounds, for a key having 192 bits 

there are 12 rounds, and for a key with 256 bits there are 14 rounds.  

The criteria taken into consideration by AES authors as regards the 

algorithm for extending the key [10] are: efficiency and operating memory (i.e. 

the possibility to perform the key extension by using just a small part of the 

operating memory), performance (i.e. high processing speed), removal of 

symmetries; (to ensure good diffusion) and non-linearity. Diffusion is a 

transformation meant to dissipate evenly the redundancy, i.e. to distribute the 

redundancy over longer segments of the ciphertext (thus making any statistical 

testing procedure more difficult). 

The round keys [10] are obtained from the encryption key (master key) by 

a separate procedure which consists of two elements: the key generation and 

round key selection (see Fig.1). 

Each symbol wi; 430,i  , from Fig. 1 represents a word that is 32 bits 

arranged in a column of four bytes. The ensemble [w0, w1, w2, w3] corresponds to 

the initial key – the master key; [w4, w5, w6, w7] corresponds to the first round key 

etc. 

The F function is made up from the two transformations SubWord() 

function and RotWord() function implemented within the initialization stage: 
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Fig. 1 The structure of the round key generation algorithm 

 

RotWord() function [11] is a cyclic rotation applied to a word of 4 bytes. 

For example, if we have a word formed of the ensemble [a0,a1,a2,a3] where ai 

30,i   represents a byte, the result after applying function RotWord() is 

[a1,a2,a3,a0].   

SubWord() function [11] is a function which has as input four bytes. To 

each byte an S-box is applied; thus, a new byte is obtained. 

Remarks: S- box is a non-linear function, (the only non-linear part of the 

cipher). S-box is the same one used in the algorithm processing stage. 

Rcon[ ] is a matrix with 10 columns, each column representing a 32 bits 

word, respectively the constant Rcon[i] for each round, see Fig.2. 

After applying F function, consisting of the two transformations RotWord() and 

SubWord(), the next step is to add up the result with a round constant value. 

These round constant values are given in Fig.2, each column (word) in the matrix 

represents the constant value specific to a round key. 
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02 1001 0804 40 3620 1b80

00 0000 0000 00 0000 0000

00 0000 0000 00 0000 0000

00 0000 0000 00 0000 0000

Rcon[i]

R2 R5R1 R4R3 R7 R10R6 R9R8
 

Fig. 2  The constant for each round 

 

The first word (32 bits) of each round key is obtained in a different manner 

from the rest of the words. So, the first 32 bits (the first word) of each round key 

are obtain as follows (see also Fig.1): 

First we applied F function (i.e. RotWord and SubWord) to the last word 

of the master key and then the result is added to the round constant value, thus 

obtaining the first word in the first round key. Similarly, for the first word of the 

rest of the round keys, F function is applied to the last word in the previous round 

key and the result is added with the corresponding round constant value. 

It is important to note that the routine which expands the key for the 256 

bits cipher is slightly different from the one with 128 bits and 192 bits. 

The stages above mentioned were necessary to compute w4 or the first 

column from the first round key. The next three columns (w5, w6, w7) will be 

computed by implementing XOR operation between the column in discussion and 

the one that had been previously computed, as in Fig.1. 

Note that F is a deterministic function composed of a permutation and a 

substitution, it is a mixing transformation essential in the designing of practical 

ciphers, with good diffusion and confusion, following in a new way Shannon’s 

suggestions [5], (see also [12], [13] for a presentation of Shannon mixing 

transforms). 

3. Description of experiments 

The tests described in this paper will skip over the encryption / decryption 

function, the main objective being the algorithm which generates the round keys. 

Round keys must meet the requirements of good confusion and diffusion 

properties mentioned in Section 2. The diffusion property is tested by using 

frequency of occurrence tests and the confusion property is tested by means of 

dependence tests. 

3.1  Frequency of occurrence tests  

The purpose of these tests is to establish whether the proportion of 0 

values and of 1 values from the string being analyzed is equal to the proportion 

expected to exist in a binary random sequence compatible to the fair coin model.  
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The steps in our experiments are: 
Step 1: In order to generate the data submitted to test, we took into consideration 

the following three situations: 

Test 1 analyzes the data sets representing round keys with a length of 128 

bits obtained from the master key (128 bits) with a low density of 1 symbols. To 

this end, the following keys are used as master keys: 

• One key with all bits 0; 

• 128 keys with one bit 1 and the rest of the bits 0 ; 

• (128*127)/2 keys with two bits 1 and the rest of the bits 0; 

The number of keys submitted to tests is: 1 + 128 + (128*127)/2 = 8257. 

