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ON BIFLATNESS AND ϕ-BIFLATNESS OF SOME BANACH ALGEBRAS

A. Sahami1

In this paper we continue our work in [20]. For a Banach algebra A with a

character ϕ ∈ ∆(A), we discuss the relation of ϕ-biflatness and left ϕ-amenability. We
show that if a Segal algebra S(G) (S(G)∗∗) is ϕ-biflat, then G is an amenable group.
Also we show that ϕ-biflatness of a symmetric Segal algebra S(G) is equivalent with
amenability of G. We give the notion of bounded character biflat Banach algebras and

study its character spaces. We show that for a non-empty totally ordered set I with a
smallest element, upper triangular I× I-matrix algebra, say UPI(A) is biflat if and only
if A is biflat and I is singleton, provided that ∆(A) is non-empty and A has a right
identity. Also we give a class of non biflat Banach algebras.
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1. Introduction and Preliminaries

A Banach algebra A is amenable if for every bounded derivation D : A → X∗ there
exists an element x0 in X∗ such that

D(a) = a · x0 − x0 · a (a ∈ A),

for every Banach A−bimodule X, see [12]. A. Ya. Helemskii studied Banach algebras
through its homological properties. He introduced the concepts of biflat and biprojective
Banach algebras. Indeed, a Banach algebra A is called biflat(biprojective), if there exists a
bounded A-bimodule morphism ρ : A→ (A⊗pA)

∗∗(ρ : A→ A⊗pA) such that π∗∗
A ◦ρ (πA◦ρ)

is the canonical embedding of A into A∗∗(is the identity map on A), respectively, where
πA : A ⊗p A → A is denoted for product morphism given by πA(a ⊗ b) = ab (a, b ∈ A).
In fact a Banach algebra A with a bounded approximate identity is biflat if and only if
A is amenable. Using this fact he showed that for a locally compact group G, L1(G) is
biflat(biprojective) if and only if G is an amenable (compact) group, respectively, see [7].

Recently a new notion of the amenability of Banach algebras related to its character
space has been introduced. Suppose that A is a Banach algebra and ϕ ∈ ∆(A). A is called
left ϕ-amenable, if for each continuous derivation D : A → X∗ there exists x0 in X∗ such
that

D(a) = a · x0 − ϕ(a)x0 (a ∈ A),

for every Banach A−bimodule X with a left action a · x = ϕ(a)x which a ∈ A and x ∈ X.
Alaghmandan et. al. in [2] showed that a Segal algebra S(G) is left ϕ−amenable if and only
if G is an amenable group. For more information about left ϕ−amenability see [13], [10],
[15] and [16].

Motivated by these considerations, author with A. Pourabbas introduced some gener-
alizations of Helemskii’s concepts like ϕ-biflatness and ϕ-biprojectivity, where ϕ is a multi-
plicative linear functional on A. Indeed a Banach algebra A is called ϕ-biflat (ϕ-biprojective)
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if there exists a bounded A-bimodule morphism ρ : A → (A⊗p A)
∗∗(ρ : A → A⊗p A) such

that

ϕ̃ ◦ π∗∗
A ◦ ρ(a) = ϕ(a) (ϕ ◦ πA ◦ ρ(a) = ϕ(a)) (a ∈ A),

respectively. We showed for a locally compact group G, L1(G) is ϕ-biflat if and only if G
is amenable. We also showed that for every locally compact group G, the Fourier algebra
A(G) is ϕ-biprojective if and only if G is discrete, see [20].

In this paper we give criterions to study the relation of left ϕ-amenability and ϕ-
biflatness. We show that a symmetric Segal algebra S(G) is ϕ-biflat if and only if G is
amenable. We study ϕ-biflatness of A∗∗ and we show that if S(G)∗∗ is biflat, then G is an
amenable group. We introduce the new class of character biflat Banach algebras and study
its maximal ideal space. Finally we investigate Helemskii-notion of biflatness for a class of
matrix algebras using ϕ-biflatness and left ϕ−amenability and we give a class of non-biflat
Banach algebras.

We remark some standard notations and definitions that we shall need in this paper.
Let A be a Banach algebra. If X is a Banach A-bimodule, then X∗ is also a Banach
A-bimodule via the following actions

(a · f)(x) = f(x · a), (f · a)(x) = f(a · x) (a ∈ A, x ∈ X, f ∈ X∗).

Throughout, the character space of A is denoted by ∆(A), that is, all non-zero multi-

plicative linear functionals on A. Let ϕ ∈ ∆(A). Then ϕ has a unique extension ϕ̃ ∈ ∆(A∗∗)

which is defined by ϕ̃(F ) = F (ϕ) for every F ∈ A∗∗.
Let A be a Banach algebra. The projective tensor product A ⊗p A is a Banach

A-bimodule via the following actions

a · (b⊗ c) = ab⊗ c, (b⊗ c) · a = b⊗ ca (a, b, c ∈ A).

2. General results about ϕ-biflatness of Banach algebras

A Banach algebra A is left(right) ϕ-amenable if and only if there exists an element

m ∈ A∗∗ such that am = ϕ(a)m (ma = ϕ(a)m) and ϕ̃(m) = 1 for every a ∈ A, respectively,
see [13, Theorem 1.1]. At the following Theorem we study the relation of ϕ-biflatness and
left (right) ϕ-amenability.

Theorem 2.1. Let A be a Banach algebra with a left(right) approximate identity and let
ϕ ∈ ∆(A). If A is ϕ-biflat, then A is left(right) ϕ-amenable, respectively.

