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ALTERNATING @Q-GROUPS

Ion ARMEANU', Didem OZTURK?

In acest articol studiem structura grupurilor alternate finite §i demonstram
ca dintre ele numai cel trivial este un grup avand caracterele ireductibile cu valori
rationale. De asemenea, demonstrda ca desi grupurile alternate nu sunt Q-grupuri,
totusi concluzia teoremei Brauer-Speiser privitoare la indexul Schur este adevarata.

In this paper we shall study the structure of the finite alternating groups and
we prove that there are no nontrivial alternating groups whose irreducible characters
are rational valued. Also we prove that even the alternating groups are not Q-groups
the conclusion of Brauer-Speiser theorem about the Schur index is still true for this
class of groups.
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1. Introduction

The notations and terminology are standard ( see for example [2] [3] and
[4]). All groups will be finite.

The representation theory of finite groups emerged around the turn of the 19
to 20 century with the work of Frobenius, Schur, and Burnside. While it applied in
principle to any finite group, the symmetric group S,, was a simple but important
special case. Simple because its characters and irreducible representations are
rational (could already be found in the rational field), important because every
finite group could be embedded in some symmetric group.

The alternating group A, is thenormal subgroup of the
even permutations in S, and has group order n!/2 . Forn> 1, the group A4, is
the commutator subgroup of the symmetric group S, with index 2. Even more,
each element of An is itself a commutator. It is the kernel of the signature group
homomorphism sgn : S, — {1, —1}.
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The alternating groups represent a very important class of groups. The
group A, is abelian if and only if » < 3 and simple if and only if n =3 or n > 5 ([6],
p- 295). Asis the smallest non-abelian simple group (having order 60), and the
smallest non-solvable group. A4 is the smallest group demonstrating that the
converse of Lagrange's theorem is not true in general. Given a finite group G and a
divisor d of |G|, there does not necessarily exist a subgroup of G with order d: the
group G = A4, of order 12, has no subgroup of order 6.

The pure rotational subgroup of the icosahedral group is isomorphic to
As.

The full icosahedral group is isomorphic to the direct product As X Z,.

Ay is isomorphic to PSL,(3). Asis isomorphic to PSLy(4).

Definition 1. (see [4]) A Q-group is a group all whose irreducible
characters are rational valued.

Proposition 1. 4 group G is a Q-group if and only if for every x,y € G
with {(x) = (y) thereisa g € G such that gxg=! =y.

Proof. Let € be a primitive n-th root of 1 in C and let E = Q(¢). Let Gal be the
Galois group of E over Q. Given (m, n) = 1, there exists c€Gal with M(x™) = A(x)”
for all x€ G and all irreducible characters A€EIrr(G) . Conversely, for every c€Gal,
there is a m such that this formula holds.

Proposition 2. A group G is a Q-group if and only if for all x € G,
N ((x))/C ({x)); Aut({x)).

Proof. Let f:Ng({x)) —» Aut({x)) defined by f(g) = gxg~!. Then fis
ahomomorphism, Kerf = C;({x)) and f isin. Itis clear that f isontoiff G isa

Q-group.

Remark 1. G is a Q-group iff Aut(K); N;(K)/Cq(K) for all cyclic
subgroups K of G.

Remark 2. The symmetric groups S, are the prototype for the Q-groups
for two resons. First S, are Q-groups, and even more, the irreducible
representations of S, have Q as splitting field. Secondly, by [1] a group G is a
Q-group if and only if it can be embedded without fusion in a S, (or the conjugacy
classes of S, who are in A, do not splitin A,;). The fusion of elements in a finite
group is the source of many deep theorems in finite group theory (see [2]).

Proposition 3. Let G be a Q-group group. Then:
1. If N is a normal subgroup of G, then G/N is a Q-group.
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2.1f G and H are Q-groups then G X H is a Q-group

3. Every non-identity 2-central element of G is an involution.
4. The center of G, Z(G) is an elementary abelian 2-group.
5. If G is abelian then it is an elementary abelian 2-group.

Proof- 1. The irreducible characters of G/H are in fact irreducible
characters for G.

2. The irreducible characters of G X H are products of irreducible
characters of G and H.

3. A 2-central element is a nonidentity element in the center of some Sylow
2-subgroup of G. Let x € G be a 2-central element and set the order o(x) = 2¥m,
where (2,m) = 1. Then there is S a Sylow 2-subgroup of G such that S <
Ce(x) < Ng({x)), hence (2:|Ng({x)): Cz(x)|) = 1. Therefore m = k = 1.

4. The nontrivial elements of Z(G) are central.

5. Follows from 4.

Proposition 4. Let G be a Q-group and G' the derived subgroup. Then:

1. G/G' is an elementary abelian 2-group.

2. 0%(G) = 0%(G").