Test 2 analyzes the data sets representing round keys with a length of 128 

bits obtained from the master key (128 bits) with a very high density of 1 bits. 

To this end, the following keys are used as master keys: 

• One key with all bits 1; 

• 128 keys with one bit 0 and the rest of the bits 1; 

• (128*127)/2 keys with two bits 0 and the rest of the bits 1 ; 

Test 3 analyzes the data sets representing round keys (with a size of 128 

bits) obtained by using a randomly generated master key (with a length of 128 

bits). 

Step 2: For each of the three tests, a total of 8257 distinct master keys (for AES-

128) were used, for each master key the corresponding round keys being 

generated. 

Step 3: The frequency test applied to a round key with 128 bits is considered 

successfully completed if the 010.valueP  , i.e. the n occurrence number of 

the 1 symbol in the round key must be within the range 7850  n  (see Table 1). 

For 35n  and 93n , the valueP  is 0. It can be seen that valueP ≥ 0,01 

starting from 50n  up to 78n ; if the occurrence number of bits 1 is in this 

range of values, the analysed data set  passes the test. 

 

Some details regarding the frequency test: 

Suppose we have a binary i.i.d. (data coming from independently and 

identically distributed random variables) data set of size N and we want to verify 

if the data complies with the fair coin model. Let us consider we apply a 

probability test with H0 null hypothesis: probability of 1 symbol is p = 0.5. 

 For a binary data set of N bits where the occurrence number of 1 symbol is n, 

the statistical test value (Sobs) is computed as follows: 

128

2
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2 0nn
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N

Nn
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






                                        (1) 

where n0 represent the occurrence number of bit 0, ( Nnn  0 ).  
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The test values (Sobs) are distributed according to the standard Gaussian 

law (0 mean and 1variance), if H0 hypothesis is true. 

The probability test is applied for a statistical significance level α. If α = 

0.01, the test decision is: accept H0 if 5762.Sobs  , otherwise reject H0, that is 

data are significant for the chosen α statistical level. The constant value 2.576 is 

the  
2

  - point value of the standard normal distribution (the 99.5th percentile of 

the standard normal distribution) [14]. 

Note that n (occurrences for bit 1) is distributed according to the Binomial 

probability law of 
2

N mean and 
4

N  variance, if H0 is true. For N=128 the De 

Moivre-Laplace condition computed as   32
4

1  NpNp >>1 can be 

considered fullfield, so the Binomial distribution can be approximated by the 

normal law of 
2

N  mean and 
4

N  variance. It results that Sobs values from 

relation (1) are distributed according to the standard normal law. Applying the test 

decision 5762.Sobs   means 
2
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where erfc [3] is the complementary error function: 
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For each round key generated, the test identifies the n number of bits 1. If this 

number n is in the range [50, 78], it means that the test completed with success; 

otherwise, it means that the test failed. 

For example, for a round key with 128 bits where the number of bits 1 is n =78, 

the corresponding probability value is computed as follows: 

Compute the statistical test value 
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where erfc was computed in Wolfram Mathematica. 
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Table 1 

The frequency test for the number of bits ‘1’ and the corresponding P_values 

No. of  bits ‘1’ valueP   No. of  bits ‘1’ valueP   No. of  bits ‘1’ valueP   

n ≤ 48 59 0.376759 70 0.288844 

49 0.008010 60 0.479500 71 0.215925 

50 0.013328 61 0.595883 72 0.157299 

51 0.021556 62 0.723674 73 0.111612 

52 0.033895 63 0.859684 74 0.077100 

53 0.051830 64 1.000000 75 0.051830 

54 0.077100 65 0.859684 76 0.033895 

55 0.111612 66 0.723674 77 0.021556 

56 0.157299 67 0.595883 78 0.013328 

57 0.215925 68 0.479500 79 0.008010 

58 0.288844 69 0.376759 n  80 

 

Step 4: In order to interpret the test results for test T3 when the master key is a 

binary i.i.d. data set randomly generated, we have analyzed the proportion of 

binary sequences that passed the statistic test.  