Proof. Let A be a ϕ-biflat Banach algebra. Then there exists a bounded A-bimodule mor-
phism ρ : A → (A ⊗p A)

∗∗ such that ϕ̃ ◦ π∗∗
A ◦ ρ(a) = ϕ(a) for every a ∈ A. Put L = kerϕ.

Set g = (idA ⊗ϕ)∗∗ ◦ (idA ⊗ q)∗∗ ◦ ρ : A→ (A⊗p C)∗∗, where q : A→ A
L is the quotient map

and ϕ : A
L → C is a character defined by ϕ(a+ L) = ϕ(a) for every a ∈ A. We see that g is

a bounded left A-module morphism. We show that g(l) = 0 for every l ∈ L. Since A has a
left approximate identity, AL = L. Then for each l ∈ L there exist sequences (an) ⊆ A and
(ln) ⊆ L such that anln → l. For b ∈ L, define a map Rb : A → L by Rb(a) = ab for every
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a ∈ A. Since q ◦Rln = 0, we have

g(l) = (idA ⊗ ϕ)∗∗ ◦ (idA ⊗ q)∗∗(ρ(l))

= lim
n
(idA ⊗ ϕ)∗∗ ◦ (idA ⊗ q)∗∗(ρ(anln))

= lim
n
(idA ⊗ ϕ)∗∗ ◦ (idA ⊗ q)∗∗(ρ(an) · ln)

= lim
n
(idA ⊗ ϕ)∗∗ ◦ (idA ⊗ q)∗∗ ◦ (idA ⊗Rln)

∗∗(ρ(an))

= lim
n
((idA ⊗ ϕ) ◦ (idA ⊗ q) ◦ (idA ⊗Rln))

∗∗(ρ(an))

= lim
n
((idA ⊗ ϕ) ◦ (idA ⊗ (q ◦Rln))

∗∗(ρ(an)) = 0.

Therefore g induces a map g : A
L → (A ⊗p C)∗∗ which is defined by g(a + L) = g(a) for all

a ∈ A. It is easy to see that g is a bounded left A-module morphism. Pick a0 in A such that
ϕ(a0) = 1. We denote λ : A⊗pC → A for a map which is specified by λ(a⊗z) = az for every

a ∈ A and z ∈ C. Set m = λ∗∗ ◦ g(a0 +L) ∈ A∗∗, we claim that am = ϕ(a)m and ϕ̃(m) = 1
for every a ∈ A. Since λ∗∗ is a left A-module morphism and also since aa0+L = ϕ(a)a0+L,
we have

am = aλ∗∗ ◦ g(a0 + L) = λ∗∗ ◦ g(aa0 + L) = λ∗∗ ◦ g(ϕ(a)a0 + L)

= ϕ(a)λ∗∗ ◦ g(a0 + L)

= ϕ(a)m

(1)

for every a ∈ A. Since ρ(a0) ∈ (A ⊗p A)
∗∗, by Goldestine’s theorem there exists a net (aα)

in A⊗p A such that aα
w∗

−−→ ρ(a0). So

ϕ̃(m) = m(ϕ) = [λ∗∗ ◦ g(a0 + L)](ϕ)

= [λ∗∗ ◦ g(a0)](ϕ)
= [λ∗∗ ◦ (idA ⊗ ϕ)∗∗ ◦ (idA ⊗ q)∗∗(ρ(a0))](ϕ)

= [(λ ◦ (idA ⊗ ϕ) ◦ (idA ⊗ q))∗∗(ρ(a0))](ϕ)

= [w∗ − lim(λ ◦ (idA ⊗ ϕ) ◦ (idA ⊗ q))∗∗(aα))](ϕ)

= lim(λ ◦ (idA ⊗ ϕ) ◦ (idA ⊗ q))∗∗(aα)(ϕ)

= lim(λ ◦ (idA ⊗ ϕ) ◦ (idA ⊗ q)(aα)(ϕ)

= limϕ ◦ λ ◦ (idA ⊗ ϕ) ◦ (idA ⊗ q)(aα)

= limϕ ◦ πA(aα).

(2)

On the other hand since aα
w∗

−−→ ρ(a0), the w
∗-continuity of π∗∗

A implies that

πA(aα) = π∗∗
A (aα)

w∗

−−→ π∗∗
A (ρ(a0)).

Thus

ϕ(πA(aα)) = πA(aα)(ϕ) = π∗∗
A (aα)(ϕ) → π∗∗

A (ρ(a0))(ϕ) = ϕ̃ ◦ π∗∗
A (aα) = 1. (3)

We see that from (2) and (3), ϕ̃(m) = 1. Combine this result with (1) implies that A is left
ϕ-amenable. Right case is similar to the left one. �

Example 2.1. Let A be a Banach algebra with dim(A) > 1 such that ab = ϕ(b)a for every
a, b ∈ A, where ϕ ∈ ∆(A). Suppose conversely that A has a left approximate identity, say
(eα)α. Suppose that a0 is an element in A such that ϕ(a0) = 1. We claim that lim eα = a0.
To see this

a0 = lim eαa0 = limϕ(a0)eα = lim eα.
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It follows that a0 is a left unit of A. Suppose that a is an arbitrary element of A. Then
a = a0a = ϕ(a)a0, for every a ∈ A. It means that dimA = 1 which is a contradiction.

We claim that A is ϕ-biflat. To see this let a0 be an element in A such that ϕ(a0) = 1.
Define ρ : A → (A ⊗p A)

∗∗ by ρ(a) = a ⊗ a0 for each a ∈ A. One can easily see that ρ

is a bounded A-bimodule morphism and ϕ̃ ◦ π∗∗
A ◦ ρ(a) = ϕ(a) for each a ∈ A. Hence A is

ϕ-biflat.
We claim that A is not left ϕ-amenable. Suppose conversely that A is left ϕ-amenable.

