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SPARSE CODES DERIVED FROM GRAPHS

Shahrooz Janbaz1, Zahra Taheri2, Ali Zaghian3

In this paper, we present a method to construct column weight two Low-
Density Parity-Check (LDPC) codes (namely, Cycle codes) from arbitrary graphs
and we obtain a new class of girth twelve LDPC codes from complete graphs. Also,
we use the incidence matrix of bi-regular bipartite graphs to construct new sparse
codes and we prove that some classes of these codes are self-orthogonal. The
weight distribution of the later codes are obtained. Also, a conjecture about the
covering radius of these codes are presented with some computational evidences.
This conjecture partially solved for special class of these codes and we posed an
interesting problem in the conclusion. At the end of this paper, the performances
of constructed codes are simulated on Additive White Gaussian Noise (AWGN)
channels.

MSC2010: 94B05, 94C15

Keywords: Sparse Code, Tanner Graph, Cycle Code, Weight Distribution, Cov-
ering Radius.

1. Introduction

Low-density parity-check (LDPC) codes, introduced by Gallager [1], are linear
block codes with sparse parity-check matrices and implementable decoders. These
codes provide near-capacity performance on a large set of data-transmission and
data-storage channels.

LDPC codes with column weight two have their minimum distance increasing
logarithmically with code size [1]. There are a lot of methods for construction of
LDPC codes based on graphs, finite geometry and design theory, one may see [2] and
the references therein. Recently, cage graph are used to construct column weight two
LDPC codes with wide range of girth[3]. Also, in [4] the authors constructed some
new cycle LDPC codes based on Tanner graphs of LDPC codes. One advantage
of column weight two LDPC codes are their simple mathematical structure that
allow to compute the parameters of codes. Also, there are some methods such as
superposition on a larger finite field to obtain non-binary good LDPC codes from
column weight two LDPC codes. There are several applications for column weight
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two LDPC codes. For example, in [5],[6] and [7] column weight two codes are
investigated for disk storage because of their low complexity (few edge connection).

In this paper, graph theory is used to introduce some methods for constructing
column weight two LDPC codes. A new class of girth twelve LDPC codes is
obtained from complete graphs. Also, we use the incidence matrix of a Tanner
graph to construct a new sparse code. The weight distribution and covering radius
of a class of later codes are computed and it is proved that some classes of these
codes are self-orthogonal. We conjectured about the covering radius of a class of
these codes and some evidences are given to confirm this conjecture. Finally, the
simulation results of the constructed codes on AWGN channels are given.

2. Preliminaries

Let F2 = {0, 1} denotes the finite field with 2 elements. A binary regular
LDPC code is defined as the null space of a parity-check matrix H over F2 with the
following structural properties: 1) each row has constant weight ρ; 2) each column
has constant weight γ. This parity-check matrix, H, is said to be (ρ, γ)-regular and
the code given by the null space of H is called a (ρ, γ)-regular LDPC code. An
LDPC code is said to be irregular if its parity-check matrix has multiple column
weights and/or multiple row weights.
The parity-check matrix H must be sparse, i.e, the number of 1s in H must be much
fewer than the total number of entries of H. Because of this property, LDPC codes
are known as sparse codes. Let H be an m × n parity-check matrix of an LDPC
code C. We say that C is an [n, k, d]-code when n is the length of the code C, the
number of columns of H, k is the dimension of the code C, equal to n − rank(H),
and d = dmin(C) is the minimum distance of the code C. It is known that if d is the
minimum distance of the code C, then each d− 1 columns of H are independent but
there is at least one set of d columns of H that is dependent.

The performance of an LDPC code with iterative decoding depends on the
number of structural properties of the code besides its minimum distance. One such
structural property is the girth of the code which is defined as the length of the
shortest cycle in the code’s Tanner graph. The cycles that affect code performance
the most are cycles of length 4. For codes whose Tanner graphs contain these
short cycles, messages exchanged in iterative decoding become correlated after two
iterations, and decoding either does not converge or converges slowly. Therefore,
cycles of length 4 must be prevented in code construction. This is the case in almost
every method of constructing LDPC codes that has been proposed.