The number of binary sequences randomly generated for testing is m = 

8257 and the considered significance level is  = 0.01. (For example, if from the 

total of 8257 binary sequences submitted to test, 8040 sequences have, as a results 

of that test, the P-value ≥ 0,01, then the proportion is 8040/8257 = 0.9737. 

That means for each round key and each master key we test whether the 

respective round key passes the test, i.e. P-value ≥ 0.01 or not. The test is resumed 

m = 8257 times, as we considered 8257 randomly generated master keys, and the 

proportion of the H0 hypothesis acceptance was recorded for each round. The 

significance level for each test is α = 0.01 meaning that we accept H0 hypothesis 

(we decide that the test passes) with a probability 99.01  . So, it is expected 

that 99% of the data sets submitted to the test should pass the test [14]. 

By probability estimation theory, the range of acceptable proportions is 

established as below:  

003284942.099.0.
8257

)99.01(99.0
399.0

)1(
3 







m


              (4) 

where  = 1 – , and m is the number of binary sequences submitted to test. If the 

proportion of test T3 is outside of this range, then it is considered that the 

analyzed sequences do not pass that test [14]. 

The confidence range [0.98671506, 0.99328494] was established by using a 

normal distribution as an approximation of binominal distribution. 

For AES-192 and AES-256, the three frequency tests are applied in a 

similar way; the difference consists in the number of tested keys, namely 18529 

and, respectively, 32897, obtained in the following manner: 
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• For AES-192 we have 
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• For AES-256 we have: 
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where N is the size of master key in bits. 

 

3.2 Dependence tests 

As we focus on the initialisation stage, testing the dependence criteria 

means to analyze if the modification of one single bit from the initial key (master 

key) of the algorithm results in major modifications in the round keys. The criteria 

necessary to establish dependence are the following: the average number of output 

bits altered when an input bit is modified; the degree of completeness; the degree 

of avalanche effect; the degree of strict avalanche effect. These tests were 

performed according to [4]. The purpose of the dependence test is that when key 

is smaller, even if the attacker intercepts a large volume of material, he/she should 

not be able to recover the key because the statistical properties were spread 

throughout the analyzed material.  

Note that the dependence tests described in [4] are specific to data 

processing stage for a block cipher algorithms and verify the meeting of the 

criteria of complete transformation, avalanche and strict avalanche over a number 

of 10000 samples of plaintext, by modifying one bit at a time from the plain text 

with a constant key (randomly generated). This effect known as avalanche effect, 

terms used for the first time by Horst Feistel [15], is a concept introduced by 

Shannon [5]. 

In order to perform the testing of dependence for the initialisation stage we 

developed a C++ application according to [4]. To assess the test implementation, 

we first applied the tests for the data processing stage and we obtained the same 

results as in [4].  

In our experiments the dependence test is carried out in the following 

steps:  

Step1: We shall randomly generate 100 master keys, each having 16 bytes 

for AES-128, 24 bytes for AES-192 and respectively 32 bytes for AES-256, 

depending on the variant of chosen algorithm. 

First we analyze the AES-128 variant, for each of the 100 keys having 16 

bytes each, a bit will be modified at a time, obtaining 128*100=12800 master 

keys. Each key of the hundred master keys is altered, the changing taking place on 

“one-by-one” basis.  

Step 2: For each round, the round keys obtained from the respective 

master key are compared to the round keys obtained from the altered master key, 

the comparison results being saved in two matrices: the dependence matrix and 

the distance matrix. Based on these matrices, the four criteria are evaluated [4].  
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Let us assume that we have to compute the dependence A matrix  and the 

distance B matrix  of a function f : {0,1}n →{0,1}m . So a binary data set of n size  

is transformed into a new data set of m size. The inputs for f functions are in fact 

the master keys. For AES-128 128 nm .  

The dependence matrix is a matrix A(n×m) whose elements aij denote the 

number of inputs for which the complementation of the input bit i causes the 

change of the output bit j. 

The distance matrix is a matrix B(n×(m+1)) whose elements bij denote the 

number of inputs for which the complementation of the input bit i causes the 

change of  j output bits. 

The four parameters that were taken into consideration and computed 

when we verified Shannon’s principle for the round key generation algorithm 

within this test are described in [4] – where the authors apply these tests to data 

processing stage.  