Then by [13, Theorem 1.4] there exists a net (aα) in A such that

aaα − ϕ(a)aα → 0 ϕ(aα) = 1, (a ∈ A). (4)

Suppose that a0 is an element in A such that ϕ(a0) = 1. Put a0 in equation (4) one can see
that lim aα = a0. Using (4) again follows that a = ϕ(a)a0 for every a ∈ A. It implies that
dimA = 1 which is a contradiction.

Theorem 2.2. Let A be a Banach algebra with a left approximate identity. If A∗∗ is ϕ̃-biflat
then A is left ϕ-amenable.

Proof. The proof is similar to the proof of Theorem 2.1 which for the sake of completeness
we give it here. Suppose that A∗∗ is ϕ̃-biflat. Then there exists a A∗∗-bimodule morphism

ρ : A∗∗ → (A∗∗ ⊗p A
∗∗)∗∗ such that

˜̃
ϕ ◦ π∗∗

A∗∗ ◦ ρ(a) = ϕ̃(a) a ∈ A∗∗. By restricting ρ
on A, we can assume that ρ : A → (A∗∗ ⊗p A

∗∗)∗∗. There exists a bounded linear map
ψ : A∗∗⊗pA

∗∗ → (A⊗pA)
∗∗ such that for a, b ∈ A and m ∈ A∗∗⊗pA

∗∗, the following holds;

(i) ψ(a⊗ b) = a⊗ b,
(ii) ψ(m) · a = ψ(m · a), a · ψ(m) = ψ(a ·m),
(iii) π∗∗

A (ψ(m)) = πA∗∗(m),

see [8, Lemma 1.7]. Define

g = λ∗∗∗∗ ◦ (idA ⊗ ϕ)∗∗∗∗ ◦ (idA ⊗ q)∗∗∗∗ ◦ ψ∗∗ ◦ ρ : A→ A∗∗∗∗,

where idA, q, λ and ϕ̃ are same as in the proof of Theorem 2.1. It is easy to see that g is
a left A-module morphism and the restriction of g on L = kerϕ is 0. Thus g induces a left
A-module morphism g : A

L → A∗∗∗∗. Pick a0 ∈ A such that ϕ(0) = 1. Set m = g(a0 + L).

It is easy to see that
˜̃
ϕ(m) = 1 and am = ϕ(a)m for every a ∈ A. Suppose that ϵ > 0 and

F = {a1, ..., ar} ⊆ A∗∗. Set

V ={(a1n− ϕ(a1)n, ..., arn− ϕ(ar)n,
˜̃
ϕ(n)− 1)|n ∈ A∗∗, ||n|| ≤ ||m||}

⊆ (
r∏

i=1

A∗∗)⊕1 C.

By Goldestine’s theorem there exists a net (nα) in A
∗∗ such that nα

w∗

−−→ m and ||nα|| ≤ ||m||.
Thus (0, 0, ..., 0) is a w∗-limit point of V . On the other hand since V is a convex set, the
weak topology and the norm topology are coincide on V . So (0, 0, ..., 0) is a || · ||-limit point
of V. Therefore there exists an element n(F,ϵ) in A

∗∗ which satisfies

||ain(F,ϵ) − ϕ(ai)n(F,ϵ)|| < ϵ, | ˜̃ϕ(n(F,ϵ))− 1| < ϵ (5)

for every i ∈ {1, 2, . . . , r}. Observe that

∆ = {(F, ϵ) : F is a finite subset of A, ϵ > 0},

with the following order

(F, ϵ) ≤ (F ′, ϵ′) =⇒ F ⊆ F ′, ϵ ≥ ϵ′
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is a directed set. Equation 5 follows that there exists a net bounded net (n(F,ϵ))(F,ϵ)∈∆ in
A∗∗ such that

an(F,ϵ) − ϕ(a)n(F,ϵ) → 0, ϕ̃(n(F,ϵ)) → 1

for every a ∈ A. By Alauglu’s theorem suppose that n = w∗ − limn(F,ϵ) ∈ A∗∗. It is easy to

see that an = ϕ(a)n and ϕ̃(n) = 1, for every a ∈ A. It means that A is left ϕ-amenable. �
Suppose that A is a Banach algebra and ϕ ∈ ∆(A). A is called (approximately)

ϕ-inner amenable, if there exists a bounded (not necessarily bounded) net (aα)α in A such
that aaα − aαa → 0 and ϕ(aα) → 1, for every a ∈ A, respectively. For more information
about ϕ-inner amenability see [11].

Corollary 2.1. Let A be a Banach algebra with an approximate identity and ϕ ∈ ∆(A). If
A is ϕ-biflat then A is ϕ-inner amenable.

Proof. Since A is ϕ-biflat with an approximate identity, Theorem 2.1 implies that A is left
and right ϕ-amenable. Thus there exist bounded nets (mα)α∈I and (nβ)β∈J in A such that

amα − ϕ(a)mα → 0, nβa− ϕ(a)nβ → 0, ϕ(mα) = ϕ(nβ) = 1, (a ∈ A).

Define aβα = mαnβ , it is easy to see that

aaβα − aβαa→ 0, ϕ(aβα) = 1, (a ∈ A).