In the sequel, we give some definitions and theorems that will be used in other
sections.

Definition 2.1. [8] A subset S of code bits forms a stopping set if each equation that
involves the bits in S involves two or more of them. In the context of the Tanner
graph, S is a stopping set if all of its neighbours are connected to S at least twice.

Definition 2.2. [9] Let C be a code over F2 of length n. We say that a vector in Fn
2

is ρ-covered by C if it has distance ρ or less from at least one codeword in C. In this
terminology the covering radius Cr(C) of C is the smallest integer ρ such that every
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vector in Fn
2 is ρ-covered by C. Equivalently,

Cr(C) = max
x∈Fn

2

min
c∈C

d(x, c),

where d(x, c) denotes the distance between vectors x and c.

Definition 2.3. [10] If C is a linear code of length n over F2 with parity-check
matrix H, the dual code of C is denoted by C⊥ and is defined as

C⊥ = {x ∈ Fn
2 | x · y = 0 for all y ∈ C},

where x · y denotes the Euclidean inner product of two vectors x and y.
Also, for the parity-check matrix H, we have C = H⊥, where

H⊥ = {x ∈ Fn
2 | Hxt = 0}.

We say that a code C is self-orthogonal if C ⊆ C⊥, and that C is self-dual if C = C⊥.

Theorem 2.4. [10, Theorem 2.1] If G = [Ik | A] is a generator matrix for binary
linear code C in standard form, then H = [At | In−k] is a parity-check matrix for C.

Suppose n and k are positive integers, then the number of k-combinations of
n elements is denoted by C(n, k). For any k, 0 ≤ k ≤ n, we have C(n, k) = n!

k!(n−k)!

and for k > n, it is defined to be zero. The weight distribution (or weight spectrum)
of a code of length n specifies the number of codewords of each possible weight
0, 1, . . . , n.

Theorem 2.5. [10] Let C be an [n, k, d] code over F2 with weight distribution (Ai |
0 ≤ i ≤ n) and let the weight distribution of C⊥ be (Bi | 0 ≤ i ≤ n). Then for
0 ≤ v ≤ n, we have Mac Williams equation as follows

n−v∑
j=0

C(n− j, v)Aj = 2k−v
v∑

j=0

C(n− j, n− v)Bj .

Theorem 2.6. [10] Let C be a binary linear code. Then

1) If C is self-orthogonal and has a generator matrix each of whose rows has
weight divisible by 4, then every codeword of C has weight divisible by 4.

2) If every codeword of C has weight divisible by 4, then C is self-orthogonal.

3. New Method to Construct LDPC codes

In this section we construct a new parity-check matrix of an LDPC code by
using the incidence matrix of a graph. Our notations are standard and mainly taken
from [8] and [10].

Let G = (V,E) be a connected graph with the vertex set V = {v1, v2, . . . , vm}
and the edge set E = {e1, e2, . . . , en}. We denote the incidence matrix of the graph
G by I(G), that is an m × n binary matrix with row labels V and column labels
E such that its ij-th entry is 1 iff the vertex vi be an endpoint of the edge ej . We
consider this matrix, I(G), as a parity-check matrix of an LDPC code derived from
G. We denote the Tanner graph of this parity-check matrix by T (G), which has the
check nodes V = {v1, . . . , vm} and the variable nodes E = {e1, e2, . . . , en}. Note
that the Tanner graph of this parity-check matrix is bipartite with partitions V,E,
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where each vertex in E has degree 2. Also, we know that if G be a Tanner graph
with check nodes X = {x1, . . . , xs} and variable nodes Y = {y1, . . . , yt}, then by our
method the resulting LDPC code has the check nodes X∪Y and the variable nodes
E. Note that each bipartite graph can be seen as a Tanner graph of a parity-check
matrix.

