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TRACEABILITY METHOD OF ACTIVE AND PASSIVE 
FUSION FOR POLLUTANT EMISSIONS IN WATERSHEDS 

Xiaoyu HUANG1, Yudong HUANG2, Wanting HU3, Lifang HU4, Ruohua LI5, 
Xiaoxiao LIU6, Tao DING7 

To swiftly and accurately trace water pollution incidents, a hybrid tracing 
method combining active and passive approaches is proposed. Active tracing 
algorithms serve as the primary pollutant source tracking strategy, complemented by 
passive tracing algorithms for adjusting search parameters. Validation through 
pollution tracing simulations confirms the feasibility and robustness of the fused 
active-passive tracing method. Additionally, a mobile water pollution tracing 
platform and a ground management platform were designed and developed, 
incorporating the proposed tracing algorithm. These platforms enable real-time 
water quality monitoring and pollutant source tracking, improving overall response 
efficiency. 

Keywords: Water pollution tracing, Active and passive fusion, Simulation 
experiment, Mobile traceability platform 

1. Introduction 

Water resources play an indispensable role in human society and are crucial 
for economic development [1]. However, frequent sudden water pollution incidents 
in China exacerbate water scarcity, characterized by high frequency, severe 
destructiveness, diverse forms, rapid spread, and long-lasting environmental 
impacts [2]. The inability to promptly identify pollutant sources, often due to 
human-induced illegal discharges, has resulted in environmental regulatory 
agencies witnessing the gradual spread of pollution across watersheds. Therefore, 
swiftly and accurately locating pollutant sources during sudden water pollution 
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incidents is the primary focus of this study. Water pollution tracing methods fall 
into two main categories: passive tracing algorithms and active tracing algorithms 
[3]. Passive tracing involves retroactively deducing pollutant sources based on 
water quality data from monitoring stations, providing information on source 
location, emission intensity, and leakage time. Different types of passive tracing 
algorithms include analytical methods [4-5], regularization techniques [6-7], 
intelligent optimization algorithms [8-9], and probabilistic approaches [10].  

Active tracing algorithms primarily utilize mobile devices equipped with 
corresponding sensors to conduct active searches within polluted river zones 
according to predefined rules until emission sources are located. Currently, 
proposed active tracing algorithms include machine vision-assisted methods [11], 
biomimetic olfaction methods [12-13], and information-oriented approaches [14]. 
Russell [15] developed a mobile platform equipped with concentration and obstacle 
avoidance sensors. They analyzed the strengths and weaknesses of four active 
tracing algorithms: Escherichia coli algorithm [16], moth algorithm [17], cockroach 
algorithm [18], and concentration gradient algorithm—by comparing their 
performance in controlling the mobile platform during the tracing process. Both 
passive and active tracing algorithms have certain limitations. For passive tracing 
algorithms, limitations in source inversion include the uneven distribution of 
monitoring stations, which hinders effective water pollution tracing, and an over-
reliance on the accuracy of pollution diffusion models, even though real-world 
water pollution environments are often complex and variable. Active tracing 
algorithms face challenges such as: in the early stages of tracing, when downstream 
pollutant concentrations are too low, sensors on the mobile platform may fail to 
detect significant differences in pollutant concentrations, hindering effective active 
tracing; additionally, the mobile platform can easily become trapped in local optima 
due to overly small search step sizes. Therefore, this paper integrates the global 
search capability of passive tracing algorithms with the local search capability of 
active tracing algorithms, fully leveraging water quality information from both 
fixed and mobile monitoring stations. A hybrid tracing method is proposed, and a 
water pollution traceability platform is designed to include functionalities such as 
water quality monitoring, pollutant source tracking, and remote viewing of water 
quality information. This platform aims to provide references and assistance to 
relevant authorities in pollution source tracking efforts. 

2. Research on hybrid tracing method of river pollution sources 
2.1. Design concept of active and passive fusion method 
The design concept of the hybrid tracing method is illustrated in Fig.1. 