In our experimental study we tried to see if the four criteria considered in 

the dependence analysis can meet the same requirements considered mandatory in 

the data processing stage. So, we analysed if the following requirements are 

accomplished or not when applied to the initialization stage: the average number 

of output bits altered consequently to a modification of one input is to be larger 

than 50%; degree of completeness is to be equal with1; degree of avalanche is to 

be almost equal with 1; degree of strict avalanche is to be almost equal with 1. 

4. Experimental results 

4.1 The results of the frequency of occurrences tests 

The frequency of occurrences tests is implemented according to [3], for a 

significance level  = 0.01. For a chosen  ( = 0.01) a certain rate of P-values 

resulted is expected to show failure (i.e. 1% out of the total tested sequences is 

expected to be rejected). A binary sequence passes a statistic test if the obtained 

value is P-value ≥ .  

Table 2 contains the results of the three frequency tests described in 

Section 3.1, for AES-128, analyzing each algorithm round.  

The first table column displays the round number, which  in case of AES-

128 algorithm may rank from 1 to 10. 

   
8257

2

1128128
1281

2

1
1 







NN
N = the total number of round keys; 

N is the total number of master key bits.  

T1 and T2 show a higher proportion of tests which have the expected 

behaviour: a good balance between 0 and 1 in the round keys when the master key 

is “forced” to have low density of 1 symbols for T1 and high density of 1 symbols 

for T2. Because for T1 and T2 the 8257 master keys are not independent data sets, 
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we only record the passing ratio. As regards T3, the tested data sets are 

independent sets and each set is an i.i.d. sample (8257 randomly generated master 

keys), and we can verify if the passing proportion belongs to the interval 

[0.98671506, 0.99328494] as determined by relation (4). There are two inner 

columns for T3 which contain the number of sequences that passed the test, 

considered from the total number 8257, as well as the corresponding final 

decision (passed or failed). 
Table 2 

Frequency of occurrence tests results for AES 128 

Rounds 
T1 T2 T3 

Proportion  Proportion  Proportion  Decision 

1 8040 =  97.37 % 8257 = 100.00 % 8169 =  98.93 % passed 

2 7577 =  91.76 % 8257 = 100.00 % 8166 =  98.90 % passed 

3 8244 =  99.84 % 8230 =  99.67 % 8167 =  98.91 % passed 

4 8192 =  99.21 % 8190 =  99.19 % 8169 =  98.93 % passed 

5 8190 =  99.19 % 8196 =  99.26 % 8163 =  98.86 % passed 

6 8189 =  99.18 % 8211 =  99.44 % 8177 =  99.03 % passed 

7 8189 =  99.18 % 8176 =  99.02 % 8172 =  98.97 % passed 

8 8175 =  99.01 % 8176 =  99.02 % 8181 =  99.08 % passed 

9 8190 =  99.19 % 8170 =  98.95 % 8172 =  98.97 % passed 

10 8163 =  98.86 % 8180 =  99.07 % 8170 =  98.95 % passed 

 

Tables 3 and 4 present, in a similar manner as Table 2, the frequency of 

occurrence tests results for AES-192 algorithm and for AES 256, respectively. 
  

 Table 3 

Frequency of occurrence tests results for AES 192 

 T1 T2 T3 

Rounds Proportion  Proportion Proportion Decision 

1 18309 =  98.81 % 18529 = 100.00 % 18355 =  99.06 % passed 

2 18499 =  99.84 % 18529 = 100.00 % 18324 =  98.89 % passed 

3 17118 =  92.38 % 18529 = 100.00 % 18323 =  98.89 % passed 

4 18500 =  99.84 % 18497 =  99.83 % 18354 =  99.06 % passed 

5 18431 =  99.47 % 18382 =  99.21 % 18362 =  99.10 % passed 

6 18425 =  99.44 % 18312 =  98.83 % 18337 =  98.96 % passed 

7 18343 =  99.00 % 18294 =  98.73 % 18339 =  98.97 % passed 

8 18376 =  99.17 % 18344 =  99.00 % 18334 =  98.95 % passed 

9 18376 =  99.17 % 18341 =  98.99 % 18334 =  98.95 % passed 

10 18323 =  98.89 % 18392 =  99.26 % 18341 =  98.99 % passed 

11 18331 =  98.93 % 18314 =  98.84 % 18321 =  98.88 % passed 

12 18354 =  99.06 % 18372 =  99.15 % 18354 =  99.06 % passed 

  