In the following lemma, we will see some elementary properties of Tanner
graph T (G), for the given graph G.

Lemma 3.1. Let G = (V,E) be a connected graph and DG, degG(v) and g(G)
denote the diameter of G, degree of vertex v and the girth of G, respectively. Then
the Tanner graph T (G) has the following properties

1) |V (T (G))| = |V (G)|+ |E(G)|,
2) |E(T (G))| = 2|E(G)|,
3) DT (G) = 2DG,

4) degT (G)(v) =

{
degG(v) if v ∈ V (G)
2 otherwise

,

5) g(T (G)) = 2g(G).

Proof. By the definition of Tanner graph and incidence matrix of G, all vertices and
edges of G are the vertices of T (G), so the item (1) is clear. For proving (2), it
suffices to see that the total number of edges in T (G) are twice of the number of
edges of G, since each variable node of T (G) has degree 2. Items (3) and (5) are
clear, since if we delete the variable nodes in T (G), the corresponding edges of these
variable nodes still remain, the remaining graph is G. The item (4) is easy and is
left as an exercise. �

For better understanding of the construction method, we give an example with
some details.

Example 3.2. Let K3 be the complete graph with vertex set {v1, v2, v3} and edge
set {e1, e2, e3}. Then the graph K3, the incidence matrix I(K3), its Tanner graph
T (K3), and the incidence matrix of this Tanner graph I(T (K3)) are shown in the
following:
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We can generalize our previous example and obtain a family of well structured
LDPC codes. Let 1n = [1, 1, . . . , 1]1×n, 0n = [0, 0, . . . , 0]1×n and In be the n × n
identity matrix.

Theorem 3.3. Let n ≥ 3 be a positive integer and Kn be the complete graph with
n vertices. Then we have

I(Kn) =

[
0 (n−1)(n−2)

2

1n−1

I(Kn−1) In−1

]
.

Also, the LDPC code that is derived from I(Kn), Cn = I(Kn)
⊥, is the [C(n, 2), C(n, 2)−

n+ 1, 3]-code.

Proof. The graph Kn has n vertices and C(n, 2) edges, so I(G) is an n × C(n, 2)
matrix. Each column has weight 2 and each row has weight n − 1, since each
edge belongs to two vertices and each vertex belongs to n−1 edges. So, I(Kn) is an
(2, n−1)-regular LDPC code. Now, suppose the vertex set of Kn be {v1, v2, . . . , vn}.
It is easy to see that by deleting the vertex vn and its adjacent edges form Kn,
we obtain the complete graph Kn−1. Now, suppose we have the matrix I(Kn−1).
We add new top row with label vn to I(Kn−1) and new n − 1 columns for its
corresponding edges in Kn at the end of I(Kn−1). By this method, the structure
of I(Kn) can be constructed recursively and is the same as presented in theorem.
The column weight of I(Kn) is 2, so its rank is n− 1. Therefore, Cn = I(Kn)

⊥ is an
[C(n, 2), C(n, 2) − n + 1, 3]-code, since the girth of T (Kn) is six and the minimum
distance of derived code is half the girth of its Tanner graph. This completes our
proof. �

As seen, the girth of the T (Kn) is equal to six. We can repeat the above
construction to obtain twelve girth code. But before doing this, we need the next
theorem to obtain good structure for the new following codes. Note that for a matrix
A, we denote its transpose by At.

Theorem 3.4. Let G be a Tanner graph of parity-check matrix H with the check
nodes {a1, a2, . . . , am}, the variable nodes {b1, b2, . . . , bk}, and the edge set {e1, e2, . . . , en}.
Suppose I(G) is the incidence matrix of the graph G. Then, there are two matrices

B and C such that I(G) = [B C]t and BCt = H.

