

ON BIFLATNESS AND ϕ -BIFLATNESS OF SOME BANACH ALGEBRASA. Sahami¹

In this paper we continue our work in [20]. For a Banach algebra A with a character $\phi \in \Delta(A)$, we discuss the relation of ϕ -biflatness and left ϕ -amenability. We show that if a Segal algebra $S(G)$ ($S(G)^{**}$) is ϕ -biflat, then G is an amenable group. Also we show that ϕ -biflatness of a symmetric Segal algebra $S(G)$ is equivalent with amenability of G . We give the notion of bounded character biflat Banach algebras and study its character spaces. We show that for a non-empty totally ordered set I with a smallest element, upper triangular $I \times I$ -matrix algebra, say $UP_I(A)$ is biflat if and only if A is biflat and I is singleton, provided that $\Delta(A)$ is non-empty and A has a right identity. Also we give a class of non biflat Banach algebras.

Keywords: Segal algebra, Matrix algebra, biflatness, left ϕ -amenable, ϕ -biflatness.

MSC2010: Primary 46M10, 46H05, Secondary, 43A07, 43A20.

1. Introduction and Preliminaries

A Banach algebra A is amenable if for every bounded derivation $D : A \rightarrow X^*$ there exists an element x_0 in X^* such that

$$D(a) = a \cdot x_0 - x_0 \cdot a \quad (a \in A),$$

for every Banach A -bimodule X , see [12]. A. Ya. Helemskii studied Banach algebras through its homological properties. He introduced the concepts of biflat and biprojective Banach algebras. Indeed, a Banach algebra A is called biflat (biprojective), if there exists a bounded A -bimodule morphism $\rho : A \rightarrow (A \otimes_p A)^{**}$ ($\rho : A \rightarrow A \otimes_p A$) such that $\pi_A^{**} \circ \rho$ ($\pi_A \circ \rho$) is the canonical embedding of A into A^{**} (is the identity map on A), respectively, where $\pi_A : A \otimes_p A \rightarrow A$ is denoted for product morphism given by $\pi_A(a \otimes b) = ab$ ($a, b \in A$). In fact a Banach algebra A with a bounded approximate identity is biflat if and only if A is amenable. Using this fact he showed that for a locally compact group G , $L^1(G)$ is biflat (biprojective) if and only if G is an amenable (compact) group, respectively, see [7].

Recently a new notion of the amenability of Banach algebras related to its character space has been introduced. Suppose that A is a Banach algebra and $\phi \in \Delta(A)$. A is called left ϕ -amenable, if for each continuous derivation $D : A \rightarrow X^*$ there exists x_0 in X^* such that

$$D(a) = a \cdot x_0 - \phi(a)x_0 \quad (a \in A),$$

for every Banach A -bimodule X with a left action $a \cdot x = \phi(a)x$ which $a \in A$ and $x \in X$. Alaghmandan *et. al.* in [2] showed that a Segal algebra $S(G)$ is left ϕ -amenable if and only if G is an amenable group. For more information about left ϕ -amenability see [13], [10], [15] and [16].

Motivated by these considerations, author with A. Pourabbas introduced some generalizations of Helemskii's concepts like ϕ -biflatness and ϕ -biprojectivity, where ϕ is a multiplicative linear functional on A . Indeed a Banach algebra A is called ϕ -biflat (ϕ -biprojective)

Faculty of Basic sciences, Department of Mathematics, Ilam University, P.O.Box 69315-516, Ilam, Iran,
e-mail: amir.sahami@aut.ac.ir

if there exists a bounded A -bimodule morphism $\rho : A \rightarrow (A \otimes_p A)^{**}$ ($\rho : A \rightarrow A \otimes_p A$) such that

$$\tilde{\phi} \circ \pi_A^{**} \circ \rho(a) = \phi(a) \quad (\phi \circ \pi_A \circ \rho(a) = \phi(a)) \quad (a \in A),$$

respectively. We showed for a locally compact group G , $L^1(G)$ is ϕ -biflat if and only if G is amenable. We also showed that for every locally compact group G , the Fourier algebra $A(G)$ is ϕ -biprojective if and only if G is discrete, see [20].

In this paper we give criterions to study the relation of left ϕ -amenability and ϕ -biflatness. We show that a symmetric Segal algebra $S(G)$ is ϕ -biflat if and only if G is amenable. We study ϕ -biflatness of A^{**} and we show that if $S(G)^{**}$ is biflat, then G is an amenable group. We introduce the new class of character biflat Banach algebras and study its maximal ideal space. Finally we investigate Helemskii-notion of biflatness for a class of matrix algebras using ϕ -biflatness and left ϕ -amenability and we give a class of non-biflat Banach algebras.

We remark some standard notations and definitions that we shall need in this paper. Let A be a Banach algebra. If X is a Banach A -bimodule, then X^* is also a Banach A -bimodule via the following actions

$$(a \cdot f)(x) = f(x \cdot a), \quad (f \cdot a)(x) = f(a \cdot x) \quad (a \in A, x \in X, f \in X^*).$$

Throughout, the character space of A is denoted by $\Delta(A)$, that is, all non-zero multiplicative linear functionals on A . Let $\phi \in \Delta(A)$. Then ϕ has a unique extension $\tilde{\phi} \in \Delta(A^{**})$ which is defined by $\tilde{\phi}(F) = F(\phi)$ for every $F \in A^{**}$.