Initially, an unmanned boat utilizes monitoring information from fixed monitoring 
stations. It employs passive tracing algorithms to infer and estimate the approximate 
location of the pollutant source, providing movement directional and step lengths 
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for pollutant source tracking until entering areas of high pollution. During the 
tracing phase in high-pollution areas, the unmanned boat switches to active tracing 
algorithms for pollutant source tracking. 

 
Fig.1. Flow chart of active and passive fusion method 

 
If situations arise where the boat becomes trapped in local optima or 

deviates from the pollution zone, it utilizes information obtained from passive 
tracing algorithms to infer and estimate the pollutant source location, thereby 
providing movement directional and step lengths for active tracing, aiming to 
escape local optima or return to the pollution zone. 

2.2.  Construction of active and passive fusion method 
2.2.1 Passive tracing algorithm module 
The passive tracing algorithm module in this study employs a genetic 

algorithm. Genetic algorithms simulate natural selection and genetic mechanisms 
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in optimization search. By simulating processes such as genetic inheritance, 
crossover, and mutation, they evolve from an initial set of solutions to progressively 
form better sets of solutions, addressing various optimization and search problems. 
Using a genetic algorithm for inverse estimation of water pollution sources provides 
the most realistic pollutant source location, emission intensity, and emission time. 
The steps are as follows:(1) Determination of Genetic Algorithm Parameters.(2) 
Determination of Pollution Source Parameters range.(3) Generation of Initial 
Population.(4) Construction of the Fitness Function.(5) Implementation of Genetic 
Algorithm.(6) Iterative Optimization. 

2.2.2 Active tracing algorithm module 
The active source tracking algorithm module in this paper adopts the Beetle 

Antennae Search Algorithm (BAS)[19]. The core idea of the BAS is to mimic a 
beetle's perception of the environment using its two antennae and adjust its 
movement direction based on differences in environmental information, ultimately 
leading it to locate food sources. The steps of the pollution source tracking method 
based on the BAS Algorithm are as follows: 

Step 1: The parameters of the Beetle Antennae are initialized.  
Step 2: The unmanned boat undergoes a random rotation by any angle. 
Step 3: The unmanned boat is moved towards the side with higher pollutant 

concentration. 
2.2.3 Active tracing algorithm module 
Combining the passive traceback algorithm module based on the genetic 

algorithm with the active traceback algorithm module based on the beetle antenna 
search algorithm, detailed steps for the integration of active and passive traceback 
methods are proposed under the global search strategy, information interaction 
strategy, and local search strategy. 

(1) Integration Strategy 
To address the issue of unmanned boats blindly tracing pollution sources 

upstream in the initial stage, fixed monitoring stations deployed along the river are 
utilized. These stations provide water quality information to invoke the passive 
traceback algorithm module, inferring approximate pollution source locations. This 
information serves as a global search strategy to guide the movement direction and 
step size for the active traceback module until the unmanned boat enters a low 
pollution concentration area. To overcome the problem of the unmanned boat 
becoming trapped in a local optimum or deviating from the pollution plume, the 
passive traceback algorithm module is re-invoked to provide movement direction 
and step size for the active traceback module, facilitating escape from local optima 
and return to the pollution plume. 

During the traceback stage in low-pollution areas, the unmanned boat 
utilizes the pollution source location information obtained from the passive 
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traceback module to guide movement direction and step size for pollution source 
tracking. Upon reaching a new position, monitoring information is fed back to the 
passive traceback module. This continual exchange of information between active 
and passive traceback allows for ongoing pollution source tracking. 

During the traceback stage in high-pollution areas, the unmanned boat 
employs the active traceback algorithm module based on differences in 
concentration detected by sensors on both sides. It utilizes a local search strategy to 
track pollution sources. 