Proof. Let B and C be two matrices with check nodes {a1, . . . , am} and {b1, . . . , bk},
respectively. Suppose their common variable nodes are the edges of graph G. By
this notation, it is clear that I(G) = [B C]t. Also, B and C are m × n and k × n
matrices, respectively. So BCt and H have the same size. Let tij be the ij-th entry
of the matrix I(G). We know that tij = 1 iff ai is one of the endpoints of the edge
ej . But by our construction, the product of the i-th row of B and the j-th column
of Ct is 1 iff aibj is an edge of T (G) iff ai is one of the endpoint of edge ej . But it
is equivalent to the definition of parity-check matrix H and we have BCt = H. �

In the following, we consider I(T (Kn)) and its Tanner graph which give us a
twelve girth LDPC code. Also, we use Theorem 3.4 to find the structure of this
parity-check matrix.

By a suitable labelling of the vertices of T (Kn), based on notations in previous
theorem, we obtain a well structured parity-check matrix I(T (Kn)). Actually, we
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have

I(T (Kn)) =

[
M1

n

M2
n

]
,(1)

where M1
n = In ⊗ 1n−1 and M2

n can be constructed recursively, as follows:
Let, see Example 3.2,

I(T (K3)) =


1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 1 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0

 .

So, we have

M2
3 =

 0 0 1 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0

 .

Let Bn = [bij ] be a (n− 2)× 2C(n− 1, 2) matrix where bij = 1 when j = i(n− 1).
For i, 1 ≤ i ≤ n− 2, let Ai be the submatrix of M2

n−1 of size C(n− 1, 2)× (n− 2)
such that it begins from the column i(n− 2) + 1. Then we have

M2
n =



0C(n−2,2),2(n−1)

..

.

.

.. A∗
1 . . . A∗

n−2

0n−2,n−1 In−2 0n−2,1

..

.

1 0 . . . 0 1
.
..

0n−2,1 In−2 0n−2,n−1

.

.. Bn


,

where

A∗
i =

[
Ai 0C(n−1,2),1

01,n−1

]
.

In the next theorem, we give some properties of the later constructed codes.

Theorem 3.5. Let I(T (Kn)) be the parity-check matrix of code Cn. Then we have:

1) Cn is an [2C(n, 2), C(n− 1, 2)− 2, 6]-code,
2) Cn = [IC(n−1,2)|M2

n−1(M
1
n−1)

t].

Proof. It is clear that the number of columns in I(T (Kn)) is n(n − 1) = 2C(n, 2).
Also the number of its rows is n+C(n, 2) with one dependent row, so the dimension
of Cn is 2C(n, 2) − C(n + 1, 2) − 1 = C(n − 1, 2) − 2. Also, the column weight of
I(T (Kn)) is two and its girth is 12. So dmin(Cn) = 12

2 = 6. This completes the proof
of part one of theorem. Now, by the structure of I(T (Kn)) and some elementary
row and column operations, the second part of theorem is obvious. �

Recall that a stopping set S is a subset of variable nodes, such that all neigh-
bours of the variable nodes in S are connected to S at least twice. The size of the
stopping set S is the cardinality of S (for an equivalent definition see Definition 2.1).
In the following lemma, we determine the structure of the stopping sets of our codes.
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Note that, when we say the cycle (stopping set) distribution of a code is
∑

i≥1 cix
i,

it means that we have ci cycles (stopping sets) with length (size) i.

Lemma 3.6. Let G be a Tanner graph with cycle distribution
∑

i≥2 c2ix
2i. Then the

cycle and stopping set distribution of T (G), Tanner graph of I(G), are
∑

i≥2 c2ix
4i

and
∑

i≥2 c2ix
i, respectively.