Since (aβα)α∈I,β∈J is a bounded net, A is ϕ-inner amenable. �
Remark 2.1. For the previous Corollary, the existence of an approximate identity is neces-
sary which we can not remove it. To see this let A be the Banach algebra as in Example 2.1.
We showed that A is ϕ-biflat, for some ϕ ∈ ∆(A). Using the similar method which we used
in Example 2.1, one can show that A has an approximate identity if and only if dimA = 1
and also A is ϕ-inner amenable if and only if dimA = 1. So if dimA > 1, then A is ϕ-biflat
but A does’nt have an approximate identity and A is not ϕ-inner amenable.

We recall that a Banach algebra is approximately left(right) ϕ-amenable if there exists
a not necessarily bounded net (mα)α in A such that

amα − ϕ(a)mα → 0, (mαa− ϕ(a)mα → 0), ϕ(mα) → 1,

and for each a ∈ A, respectively. For more details see [1].

Proposition 2.1. Let A be a Banach algebra and ϕ ∈ ∆(A). Suppose that A is a ϕ-biflat
Banach algebra which is approximately ϕ-inner amenable. Then A is approximately left and
right ϕ-amenable.

Proof. Since A is ϕ-biflat, there exists a bounded A-bimodule morphism ρ : A→ (A⊗pA)
∗∗

such that ϕ̃ ◦ π∗∗
A ◦ ρ(a) = ϕ(a) for each a ∈ A. Suppose that (aα)α∈I is a net in A which

satisfies aaα−aαa→ 0 and ϕ(aα) → 1 for each a ∈ A. Set nα = ρ(eα). Since ρ is a bounded
A-bimodule morphism, we have

a · nα − nα · a = a · ρ(eα)− ρ(eα) · a = ρ(aaα − aαa) → 0 (a ∈ A)

and
ϕ̃ ◦ π∗∗

A (nα) = ϕ̃ ◦ π∗∗
A ◦ ρ(eα) = ϕ(aα) → 1.

Let F and Γ be finite subsets of A and (A ⊗p A)
∗, respectively and also let ϵ > 0 be an

arbitrary element. Take an element α(Γ, F, ϵ) in I such that

||a · nα − nα · a|| ≤ ϵ

3K
and |ϕ̃ ◦ π∗∗

A (nα)− 1| < ϵ

2
(a ∈ F, α ≥ α(Γ, F, ϵ)),

whereK = max{||f |||f ∈ Γ}. Since A is w∗-dense in A∗∗, there exists a net (m
α(Γ,F,ϵ)
β )β∈J in

A⊗pA such that m
α(Γ,F,ϵ)
β

w∗

−−→ nα(Γ,F,ϵ). Therefore a ·m
α(Γ,F,ϵ)
β

w∗

−−→ a ·nα(Γ,F,ϵ), m
α(Γ,F,ϵ)
β ·



116 A. Sahami

a
w∗

−−→ nα(Γ,F,ϵ) · a for each a ∈ F. Since π∗∗
A is a w∗-continuous map, πA(m

α(Γ,F,ϵ)
β )

w∗

−−→
π∗∗
A (nα(Γ,F,ϵ)). Thus for each a ∈ F and f ∈ Γ, there exists β(Γ, F, ϵ) in J such that for

every β ≥ β(Γ, F, ϵ) we have

|a ·mα(Γ,F,ϵ)
β (f)− a · nα(Γ,F,ϵ)(f)| ≤

ϵ

3
, |mα(Γ,F,ϵ)

β · a(f)− a · nα(Γ,F,ϵ)(f)| ≤
ϵ

3
,

and also

|ϕ ◦ πA(mα(Γ,F,ϵ)
β )− ϕ̃ ◦ π∗∗

A (nα(Γ,F,ϵ))| <
ϵ

3
.

It follows that

|a ·mα(Γ,F,ϵ)
β (f)−m

α(Γ,F,ϵ)
β · a(f)| =

|a ·mα(Γ,F,ϵ)
β (f)− a · nα(Γ,F,ϵ)(f) + a · nα(Γ,F,ϵ)(f)− nα(Γ,F,ϵ) · a(f)

+ nα(Γ,F,ϵ) · a(f)−m
α(Γ,F,ϵ)
β · a(f)|

≤ |a ·mα(Γ,F,ϵ)
β (f)− a · nα(Γ,F,ϵ)(f)|+ ||a · nα(Γ,F,ϵ) − nα(Γ,F,ϵ) · a||||f ||

+ |nα(Γ,F,ϵ) · a(f)−m
α(Γ,F,ϵ)
β · a(f)| < ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ.

(6)

Also

|ϕ ◦ πA(mα(Γ,F,ϵ)
β )− 1| = |ϕ ◦ πA(mα(Γ,F,ϵ)

β )− ϕ̃ ◦ π∗∗
A nα(Γ,F,ϵ) + ϕ̃ ◦ π∗∗

A nα(Γ,F,ϵ) − 1| < ϵ.

Set m(Γ,F,ϵ) = m
α(Γ,F,ϵ)
β(Γ,F,ϵ)

. Using the partial order

(Γ, F, ϵ) ≤ (Γ
′
, F

′
, ϵ

′
) ⇔ Γ ⊆ Γ

′
, F ⊆ F

′
, ϵ ≥ ϵ

′

one can show that {(Γ, F, ϵ)} is a directed set, where Γ and F are finite subsets of (A⊗pA)
∗

and A, respectively and also ϵ > 0. So for the net (m(Γ,F,ϵ))(Γ,F,ϵ), we have

a ·m(Γ,F,ϵ) −m(Γ,F,ϵ) · a
w∗

−−→ 0, (a ∈ A)

and

ϕ ◦ πA(m(Γ,F,ϵ)) → 1.