(2) Detailed Steps of the Integrated Tracing Method 
Based on the Genetic Algorithm and the BAS algorithm, the detailed steps of 

the integrated traceback method are as follows: 
Step 1: When the fixed monitoring station detects abnormal concentrations of 

the target pollutant, the traceback program of the unmanned boat is activated. The 
unmanned boat is equipped with symmetric sensors for the target pollutant on both 
sides, positioned at a distance L from the boat's center (X, Y). 

Step 2: Record the changes in concentration of the target pollutant detected by 
the fixed monitoring station. Invoke the genetic algorithm to infer the position of 
the pollution source, and the unmanned boat moves toward this position by a step 
length. 

Step 3: Check if the sensors on both sides of the unmanned boat detect a 
change in the concentration of the target pollutant. If an abnormal concentration is 
detected, proceed to Step 4; otherwise, return to Step 2. 

Step 4: Utilizing the position information and detected concentration of the 
target pollutant from both the monitoring station and the unmanned boat, invoke 
the genetic algorithm to infer a new pollution source position. The unmanned boat 
is moved toward this position by a step length. 

Step 5: Check if the difference in pollutant concentration detected by the 
sensors on both sides of the unmanned boat is greater than a threshold value. If the 
concentration difference exceeds the threshold, proceed to Step 6; otherwise, return 
to Step 4. 

Step 6: Based on the concentration of the target pollutant detected by the 
sensors on both sides, invoke the BAS algorithm to output the coordinates of the 
next position for the mobile platform and move towards it. 

Step 7: If the unmanned boat repeatedly hovers around a position, it is 
considered trapped in a local optimum. Return to Step 4; otherwise, proceed to Step 
8. 

Step 8: Check if the unmanned boat has deviated from the pollution plume. If 
so, return to Step 4; otherwise, proceed to Step 9. 

Step 9: Check if the concentration of the target pollutant measured by the 
sensors on the unmanned boat exceeds a threshold value. If it does, the pollutant 
source is considered found. If not, proceed to Step 10. 
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Step 10: Check if the maximum iteration count has been reached. If so, it is 
determined that the pollutant source cannot be found; otherwise, return to Step 7. 

In Steps 2 and 4 mentioned above, invoking the genetic algorithm to infer the 
pollution source location involves a calculation process similar to the step of the 
passive traceback algorithm module based on the genetic algorithm mentioned.  The 
optimization objective function is modified to: 
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In the equations: ,t i
thC represents theoretical monitoring data; .
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actual data detected by fixed monitoring platforms; .
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detected by the unmanned boat; T denotes the total monitoring time; and n is the 
number of observation points. The step length mentioned in the above steps 2 and 
4 is determined by the formula: 
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The procedure mentioned in step 6, where the BA search algorithm is 

invoked to obtain the next position coordinates of the mobile platform, follows the 
same steps as outlined in the previous section on the active traceback algorithm 
based on the BA search algorithm. 

3. Simulation environment setup and experimental design 

To construct a simulated concentration field that better reflects real river 
conditions, a segment of a meandering river is selected as the computational 
domain. Python is used to create a simulation environment for the continuous 
discharge of sewage from a single-point source based on a two-dimensional 
diffusion model. Simulations and analyses are then performed on the pollution 
source tracking and positioning methods, utilizing both the BA search algorithm 
and the integrated active-passive fusion tracing method within this concentration 
field. The pollution source is located at (0, 0), and the initial position of the mobile 
platform is (400, 40). To further compare the anti-interference capabilities of these 
two algorithms, a concentration interference point is introduced at position (100, 
25) in the pollution diffusion concentration field, creating a local concentration 
peak. Simulations and analyses are conducted on the pollution source tracking and 
localization methods based on the BAS algorithm and the integrated active-passive 
fusion tracing method under this interference concentration field. The trajectory of 
the mobile platform is illustrated in Fig.2. 
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(a)  the BAS                                        （b） active and passive fusion method 
Fig.2. Traceability trajectories of pollution sources using different methods in interference 