Proof. Suppose there exist an l-cycle in G. Since G is bipartite l must be even.
From the definition of I(G), we obtain a 2l-cycle in its corresponding Tanner graph,
T (G), and it is one to one correspondence. Furthermore, since the degree of each
variable node in T (G) is 2, for every 2l-cycle in T (G) there exists a stopping set
with size l, and vice versa. Thus we completed the proof. �

Remark 3.7. By Lemma 3.6, one can easily obtain the cycle and the stopping set
distributions of the Tanner graph of I(T (Kn)).

Recall that the weight of a codeword in a code C is the number of non-zero
elements in this codeword. Let Aw denote the number of codewords in C with the
weight w. In the following remark, we give some facts about the amount of Aw, for
some w, in the code Cn = I(T (Kn))

⊥.

Remark 3.8. Let Aw be the number of codewords with weight w in the code Cn =
I(T (Kn))

⊥. By a simple calculation, one can see that Ai(n−1) ≥ C(n, i), A2i ≥
C(C(n, 2), i) and An−1+2i ≥ nC(C(n− 1, 2), i).

4. Incidence Matrix of the Tanner Graph as a Sparse Code

In the previous section, we introduced a method of construction of LDPC
codes from an arbitrary graph with the incidence matrix of an arbitrary graph.
We know that the subdivision of any connected graph G is a bipartite graph. By
this evidence, we are motivated to construct sparse codes from arbitrary bi-regular
bipartite graphs. As we know, all Tanner graphs of (ρ, γ)−regular LDPC codes
are bi-regular bipartite graphs. It can be interesting that we modify the relation
between the LDPC code from a Tanner graph and the resulting sparse code by its
incidence matrix. Note that, all bi-regular bipartite graph can be seen as a Tanner
graph of an LDPC code and vice versa.

Let G be a Tanner graph of a (ρ, γ)−regular LDPC code. As it is done in
the previous section, we use the incidence matrix of G as a sparse matrix of the new
code and we denote it by I(G). In the following, we give two different examples
which show the interesting behaviours of our construction. The Tanner Graphs of
Gallager parity-check matrix and MacKay Neal parity-check matrix are bi-regular
and have the same degree sequences. But these two graphs are not isomorphic as
a graph theory point of view. The resulting codes by our construction also are not
equivalent.

Example 4.1. Let G be the Tanner graph of length 12 (4, 3)-regular Gallager parity-
check matrix[2]. Then I(G) generates [36, 20, 3]-code that is sparse. Also, the code
I(G)⊥ is a [36, 16, 4]-code.
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Example 4.2. Let G be the Tanner graph of length 12 (4, 3)-regular MacKay Neal
parity-check matrix[2]. Then I(G) generates [36, 20, 3]-code that is sparse. Also, the
code I(G)⊥ is a [36, 16, 4]-code.

As it can be seen, the parameters of these two codes are the same, but these
codes are not equivalent. It seems that non-isomorphic bipartite graphs with the
same degree sequences generate non-equivalent sparse codes.

In the following, we give a method to standardize our construction for better
seeing the properties of the matrix I(G).

Let G be a Tanner graph of (ρ, γ)−regular LDPC code with check nodes
and variable nodes {a1, a2, . . . , ak} and {b1, b2, . . . , bn}, respectively. Let for every
i, 1 ≤ i ≤ k, deg(ai) = ρ and for every j, 1 ≤ j ≤ n, deg(bj) = γ. It is easy to
see that kρ = nγ and I(G) has kρ columns. Let the labels of the columns of I(G)
be e1, e2, . . . , ekρ and the labels of the rows of I(G) be a1, a2, . . . , ak, b1, b2, . . . , bn.
We correspond to any check nodes ai, the edges e(i−1)ρ+1, e(i−1)ρ+2, . . . , e(i−1)ρ+ρ.
Then we choose integers n1, n2, . . . , nγ such that 1 ≤ n1 < n2 < . . . < nγ ≤ nγ and
ni = ni−1+n. Now we consider the edges em1j , em2j , . . . , emγj wheremlj = nl+(j−1)
(mod nγ), and relate these edges to vertex bj . Note that the obtained matrix is
unique up to isomorphism, since I(G) is independent from the choice of integers
n1, n2, . . . , nγ .