Note that AES-192 has 12 rounds and the number of analyzed sequences is 

18529, whereas AES-256 has 14 rounds and the number of analyzed sequences is 

32897 (the number of analyzed round keys depends on the key length in bits. 
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In Table 3 and Table 4, final decision on T3 test means to verify if the 

passing proportion is within range [0.986891, 0.993109] for AES-192 and range 

[0.988354262, 0.991645738] for AES-256. 
Table 4 

Frequency of occurrence tests results for AES 256 

 T1 T2 T3 

Rounds Proportion  Proportion  Proportion  Decision 

1 32677 =  99.33 % 32897 = 100.00 % 32548 =  98.94 % passed 

2  5380 =  16.35 % 32897 = 100.00 % 32561 =  98.98 % passed 

3 31755 =  96.53 % 32897 = 100.00 % 32591 =  99.07 % passed 

4 31829 =  96.75 % 32897 = 100.00 % 32568 =  99.00 % passed 

5 32794 =  99.69 % 32809 =  99.73 % 32551 =  98.95 % passed 

6 32872 =  99.92 % 32705 =  99.42 % 32571 =  99.01 % passed 

7 32629 =  99.19 % 32570 =  99.01 % 32543 =  98.92 % passed 

8 32634 =  99.20 % 32636 =  99.21 % 32566 =  98.99 % passed 

9 32526 =  98.87 % 32570 =  99.01 % 32592 =  99.07 % passed 

10 32668 =  99.30 % 32624 =  99.17 % 32572 =  99.01 % passed 

11 32653 =  99.26 % 32587 =  99.06 % 32564 =  98.99 % passed 

12 32544 =  98.93 % 32606 =  99.12 % 32562 =  98.98 % passed 

13 32685 =  99.36 % 32692 =  99.38 % 32547 =  98.94 % passed 

14 32589 =  99.06 % 32644 =  99.23 % 32581 =  99.04 % passed 

 

4.2 The results of dependence tests 
 

We shall first analyze the AES-128 variant; thus, for each key of the 

hundred keys, made up of 16 bytes each, bits are altered – one at a time -  the 

resulting being 128*100=12800 master keys. For each master key, a round key is 

generated according to the key expanding algorithm.  

Within each round, some indicators are calculated: the average number of 

output bits which changed when an input bit was altered, the degree of 

completeness, the degree of avalanche effect, the degree of strict avalanche effect, 

adapting the procedure described in [4].  

For the three variants of AES algorithm, the experimental results obtained 

for the four dependence criteria after the round key generation are illustrated in 

Table 5, Table 6 and Table 7. 

In Table 5 the first column shows the round number, the second column 

illustrates – in percentage - the average number of modified bits after altering 

each master key. For the function to have proper values in respect of the 

completeness degree, the avalanche effect and the strict avalanche criteria, the 

requirements in [4] are to be met: the number of modified bits should be over 

50%; the value for completeness degree should be 1; the degree of avalanche 

effect and the degree of strict avalanche criteria must be very close to 1.  
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Table 5 

Dependence test results for AES 128 

AES 128 

Rounds 
Number of output 

bits changed ( %) 

Degree of 

completeness 

Degree of 

avalanche effect 

Degree of strict 

avalanche effect 

1 6.522188 0.082031 0.101909 0.056851 

2 21.692344 0.324219 0.338943 0.286829 

3 33.861719 0.513672 0.529089 0.460332 

4 45.831172 0.708984 0.713822 0.646141 

5 50.129922 0.781250 0.780861 0.718346 

6 50.055078 0.781250 0.779908 0.718397 

7 49.943828 0.781250 0.778995 0.718942 

8 50.013828 0.781250 0.779135 0.719696 

9 49.983359 0.781250 0.778827 0.718368 

10 50.061250 0.781250 0.780386 0.718965 

 

We can see in Table 5 that for AES with 128 bits key the number of 

modified bits reaches the level of 50% in the fifth round, while the other 

parameters do not exceed the value of 0.78.  
Table 6 

Dependence test results for  AES 192 

AES 192 

Rounds 
Number of output 

bits changed ( %) 