Using Mazur’s Lemma we can assume that

a ·m(Γ,F,ϵ) −m(Γ,F,ϵ) · a
||·||−−→ 0, (a ∈ A).

Suppose that L : A⊗p A→ A is a map given by L(a⊗ b) = ϕ(b)a (a, b ∈ A). Clearly L is
a bounded linear map which satisfies

aL(x) = L(a · x), L(x · a) = ϕ(a)L(x), ϕ(L(x)) = ϕ ◦ πA(x),

for every a ∈ A, x ∈ A⊗p A. It follows that

||aL(m(Γ,F,ϵ))− ϕ(a)L(m(Γ,F,ϵ)|| ≤ ||L(a ·m(Γ,F,ϵ) −m(Γ,F,ϵ) · a)|| → 0 (a ∈ A)

and

ϕ(L(m(Γ,F,ϵ))) = ϕ ◦ πA(m(Γ,F,ϵ)) → 1.

It means that A is approximately left ϕ-amenable. Similarly we can show that A is approx-
imately right ϕ-amenable. �
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3. Application to Segal algebras

Throughout this section G is a locally compact group. A linear subspace S(G) of
L1(G) is said to be a Segal algebra on G if it satisfies the following conditions

(i) S(G) is dense in L1(G),
(ii) S(G) with a norm || · ||S(G) is a Banach space and ||f ||L1(G) ≤ ||f ||S(G) for every

f ∈ S(G),
(iii) for f ∈ S(G) and y ∈ G, we have Ly(f) ∈ S(G) the map y 7→ Ly(f) from G into S(G)

is continuous, where Ly(f)(x) = f(y−1x),
(iv) ||Ly(f)||S(G) = ||f ||S(G) for every f ∈ S(G) and y ∈ G.

It is well-known that S(G) always has a left approximate identity. A Segal algebra S(G) is
called symmetric, if for every f ∈ S(G) and y ∈ G, Ry(f) ∈ S(G) and the map y 7→ Ry(f) is
continuous. Also ||Ry(f)||S = ||f ||S , for f ∈ S(G) and y ∈ G. We remind that a symmetric
Segal algebra is an ideal of L1(G), for more information see [18].

For a Segal algebra S(G) it has been shown that

∆(S(G)) = {ϕ|S(G)
|ϕ ∈ ∆(L1(G))},

see [2, Lemma 2.2]. They showed for a locally compact group G, S(G) is left ϕ-amenable
if and only if G is amenable [2, Corollary 3.4]. We will show that for a symmetric Segal
algebra S(G), ϕ-biflatness is equivalent with amenability of G.

Corollary 3.1. If S(G) is ϕ-biflat. Then G is amenable

Proof. Since every Segal algebra has a left approximate identity, by the Theorem 2.1, S(G)
is left ϕ-amenable. Then [2, Corollary 3.4] implies that G is amenable. �

We show that the converse of Corollary 3.1 is valid for symmetric Segal algebras.

Proposition 3.1. Let G be a locally compact group, and S(G) be a symmetric Segal algebra
on G. Then for every ϕ ∈ ∆(S(G)) the followings are equivalent

(i) G is amenable,
(ii) S(G) is ϕ-biflat,
(iii) S(G) is left ϕ-amenable.

Proof. (i)⇒(ii) Let G be an amenable group. Then L1(G) is amenable. So there exists a
bounded net (mα) in L

1(G)⊗p L
1(G) such that a ·mα −mα · a→ 0 and πL1(G)(mα)a→ a

for every a ∈ L1(G). It is easy to see that ϕ ◦ πL1(G)(mα) → 1 for every ϕ ∈ ∆(L1(G)). Fix

ϕ ∈ ∆(L1(G)). Define a map R : L1(G) ⊗p L
1(G) → L1(G) by R(a ⊗ b) = ϕ(b)a and set

L : L1(G) ⊗p L
1(G) → L1(G) for a map which is specified by L(a ⊗ b) = ϕ(a)b for every

a, b ∈ L1(G). It is easy to see that L and R are bounded linear maps which satisfy

L(m · a) = L(m) ∗ a, L(a ·m) = ϕ(a)L(m) (a ∈ L1(G),m ∈ L1(G)⊗p L
1(G))

and

R(a ·m) = a ∗R(m) R(m · a) = ϕ(a)R(m) (a ∈ L1(G),m ∈ L1(G)⊗p L
1(G)).

Thus

L(mα) ∗ a− ϕ(a)L(mα) = L(mα · a− a ·mα) → 0,

similarly we have a ∗R(mα)− ϕ(a)R(mα) → 0 for every a ∈ L1(G). Since

ϕ ◦ L = ϕ ◦R = ϕ ◦ πL1(G),

it is easy to see that

ϕ ◦ L(mα) = ϕ ◦R(mα) = ϕ ◦ πL1(G)(mα) → 1.
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Pick an element i0 in S(G) such that ϕ(i0) = 1. Set nα = R(mα)i0 ⊗ i0L(mα) for every α.
Since L(mα) and R(mα) are bounded nets in L1(G) and since S(G) is an ideal of L1(G),
we see that (nα) is a bounded net in S(G)⊗p S(G). Also

||a · nα − nα · a||S⊗pS = ||a · nα − ϕ(a)nα + ϕ(a)nα − nα · a||S⊗pS

= ||a · nα − ϕ(a)nα||S⊗pS + ||ϕ(a)nα − nα · a||S⊗pS → 0,
(7)

for each a ∈ S(G). Also we have

ϕ ◦ πS(G)(nα) = ϕ(R(mα) ∗ i20 ∗ L(mα)) = ϕ(R(mα))ϕ(L(mα)) → 1. (8)

Let N be a w∗-cluster point of (nα) in (S(G)⊗p S(G))
∗∗. Combining (7) and (8) with the

facts

a · nα
w∗

−−→ a ·N, nα · a w∗

−−→ N · a, π∗∗
S(G)(nα)

w∗

−−→ π∗∗
S(G)(N) (a ∈ (S(G))

we have

a ·N = N · a, ϕ̃ ◦ π∗∗
S(G)(N) = 1 (a ∈ (S(G))).