The weight distribution of a code C is the set {< w,Aw > | 0 ≤ w ≤ n},
where n is the length of the code C and ⟨w,Aw⟩ denotes the weight enumerator of
this code. It is known that in general determining the weight distribution of a code
is very difficult.

Remark 4.3. It is easy to see that I(G) = [H1,H2]
t, where H1 = Ik ⊗ 1ρ, H2 =

[A (1γ−1 ⊗ In) B] and [B A] = In.

Theorem 4.4. Let in Tanner graph G we have ρ = n (and so γ = k). Then

Ik,ρ := I(G) =

[
Ik ⊗ 1ρ

1k ⊗ Iρ

]
that is equivalent with

... 1(ρ−1)(k−1)

Ik+ρ−1
... 1k−1 ⊗ Iρ−1
... Ik−1 ⊗ 1ρ−1


and the weight distribution of this code is given in Table 1.

Proof. By the above remark and some elementary row and column operations, one
can easily obtain the equivalent code of Ik,ρ. Let the first row, next ρ− 1 rows, and
the last k−1 rows of equivalent matrix of Ik,ρ are blocks B1, B2 and B3, respectively.
Since the blocks B1, B2 and B3 are well-structured, we can obtain the weight of the
different combinations of rows by a simple calculation. For example if we choose i
rows from block B2, and j rows from block B3, then we have a vector with weight
i(k− 1)+ i from block B2 and a vector with weight (ρ− 1)j + j from block B3 with
ij common ones. So the summation of these two vectors has weight ki+ρj− ij. But
by the multiplication principle, the number of such vectors is C(ρ− 1, i)C(k− 1, j).
With a similar method, we obtain the weight distribution of this code that is given
in Table 1. �
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Table 1. Weight distribution of Ik,ρ when ρ = n, where 1 ≤ i ≤
ρ− 1, 1 ≤ j ≤ k − 1.

w Aw

(ρ− 1)(k − 1) + 1 1
ki C(ρ− 1, i)
ρj C(k − 1, j)
(ρ− i− 1)(k − 1) + i+ 1 C(ρ− 1, i)
(k − j − 1)(ρ− 1) + j + 1 C(k − 1, j)
ki+ ρj − ij C(ρ− 1, i)C(k − 1, j)
(k − j − 1)(ρ− i− 1) + i+ j + 1 C(ρ− 1, i)C(k − 1, j)

Remark 4.5. Let C1 = In ⊗ 1m, C2 = 1m ⊗ In and let Cr(C) denote the covering
radius of the code C. One can see that these two codes are equivalent and so the
covering radius of these codes is n⌊m2 ⌋. Also we have Cr(C⊥

1 ) = Cr(C⊥
2 ) = n [9].

Corollary 4.6. Let Ik,ρ =

[
Ik ⊗ 1ρ

1k ⊗ Iρ

]
and Cr(Ik,ρ) be the covering radius of Ik,ρ.

Then we have Cr(Ik,ρ) ≤ Min{k⌊ρ2⌋, ρ⌊
k
2⌋, (ρ− 1)(k − 1)}. Also, if ρ ≥ k ≥ 3 then

Cr(Ik,ρ) ≤ k⌊ρ2⌋.