concentration fields 
 

From the trajectories of the two pollutant tracking methods shown in Fig. 2, 
it is clear that the pollutant tracking and localization method based on the BAS 
algorithm gets stuck at a local interference point during the tracking process, which 
leads to tracking failure. In contrast, during the traceability process of the active 
and passive fusion method (from 400m to 200m), a genetic algorithm is employed. 
The algorithm dynamically adjusts the estimated pollutant source location in 
response to concentration variations detected by the monitoring stations, resulting 
in significant fluctuations in the unmanned boat's trajectory due to the relatively 
large search step size. At 200m, the method transitions to the BAS algorithm. When 
the active and passive fusion method encounters a local interference point, it calls 
the passive tracking algorithm to modify the search step length and direction, 
allowing it to escape the local optimum. This results in stronger resistance to 
interference, making the method more effective at solving tracking problems in 
complex water pollution environments. 

To further analyze the advantages of the intelligent step adjustment method 
proposed in this paper over the approach of using a fixed scaling factor for step 
adjustment, success rate, and average iteration count are employed as evaluation 
metrics. River flow velocity and pollutant emission intensity are selected as 
experimental variables. The BAS Algorithm, the Improved BAS Algorithm with 
fixed scaling factor adjustment, and the integrated active-passive fusion tracing 
method are subjected to tracing simulations under various conditions. The 
Improved BAS Algorithm utilizes a fixed scaling factor to adjust the search step. 
Tracing is deemed successful if the search reaches within a radius of 15m from the 
pollution source. Nine sets of experiments are designed under different operating 
conditions, with pollutant emission intensities of 200g/s, 150g/s, and 100g/s, and 
river flow velocities of 0.5m/s, 1.0m/s, and 1.5m/s, respectively. Each tracing 
algorithm is executed 100 times under each condition, and the results are presented 
in Figs. 3, 4, and 5.  

Comparing Figs. 3, 4, and 5, it is evident that under different discharge 
intensities and flow velocities, the main-passive fusion tracing method can achieve 
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a success rate of over 80%, with significantly fewer average iterations compared to 
other search algorithms, all within fewer than 100 iterations. 

 

       
(a) Emission intensity of 200g/s        （b） Emission intensity of 150g/s    (c) Emission intensity of 100g/s 

Fig.3. Simulation results of The BAS Algorithm under different conditions. 

     
(a) Emission intensity of 200g/s        （b） Emission intensity of 150g/s    (c) Emission intensity of 100g/s 

Fig.4. Simulation results of The Improved BAS Algorithm under different conditions. 

     
(a) Emission intensity of 200g/s        （b） Emission intensity of 150g/s    (c) Emission intensity of 100g/s 

Fig.5. Simulation results of the passive-active fusion tracing method under different conditions 
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When changes occur in pollutant discharge intensity and river flow velocity, 
noticeable fluctuations are observed in the performance of the BAS Algorithm and 
its improved version. In contrast, the success rate of the main-passive fusion tracing 
method remains largely unchanged, still exceeding 80%, with no significant 
variation in the average iteration count, which remains around 80. This indicates 
that variations in pollutant discharge intensity and river flow velocity have little 
impact on the success rate and iteration count of the main-passive fusion tracing 
method. In comparison to the BAS algorithm and its improved version, it 
demonstrates greater robustness. 

4. Design and implementation of water pollution traceability platform 

4.1. Design and implementation of the mobile traceability platform 
This study introduces a mobile tracing platform based on an unmanned boat. 

The hardware relationships of the mobile tracing platform are depicted in Fig.6.  