Define a map ρ : S(G) → (S(G)⊗pS(G))
∗∗ by ρ(a) = a·N for every a ∈ S(G). It is easy to see

that ρ is a bounded S(G)-bimodule morphism and ϕ̃◦π∗∗
S(G) ◦ρ(a) = ϕ̃◦π∗∗

S(G)(a ·N) = ϕ(a),

so S(G) is ϕ-biflat.
(ii)⇒(i) is clear by Corollary 3.1.
(iii)⇔(i) is clear by [2, Corollary 3.4]. �

Corollary 3.2. If S(G)∗∗ is ϕ̃-biflat then G is amenable.

Proof. Since S(G) has a left approximate identity, by Theorem 2.2 ϕ̃-biflatness of S(G)∗∗

implies that S(G) is left ϕ-amenable. Hence by [2, Corollary 3.4]G is an amenable group. �

Remark 3.1. The converse of previous Corollary is also true, whenever G is compact
group. To see this, let Ĝ be the dual group of G which consists of all non-zero continuous
homomorphism ρ : G → T. Since G is compact, Ĝ ⊆ L∞(G) ⊆ L1(G). It is well-known

that every character ϕ ∈ ∆(L1(G)) has the form ϕρ(f) =
∫
G
ρ(x)f(x)dx, where dx is the

normalized Haar measure and ρ ∈ Ĝ, for more details see [9, Theorem 23.7]. Clearly we
have

ρ ∗ f = f ∗ ρ = ϕρ(f)ρ, ϕρ(f)(ρ) = 1 (f ∈ L1(G)).

Note that by [2, Lemma 2.2], ∆(S(G)) is same as ∆(L1(G)). Now pick f0 ∈ S(G) which
ϕρ(f0) = 1. Since ρ ∗ f0 = f0 ∗ ρ = ϕρ(f0)ρ = ρ, we have ρ ∈ S(G). On the other hand
since ρ ∈ S(G), two maps F 7→ Fρ and F 7→ ρF are w∗-continuous on S(G)∗∗, we have

Fρ = ρF = ϕ̃ρ(F )ρ for all F ∈ S(G)∗∗. Hence the map K : S(G)∗∗ → (S(G)∗∗ ⊗ S(G)∗∗)∗∗

defined by K(F ) = F · ρ⊗ ρ is a bounded S(G)∗∗-bimodule morphism which satisfies

˜̃
ϕρ ◦ π∗∗

S(G)∗∗ ◦K(F ) = ϕ̃ρ(F ) (F ∈ S(G)∗∗).

It follows that S(G)∗∗ is ϕ̃ρ-biflat.

4. Bounded character biflat Banach algebras

Definition 4.1. Let A be a Banach algebra. A is called character biflat if for each ϕ ∈ ∆(A)
there exists a bounded A-bimodule morphism ρϕ : A→ (A⊗p A)

∗∗ such that

ϕ̃ ◦ π∗∗
A ◦ ρϕ(a) = ϕ(a) (a ∈ A).

A is called bounded character biflat if A is character biflat and there exists C > 0 such that
||ρϕ|| < C, for all ϕ ∈ ∆(A).
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It is easy to see that every biflat Banach algebra is bounded character biflat but the
converse is not always true. At the following example we give a bounded character biflat
Banach algebra which is not biflat.

Example 4.1. Consider the semigroup N∧, with the semigroup operationm∧n = min{m,n},
where m and n are in N. ∆(ℓ1(N∧)) consists of the all functions ϕn : ℓ1(N∧) → C
defined by ϕn(

∑∞
i=1 αiδi) =

∑∞
i=n αi for every n ∈ N, where δi is point mass at {i}.

See [3] for more details about the semigroup algebra ℓ1(N∧). Author with A. Pourab-
bas in [20, Example 5.3] showed that ℓ1(N∧) with respect to the ℓ1(N∧)-bimodule map
ρ1 : ℓ1(N∧) → (ℓ1(N∧))

∗∗ given by ρ1(a) = a · δ1 ⊗ δ1 (a ∈ ℓ1(N∧)) is ϕ1-biflat. Also for
each n > 1, set ρn : ℓ1(N∧) → (ℓ1(N∧)⊗p ℓ

1(N∧))
∗∗ given by

ρn(a) = a · δn − δn−1 ⊗ δn − δn−1 (a ∈ ℓ1(N∧)).

It is easy to see that

ϕn ◦ πℓ1(N∧) ◦ ρn(a) = ϕ(a) (a ∈ ℓ1(N∧))

and ||ρn|| ≤ 4 for every n ∈ N. It follows that ℓ1(N∧) is bounded character biflat. But ℓ1(N∧)
is not biflat Banach algebra. To see this suppose conversely that ℓ1(N∧) is biflat. Since
(δn)n∈N is a bounded approximate identity for ℓ1(N∧) see [3, Proposition 3.3.1], biflatness
of ℓ1(N∧) implies that ℓ1(N∧) is amenable. Then [5, Theorem 2] follows that EN∧ the set of
idempotents of N∧ must be finite but as we know {δn|n ∈ N} is an infinite subset of E(N∧)
which is impossible.