3. If p is an odd prime and P a Sylow p-subgroup of G, then P < [P, G].

4. G is generated by its 2-elements.

5. Forall S € Syl,(G) we have that C;(S) = Z(S).

6. If G is also solvable and S € Syl,(G) then Ng(S) =S and Ng;(H) =
H for every subgroup Hwith S < H < G.

Proof- 1. Follows from prop.3.5.

2. Observe that |G: G'| = 2™.

3. Let Focg;(P) be the focal subgroup of P in G. Foc;(P) is generated
by the commutators [x;y], x,y € G which liec in P. Let A:G - P/Foc;(P)
stand for the transfer map. Then A is onto and therefore P/Focg;(P) is an abelian
Q-group. Since p is odd, it follows that P = Foc;(P) < PN[P,G] <P and
therefore P < [P, G].

4. Let H be the subgroup of G generated by the 2-elements of G. Then H
isnormal in G and G/H is an ambivalent group of odd order.

5. The elements of C;(S) are 2-central and by prop 3.2. the 2-central
elements are involutions. Because Z(S) is the set of 2-elements of Cg;(S), it
follows that Z(S) isa Sylow 2-subgroup of C;(S). By Burnside Transfer Theorem
( see [2]) Z(S) has a normal complement N in N;(S) and therefore C;(S) =
Z(S)N. Since Z(S) is a Sylow 2-subgroup of C;(S) it follows that (2: |N|) = 1.
Hence N must be trivial.
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6. We prove by induction on the order of G that if S € Syl,(G) and
x € Ng((S)) is an odd order element, then x is non-real in G.

Let N be a minimal nontrivial subgroup of G. Since G is solvable, N is an
elementary abelian p-group, for some prime p. If x € N then the image of x in
G/N is non-real by the induction hypothesis and x is non-real.

If x € N, then we have that [x,5] € SN N = 1. Since C;(x) contains a
Sylow 2-subgroup of G, it follows that the order of Ng;({x))/Cs;(x) is odd. Hence
x is a non-real element.

For the second part let x € N;(H). Then S and xSx~! are Sylow
2-subgroups of H and hence xSx~!=zSz™! for some z € H. Therefore
z 'x € N;(S) =S < H,hence x € H.

2. Alternating groups

Corrollary 1. Let S, and A,=S,( the derived subgroup). Then:

1. O°(5,)= 0(4,)

2. If p is an odd prime and P a Sylow p-subgroup of S,, then P <
[P, Snl-

3. S, is generated by its 2-elements.

4. Forall S € Syl,(S,) we have that C;(S) = Z(S).

Theorem 1. There are no nontrivial alternating Q-groups.

Proof- 1t is well known that the symmetric groups S,, are @ groups. The
alternating groups A,, are normal in S,, hence it contains full conjugacy classes of
S, . Therefore, for an element x € A, to be rational it is necessary that the
conjugacy class of x , cl(x) in S, splits in A,. The lenght of cl(x) is the index
of the centralizer of x in the corresponding group. clearly C, (x) =
Cs,(x)N A, . Because |[S,:A,|=2, then either (4 (x) =Cs (x) or
|C5n(x):CAn(x)| =2 . Hence the S, conjugacy class of x splits in A, iff
Ca,, (x) = G, (x).

Let's prove now that C,_(x) = Cs (x) if and only if the type of x (see [2])
, T(x) = (tq,...,t5) has t; odd and pairwise different.

Suppose Cy (x) = Cs, (x) . Because x commutes with its cyclic factors,
then x cannot have cyclic factors of even lenght. If x has two cyclic factors
(i1,..., i) and (jq,...,jx) of the same lenght, then (iyj,)....(ixjx) belong to
Cs, (x) butisnotin A,.

Suppose now that T(x) = (t;,...,ts) with t; odd and pairwise different.
Then |Csn| =[I ¢; is odd, therefore C, (x) = Cs, (x).
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Let x = (12...k)...(j...n) product of odd lengths disjoint cycles. Then
z=(2k)(3(k —1))...(j + 1n)... inverts x. Clearly, z € A, if and only if the
number of cyclic factors of x having lenght congruent to 3mod4 is odd. Suppose
z & A, and that there is a t & A,, inverting x. Then (t™z)x(t™'z)"! = x and
t~lz & A,, hence C a,(x) # Cs (x), contradiction. We study now the existence of
such conjugacy classes.

Let n=4m+1, m=>=2 we have the partition (4m —3,3,1). For
n=4m+ 2, m = 4 the partition (4(m — 1) — 3,5,3,1). Therefore no alternating
group A, with sucha n can be rational.

Hence the only possible n are 5,6,10,14.

For As; the partition (5) has odd and different elements. For x =
(12345),

Aut(< x >) = Z,, and by prop. 2 Ag is not rational.