Proof. By Definition 2.2, since Ik ⊗1ρ and 1k ⊗ Iρ are subcodes of Ik,ρ, the result is
clear. Also, when ρ ≥ k ≥ 3, the minimum of the set in the above corollary is k⌊ρ2⌋
and this completes the proof. �

Theorem 4.7. Suppose ⟨w,Aw⟩ denotes the weight enumerator, where Aw is the
number of codewords with weight w. Let ρ = 2, n1 = 1, and k ≥ 2 in Theorem 4.4.
Then we have

i) Ik,2 =

[
Ik ⊗ 12

1k ⊗ I2

]
that its standard form is

 · J2,k−1

Ik+1 ·
· Ik−1

, where Jm,n

denotes a all one matrix with size m× n. Also Ik,2 is a [2k, k + 1, 2]-code.

ii) C(k) := I⊥k,2 is a [2k, k−1, 4] doubly even weight self-orthogonal code. Moreover

C(k) = [12 ⊗ Ik−1 Jk−1,2] with standard form [Ik−1 Ik−1 Jk−1,2].
iii) The covering radius of C(k), Cr(C(k)), is k and the weight distribution of C(k)

is
⟨4i, C(k − 1, 2i− 1) + C(k − 1, 2i)⟩ = ⟨4i, C(k, 2i)⟩ for 0 ≤ i ≤ [k2 ].

Proof. By Theorem 4.4 and Table 1, the structure and weight distribution of Ik,2 is
clear and the minimum distance of Ik,2 is 2. Now by Theorem 2.4, the structure of
C(k) is clear. By Theorem 2.5 or the structure of C(k), the weight distribution of C(k)
is ⟨4i, C(k, 2i)⟩, so the minimum distance of C(k) is 4 and it is a doubly even weight
code. Moreover by Theorem 2.6, C(k) is self-orthogonal. Let f2k = [1010 . . . 10] be
a vector of length 2k. By induction on k, we prove the hypothesis about covering
radius of C(k). In the case k = 2, it is easy to see that the covering radius is 2. Now
suppose that Cr(C(k)) = k. For the code C(k + 1), we have f2(k+1) = [f2k−21010].
By induction, the vector f2k−2 has the distance k − 1 from code C(k − 1). But the
vector [1010] has the distance 2 with all the combinations of rows related to the last
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four columns of C(k+1). So the covering radius of C(k+1) is k− 1+ 2 = k+1 and
it completes the proof. �
Conjecture 4.8. Let k, ρ ∈ N and k, ρ ≥ 2. Then we have Cr(I⊥k,ρ) = k.

For some random integers k and ρ, the covering radius of Ik,ρ are computed
with Magma Algebra System [11] and the results are summarized in Table 2. It can
be seen that the results confirm our conjecture.

Table 2. Covering radius of I⊥k,ρ for random parameters k and ρ

k ρ Cr k ρ Cr
10 3 10 5 8 5
12 5 12 10 15 10
13 8 13 12 12 12
30 15 30 25 35 25

5. Simulation Results

In this section, we simulate the bit error rate of constructed codes on AWGN
channel. The decoding algorithm is Belief propagation algorithm which is a type of
message passing algorithm. We simulated these codes by using the package of LDPC
analysis which is available in [12]. By Figure 1, we can see that the performance of
I(T (Kn)) is better than the one of I(Kn). Also the rate of I(Kn) is better than the
one of I(T (Kn)). We can explain this differences by the better girth and minimum
distances of I(T (Kn)) than I(Kn). From the Figure 2, it is easily seen that when k
and ρ are close, the performance of Ik,ρ will be better, when dB is greater than 5.
We know that the girth and minimum distance of Ik,ρ are fixed for different values
of k and ρ. Therefore, we can explain these results with the increase of the rate of
Ik,ρ when k and ρ are close.

6. Conclusion

In this paper, we introduced some new methods to construct column-weight
two LDPC codes based on graphs. Also, we determined some structural properties
of some classes of these new codes. We found a class of self-orthogonal codes that
are suitable for constructing a new class of quantum codes. We gave a conjecture
with some evidences about the covering radius of a class of these new codes. An
interesting question that can be studied further on is: If G1 and G2 be two non-
isomorphic bipartite graphs with the same degree, is it true that I(G1) and I(G2)
are not equivalent?
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