Let A be a Banach algebra and ∆(A) be a non-empty set. A is called C-left ϕ-
amenable, if there exists C > 0 such that for each ϕ ∈ ∆(A) and mϕ ∈ A∗∗ which satisfies

amϕ = ϕ(a)mϕ, ϕ̃(m) = 1

we have ||mϕ|| < C. A subset Y of a metric space (X, d) is called uniformly discrete if there
exists a ϵ > 0 such that for each x, y in X, d(x, y) > ϵ.

Lemma 4.1. Let A be a Banach algebra with a bounded left approximate identity. If A is
bounded character biflat, then ∆(A) is a uniformly discrete subset of A∗.

Proof. Suppose that A is bounded character biflat. Let ϕ ∈ ∆(A) and ρϕ be a bounded
A-bimodule morphism such that

ϕ̃ ◦ π∗∗
A ◦ ρϕ(a) = ϕ(a) (a ∈ A),

which ||ρϕ|| is bounded by some C > 0. Suppose that (eα)α is a bounded left approximate
identity for A with bound K > 0. It is easy to see that a net (ρϕ(eα)) is a bounded net in
A∗∗ with bound CK. Using Alauglu’s Theorem, after passing to a subnet, we can assume

that ρϕ(eα)
w∗

−−→ E for some E in A∗∗ which ||E|| < CK. Now similar to the arguments as

in the proof of Theorem 2.1 set mϕ = [λ∗∗ ◦ (idA ⊗ ϕ)∗∗ ◦ (idA ⊗ q)∗∗(E)]. Using the similar
method as in Theorem 1 and also Theorem 2 we can see that

amϕ = ϕ(a)mϕ → 0 ϕ̃(mϕ) → 1 (a ∈ A).

Hence mϕ is a left ϕ-mean and also the net (mϕ)ϕ∈∆(A) is a bounded net with boundMCK,
where M > 0. So A is left MCK-ϕ-amenable for all ϕ ∈ ∆(A). Applying [4, Corollary 2.2]
one can see that ∆(A) is a uniformly discrete subset of A∗. �

5. Application to biflatness of upper triangular Matrix algebras

In this section we study the biflatness of some matrix algebras via the notion of
ϕ-biflatness and right ϕ-amenability.
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Proposition 5.1. Let A be a Banach algebra and ϕ ∈ ∆(A). Suppose that I is a two-sided
closed ideal of A which ϕ|I ̸= 0. A is approximately left(right) ϕ-amenable if and only if I
is approximately left(right) ϕ|I-amenable, respectively.

Proof. For if part, suppose that A is approximately left ϕ-amenable. Then there exists a
net (mα)α in A such that amα − ϕ(a)mα → 0 and ϕ(mα) = 1 for all a ∈ A. Pick i0 ∈ I
which ϕ(i0) = 1. Set nα = mαi0, then (nα) is a net in I which

||inα − ϕ(i)nα|| = ||imαi0 − ϕ(i)mαi0|| ≤ ||imα − ϕ(i)mα||||i0|| → 0 (i ∈ I)

and

ϕ(nα) = ϕ(mαi0) = ϕ(mα) = 1.

Hence I is approximately left ϕ|I -amenable.
For converse, suppose that I is approximately left ϕ|I -amenable. Then there exists a

net (mα) in I such that imα − ϕ(i)mα → 0 and ϕ(mα) = 1 for all i ∈ I. Pick i0 ∈ I which
ϕ(i0) = 1. Consider

||amα − ϕ(a)mα|| = ||amα − ai0mα + ai0mα − ϕ(a)mα||
≤ ||amα − ai0mα||+ ||ai0mα − ϕ(a)mα||
≤ ||mα − i0mα||||a||+ ||ai0mα − ϕ(ai0)mα||
→ 0 (a ∈ A)

and ϕ(mα) = 1. Then A is approximately left ϕ-amenable.
The proof of right case is same as the left one. �

Let A be a Banach algebra and I be a totally ordered set. By UPI(A) we denote the
set of I × I upper triangular matrices which its entries come from A and

||(ai,j)i,j∈I || =
∑
i,j∈I

||ai,j || <∞.

With matrix operations and || · || as a norm, UPI(A) becomes a Banach algebra. These
algebras are similar (in properties) to the ℓ1− Munn algebras. Existence of bounded ap-
proximate identity for ℓ1− Munn algebras has been studied in [6] by Esslamzadeh. Using
this approach Ramsden in [17] characterized biprojectivity and biflatness of some semigroup
algebras which are related to a class of ℓ1− Munn algebras.

Lemma 5.1. Let A be a Banach algebra with a left (right) identity and I be a totally ordered
set. Then UPI(A) has a left (right) approximate identity, respectively.

Proof. It is clear that UPI(A) has left identity, whenever I is a finite set. Then suppose that
I is an infinite set. Put F (I) for the set of all finite subsets of I and 1A for a left identity
of A. Let b = (bi,j)i,j∈I be an arbitrary element of UPI(A). Then there exists an element
F ∈ F (I) such that

∑
i,j∈I−F ||bi,j || < ϵ. Define eF = (ai,j)i,j∈I with ai,j = 1A whenever

i = j ∈ F , otherwise ai,j = 0.

||eF b− b|| = ||
∑

i,j∈I−F

bi,j || ≤
∑

i,j∈I−F

||bi,j || < ϵ.