For A4 we have the partition (5,1) and as before Ag is not rational.

For A, we have the partition (13,1) and as before the element (1....13)
is not rational.

For A, the only partitions with odd and different elements are (7,3) and
(9,1) and as before the element (1....9) is not rational.

We verified this by computing the character table for these groups using
GAP ([5)).
For A5 of order 60 the character table is

XI111111
X23-1.A*A
X33-1.*AA
X44.1-1-1
X551-1..

where A = —E(5) — E(5)* = (1 — ER(5))/2 is real but not rational. The
other characters are rational valued.

For Ag of order 360 the character table is

X11111111

X2512-1-1..

X351-12-1..

X48.-1-1.A*A

X58.-1-1.*AA

X691..1-1-1

X710-211...

where A = —E(5) — E(5)* is real but not rational.

For A of order 1814400 the character table is
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XIi1r1i1r1r1r11r1r11r11111
X2951623-1.3-1.14.1-11-12-1
X33511314222-133.-151-1.....
X4368-415-13-1.2-2-1.6-2.1-1111
X54262..33-3.4.2-31.2-1-1..
X675153153..31-31-1...... 21
X.784.-421-3333-221.4.1-1-1-1..
X890142623-1..4.2-5-11.-11-1-1
X9126-1462116-2.4.-1-21111....
X.1016016.34-2-2-2-2....51-1...-1-1
X.112106-6-213..3-4.-1251-1.....

X.12224-16.14222-1....-1-1-1-1....
X.13224-16.14222-1....-1-1-1-1....
X.142255915-1-62.-13-11...... 11
X.1525284-21-13-1.-221.2-2-121-1..
X.1628816.-6-26-2..... 71-1-2..11
X.17300.4-15-33332-2-1..... 11-1-1

X.1831519-5211-31.-1-1-1-1-5-11.1-1..
X.19350-10-235-1-1-1-1-2-212....11..
X20384..-24...-3....4.1-1..-1A
X21384..-24...-3....4.1-1..-1*A
X.22450102-151-31.-2-21-2....-112-1

X.23525-155..-3-333-1.1....-1-1..
X.24567-9-9..... 33.-1-31.2....
where A=EQL?*+EQCDE+EQRD0+EQRD1 +

EQ1D'3+ E(21)19 = (1 — ER(21))/2 is real but not rational. The other

characters are rational valued.

Aq4 of order 43589145600 has 72 irreducible characters and the non

rational numbers

A=-2xE()+E(5)*+E(5)3—-2*E(5)*
B =E(33)°+ E(33)” + E(33)'0 + E(33)'3 + E(33)14
+ E(33)19 + E(33)%0 + E(33)?3 + E(33)%6
+ E(33)28

C = —E(13) — E(13)3 — E(13)* — E(13)° — E(13)'0 — E(13)2

appear as values.
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Definition 2. Let G be a finite group, K is a splitting field for G, and y a
character of an irreducible linear representation R of G over K. Suppose k is the
subfield of K generated by the character values x(g),g € G . The Schur index of
x isdefined as the smallest positive integer m=m(y ) such that there exists a field
extension L of k of degree m, [L:k]=m, such that the representation R can be
realized over L ( i.e., we can change basis such that all the matrix entries are from
L).

Theorem 2. Let S, and S,'=A,. Then my(u) = m(u) < 2 for all
uwelrr(4,) .

Proof. Let u € Irr(Ay).

If u is real valued, then mgy(u) = m(u) < 2 by Brauer-Speiser theorem
(see [3]).

Suppose now that p is not a real valued irreducible character. Because S,
is a Q-group, there is a S;-conjugate of u which is the complex conjugate of p, that
is u9 =pu' fore some g €S, . Since g? € A,, g* stabilizes u. Let H =
(S, g). Clearly, v = u!! is a real valued irreducible character of H. Denote by
Vi1, V3, ..., Vg all the distinct algebraic conjugates of v over Q. By Brauer-Speiser
theorem we have that T = 2(v; + v,+...+vy) is rational valued and my(7) = 1,
that is 7 is the character of a rational representation of H. In 7, the character u
occurs twice, hence mq(u) = m(u) < 2.

3. Conclusions

The symmetric groups are Q-groups, and even more, Q is a splitting field for these
groups. The alternating groups are very close to the symmetric groups as normal
subgroups of index 2. Theorem 1 says that even so, the characters and the
representations of the alternating groups do not have similar properties with those
of the symmetric groups.

This theorem, via [1], says also that the alternating groups can not be embedded
without fusion in a symmetric group.

Theorem 2 recover the conclusions of Brauer-Speiser theorem for the alternating
groups. An interesting step will be to prove that for the alternating groups they are
irreducible characters with Schur index 2.
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