 
Fig.6. Relationship diagram of various modules on the mobile traceability platform 

 
Raspberry Pi serves as the onboard computer of the mobile traceability 

platform. It uses the PCF8591 module to convert analog data obtained from water 
quality sensors into digital for data retrieval. The data is transmitted to the water 
quality parameter monitoring platform via the LoRa module. Simultaneously, 
Raspberry Pi invokes the tracing program to issue motion commands to the 
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Pixhawk controller based on water quality data obtained from both the fixed 
monitoring platform and onboard water quality sensors, thereby achieving pollution 
source tracing. The Pixhawk controller, through a data transmission module, sends 
navigation trajectories and data to the Mission Planner ground station. This ground 
station enables the Pixhawk controller to receive instructions for tasks such as 
fixed-point cruising and return voyages. 

Additionally, manual control of the Pixhawk controller is facilitated through 
a handheld remote controller, allowing for alterations in the mobile tracing 
platform's direction and speed. The core components of the mobile traceability 
platform are illustrated in Fig. 7(a): 1. Hull; 2. GPS; 3. Buzzer; 4. Receiver; 5. 
Motor; 6. Propeller; 7. Power bank; 8. Raspberry Pi; 9. Battery; 10. Data 
transmission module; 11. ESC (Electronic Speed Controller); 12. Pixhawk. The 
appearance picture of the mobile tracing platform is presented in Fig. 7(b). 

   
(a) 3D model                              （b）appearance picture 

Fig.7. Installation layout diagram of various modules on the mobile traceability platform 
 

4.2.  Ground management platform design and implementation 
4.2.1 Design of water quality parameter monitoring platform based on Qt 
The upper computer software needs to record data such as water quality 

parameters and time from the mobile traceability platform. In this study, MySQL is 
chosen for data storage. QPushButton (button) controls are used to send 
corresponding instructions, which are parsed and executed upon reception. These 
instructions include opening the serial port, starting, viewing, saving, and clearing 
the water quality monitoring data from the mobile traceability platform. The stored 
water quality parameters are processed in the background and plotted as line graphs, 
allowing for more intuitive observation of water quality changes. 

4.2.2 Debugging of navigation interface based on Mission Planner 
Mission Planner is an open-source ground station software used for 

configuring, controlling, and monitoring Ardupilot unmanned aerial vehicle flight 
control systems on the Windows platform. It provides an intuitive interface that 
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allows navigation commands to be issued to the unmanned boat thought the ground 
station, while real-time navigation data and trajectories can be obtained. 

4. Conclusions 

This paper proposes a fused passive and active tracing method and designs 
a water pollution traceability platform based on a mobile traceability unit and a 
ground management platform, utilizing the advantages of unmanned boats such as 
efficiency, flexibility, and speed to enhance the success rate of pollution source 
tracing by personnel. The main research achievements of this paper include:  
(1) To address the inefficiency of single-tracing algorithms in water pollution 

tracing, a fused passive and active tracing method for basin pollution is 
proposed. The active tracing algorithm serves as the pollution source tracing 
strategy, combined with passive tracing to adjust the search step, avoiding 
failures due to limited diffusion model accuracy and issues like getting trapped 
in local solutions or deviating from pollution belts. A two-dimensional curved 
river concentration field is simulated using Python, validating the feasibility of 
this method. 

(2) Multiple concentration simulation scenarios are generated by altering river flow 
velocity and emission intensity to conduct tracing simulation experiments with 
different algorithms. Success rate and average iteration count are used as 
evaluation metrics to comprehensively compare the performance of three 
algorithms, Improved the BAS algorithm, and fused passive and active tracing 
method. The results indicate that the improved the BAS algorithm outperforms 
the BAS algorithm in algorithm performance but is susceptible to factors such 
as flow velocity and emission intensity. On the other hand, the fused passive and 
active tracing method not only exhibits excellent tracing capability but also 
shows less sensitivity to factors such as river flow velocity and emission 
intensity, demonstrating good robustness. 

(3) A water pollution mobile tracing platform is designed and developed. When 
combined with corresponding tracing algorithms, this platform enables water 
quality monitoring and pollution source tracing. Additionally, a ground 
management platform is developed, enabling real-time monitoring of both water 
quality data and navigation data from the mobile tracing platform. 
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