Degree of 

completeness 

Degree of 

avalanche effect 

Degree of strict 

avalanche effect 

1 4.348542 0.054688 0.067946 0.037770 

2 12.880885 0.183594 0.201264 0.152055 

3 20.413229 0.304688 0.318957 0.266340 

4 32.023333 0.488281 0.500365 0.439038 

5 40.374375 0.615885 0.630850 0.554438 

6 45.694323 0.704427 0.712001 0.640448 

7 54.090521 0.843750 0.841709 0.776802 

8 56.060052 0.875000 0.871710 0.806176 

9 55.975937 0.875000 0.870062 0.805895 

10 55.942500 0.875000 0.870485 0.805716 

11 55.972187 0.875000 0.870916 0.806009 

12 56.095417 0.875000 0.871976 0.805068 

 

The same tests applied to data processing stage generate better results [4], 

[17]; in this case, the number of modified bits reaches the level of 50% in the 

second round. The other statistical evaluation criteria considered in data 

processing stage reach the maximum threshold starting with the third round [17]. 

We can notice in Table 6 that, for AES-192, the number of modified bits 

exceeds the level of  50% in the seventh round, while the other parameters do not 

exceed a value of 0.87. 
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In Table 7, we can remark that the key expanding algorithm for AES-256 

achieves a minimum of 50% of modified bits in the nineth round. Although there 

are 14 rounds, the values for the other three statistic properties are even poorer 

than those for AES-192. 
Table 7 

Dependence test results for  AES 256 

AES 256 

Rounds 
Number of output 

bits changed ( %) 

Degree of 

completeness 

Degree of 

avalanche effect 

Degree of strict 

avalanche effect 

1 3.257344 0.041016 0.050896 0.028523 

2 11.370313 0.166016 0.177661 0.142739 

3 18.759453 0.287109 0.293116 0.257694 

4 24.875937 0.380859 0.388687 0.345579 

5 30.910781 0.475586 0.482981 0.430541 

6 37.461484 0.577148 0.585336 0.525608 

7 43.462617 0.675781 0.677509 0.617668 

8 47.974063 0.745117 0.746857 0.682900 

9 50.046875 0.781250 0.779170 0.719166 

10 50.090742 0.781250 0.780655 0.716966 

11 50.066406 0.781250 0.780006 0.719247 

12 49.992852 0.781250 0.779479 0.718631 

13 50.024297 0.781250 0.779878 0.719464 

14 50.066328 0.781250 0.780527 0.718723 

 

For a comparison, Fig.3 presents graphically the evolution of the four 

criteria for both initialization stage and data processing stage of the AES-256 

algorithm. In order to get a unitary image, the graphical representation will be 

focused on 10 rounds, even if for AES-256 there are more rounds.  

The round key generation algorithm is weaker than the data processing 

algorithm as it can be seen in Fig.3, where the dependence criteria for AES-256 is 

illustrated. During the course of time, there have been attempts to improve these 

results by adding various routines to the initializing algorithm. Yet, although the 

key generation algorithm proved to be weak in terms of statistic test results, due to 

the manner in which the data processing stage is structured, the algorithm is 

difficult to break. Note also that any attempt to modify the algorithm by adding a 

routine may affect the execution speed. 
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Fig. 3 Graphical representation of the dependence tests results for initialization stage vs data 

processing stage of AES-256 

 

We can notice that key expanding algorithm reaches the minimum level of 

50% for modified bits in the ninth round (see Fig.3). It is worth mentioning that if 

the same testing approach is applied to the processing stage, the above mentioned 

level is reached in the third round. The other three criteria of statistic evaluation 

do not succeed to reach the maximum level earlier than the last round. In the 

processing stage, these criteria reach the maximum level in the third round [17].  

5.  Conclusions 

The paper presents an investigation of diffusion and confusion concepts as 

they are revealed through the relationship between master key- round keys in a 

symmetric block cipher. The criteria by which the analysis was carried out in the 

initialization stage are considered mandatory to be fulfilled (in the specialty 

literature) for testing the data processing stage of an efficient block cipher. A 

comparative assessment regarding the diffusion and confusion highlighted in the 

relation master key - round keys shows poorer results in the initialization stage. 

The results were illustrated on AES basis. The experimental work induces that the 

requirements regarding the four dependence criteria (considered necessary in a 
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security algorithm testing) are a severe desideratum in the initialization stage of an 

algorithm. 

Testing the initialization stage is important for a security assessment of a 

cipher and these procedures could be useful in the phase of developing an 

algorithm. By means of these tests one could determine the optimum number of 

rounds for a block cipher algorithm. 
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