It means UPI(A) has a left approximate identity. Right case is similar to the left one. �

Theorem 5.1. Let A be a Banach algebra with a right identity and ∆(A) ̸= ∅ and also let
(I,≤) be a totally ordered set which has a smallest element. UPI(A) is biflat if and only if
A is biflat and I is singleton.
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Proof. Only if part is clear.
Suppose UPI(A) is biflat. Then UPI(A) is ψ-biflat for every ψ ∈ ∆(UPI(A)). Let

i0 ∈ I be a smallest element of I with respect to ≤ and ϕ ∈ ∆(A). Define ψi0((ai,j)i,j∈I) =
ϕ(ai0,i0), for every (ai,j)i,j∈I ∈ UPI(A). It is easy to see that ψi0 is a character on UPI(A).
Then UPI(A) is ψi0 -biflat. Using previous Lemma and Theorem 2.1, one can see that
UPI(A) is right ψi0 -amenable. Let

J = {(ai,j)i,j∈I ∈ UPI(A)|ai,j = 0 for i ̸= i0}.
It is easy to see that J is a closed ideal of UPI(A) and ψi0 |J ̸= 0. Thus by the right version
of [13, Lemma 3.1] we have J is right ψi0 -amenable. Using the right version of [13, Theorem
1.4] there exists a bounded net (jα) in J such that

jαj − ψϕ(j)jα → 0, ψϕ(jα) = 1 (j ∈ J). (9)

Suppose that I has at least two elements. We claim that |I| = 1. Suppose conversely that

|I| > 1. Let a0 be an element in A such that ϕ(a0) = 1. Set j =


0 a0 · · · a0 · · ·
0 0 · · · 0 · · ·
: : : : :
0 0 · · · 0 · · ·
: : : : :



We know that for every α the element jα has a form


jαi0 · · · jαi · · ·
0 · · · 0 · · ·
: : : :
0 · · · 0 · · ·
: : : :

, where jαi ∈ A

for every i ∈ I. Now put j and jα in (9) we have jα0 a0 → 0. Since ϕ is continuous, we have
ϕ(jα0 ) → 0. On the other hand ψϕ(jα) = ϕ(jα0 ) = 1 which is a contradiction. So I must be
singleton and the proof is complete. �

Lemma 5.2. Let A be a Banach algebra and ϕ ∈ ∆(A). Suppose that x0 is an element
in A which satisfies ax0 = x0a and ϕ(x0) = 1, for every a ∈ A. Then UPN∪{0}(A) is
approximately ψ-inner amenable, for some ψ ∈ ∆(UPN∪{0}(A)).

Proof. Suppose that I = N ∪ {0}. Define ψ(
∑

i,j∈I ai,j) = ϕ(a0,0), it is clear that ψ is a

character on UPI(A). Put F (I) for the set of all finite subsets of I. Let a be an arbitrary
element of UPI(A) and F ∈ F (I) be such that

∑
i,j∈I−F ||ai,j || < ϵ

||x0|| . Set

nF = max{n|in ∈ F}.
Define anF =

∑
i,j∈{1,2,...,nF } ai,j with ai,j = x0 whenever i = j ∈ {1, 2, ..., nF }, otherwise

ai,j = 0. Consider

||aanF − anF a|| ≤ ||x0||||
∑

i,j∈I−F

ai,j || < ϵ, ψ(anF ) = ϕ(x0) = 1.

Then UPI(A) is approximately ψ-inner amenable. �

Theorem 5.2. Let A be a Banach algebra and ϕ ∈ ∆(A). Suppose that x0 is an element
in A which satisfies ax0 = x0a and ϕ(x0) = 1, for every a ∈ A. Then UPN∪{0}(A) is not
biflat.

Proof. Let I = N ∪ {0}. Suppose conversely that UPI(A) is biflat. Then UPI(A) is ψ-biflat,
where ψ is the character which we defined as in the proof of Lemma 5.2. Using the Lemma
5.2, UPI(A) is approximately ψ-inner amenable. Thus by Proposition 2.1, we have UPI(A)
is right approximate ψ-amenable. Set

J = {(ai,j)i,j∈I ∈ UPI(A)|ai,j = 0 for i ̸= 0}.



122 A. Sahami

It is easy to see that J is a closed ideal of UPI(A) and ψ|J ̸= 0. By Proposition 5.1, we have
J is approximately right ψ-amenable. Following the same way as in the proof of Theorem
5.1, we have a contradiction. �
Corollary 5.1. Let G be a SIN group. Then UPN∪{0}(S(G)) is not biflat.

Proof. It is well-known that, if G is an SIN group, then S(G) has a central approximate
identity, say (eα)α∈I , see [14]. It follows that aeα = eαa and ϕ(eα) → 1. Replacing eα with
eα

ϕ(eα) we can assume that ϕ(eα) = 1. Applying Theorem 5.2, one can see that UPN∪{0}(S(G))

is not biflat. �
Corollary 5.2. Let A be a commutative Banach algebra which ∆(A) is non-empty. Then
UPN∪{0}(A) is not biflat.

Remark 5.1. Suppose that X is a compact space. Then C(X) is an amenable Banach
algebra [19, Example 2.3.4]. Since amenability implies the biflatness, C(X) is biflat but
using previous Corollary we can see that UPN(C(X)) is not biflat.
Set MI(A), for the set of all I × I-matrices, say (ai,j)i,j∈I , which (ai,j) comes from A and∑

i,j ||ai,j || < ∞. Note that UPI(A) is a subalgebra of MI(A). In the case of I = N and

A = C, MI(A) is biprojective so is biflat see [17, Proposition 2.7] but by previous Corollary
UPI(A) is not biflat.
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