Let A be a Banach algebra. The projective tensor product $A \otimes_p A$ is a Banach A -bimodule via the following actions

$$a \cdot (b \otimes c) = ab \otimes c, \quad (b \otimes c) \cdot a = b \otimes ca \quad (a, b, c \in A).$$

2. General results about ϕ -biflatness of Banach algebras

A Banach algebra A is left(right) ϕ -amenable if and only if there exists an element $m \in A^{**}$ such that $am = \phi(a)m$ ($ma = \phi(a)m$) and $\tilde{\phi}(m) = 1$ for every $a \in A$, respectively, see [13, Theorem 1.1]. At the following Theorem we study the relation of ϕ -biflatness and left (right) ϕ -amenability.

Theorem 2.1. *Let A be a Banach algebra with a left(right) approximate identity and let $\phi \in \Delta(A)$. If A is ϕ -biflat, then A is left(right) ϕ -amenable, respectively.*

Proof. Let A be a ϕ -biflat Banach algebra. Then there exists a bounded A -bimodule morphism $\rho : A \rightarrow (A \otimes_p A)^{**}$ such that $\tilde{\phi} \circ \pi_A^{**} \circ \rho(a) = \phi(a)$ for every $a \in A$. Put $L = \ker \phi$. Set $g = (id_A \otimes \tilde{\phi})^{**} \circ (id_A \otimes q)^{**} \circ \rho : A \rightarrow (A \otimes_p \mathbb{C})^{**}$, where $q : A \rightarrow \frac{A}{L}$ is the quotient map and $\tilde{\phi} : \frac{A}{L} \rightarrow \mathbb{C}$ is a character defined by $\tilde{\phi}(a + L) = \phi(a)$ for every $a \in A$. We see that g is a bounded left A -module morphism. We show that $g(l) = 0$ for every $l \in L$. Since A has a left approximate identity, $\overline{AL} = L$. Then for each $l \in L$ there exist sequences $(a_n) \subseteq A$ and $(l_n) \subseteq L$ such that $a_n l_n \rightarrow l$. For $b \in L$, define a map $R_b : A \rightarrow L$ by $R_b(a) = ab$ for every

$a \in A$. Since $q \circ R_{l_n} = 0$, we have

$$\begin{aligned}
g(l) &= (id_A \otimes \bar{\phi})^{**} \circ (id_A \otimes q)^{**}(\rho(l)) \\
&= \lim_n (id_A \otimes \bar{\phi})^{**} \circ (id_A \otimes q)^{**}(\rho(a_n l_n)) \\
&= \lim_n (id_A \otimes \bar{\phi})^{**} \circ (id_A \otimes q)^{**}(\rho(a_n) \cdot l_n) \\
&= \lim_n (id_A \otimes \bar{\phi})^{**} \circ (id_A \otimes q)^{**} \circ (id_A \otimes R_{l_n})^{**}(\rho(a_n)) \\
&= \lim_n ((id_A \otimes \bar{\phi}) \circ (id_A \otimes q) \circ (id_A \otimes R_{l_n}))^{**}(\rho(a_n)) \\
&= \lim_n ((id_A \otimes \bar{\phi}) \circ (id_A \otimes (q \circ R_{l_n})))^{**}(\rho(a_n)) = 0.
\end{aligned}$$

Therefore g induces a map $\bar{g} : \frac{A}{L} \rightarrow (A \otimes_p \mathbb{C})^{**}$ which is defined by $\bar{g}(a + L) = g(a)$ for all $a \in A$. It is easy to see that \bar{g} is a bounded left A -module morphism. Pick a_0 in A such that $\phi(a_0) = 1$. We denote $\lambda : A \otimes_p \mathbb{C} \rightarrow A$ for a map which is specified by $\lambda(a \otimes z) = az$ for every $a \in A$ and $z \in \mathbb{C}$. Set $m = \lambda^{**} \circ \bar{g}(a_0 + L) \in A^{**}$, we claim that $am = \phi(a)m$ and $\tilde{\phi}(m) = 1$ for every $a \in A$. Since λ^{**} is a left A -module morphism and also since $aa_0 + L = \phi(a)a_0 + L$, we have

$$\begin{aligned}
am &= a\lambda^{**} \circ \bar{g}(a_0 + L) = \lambda^{**} \circ \bar{g}(aa_0 + L) = \lambda^{**} \circ \bar{g}(\phi(a)a_0 + L) \\
&= \phi(a)\lambda^{**} \circ \bar{g}(a_0 + L) \\
&= \phi(a)m
\end{aligned} \tag{1}$$

for every $a \in A$. Since $\rho(a_0) \in (A \otimes_p A)^{**}$, by Goldstine's theorem there exists a net (a_α) in $A \otimes_p A$ such that $a_\alpha \xrightarrow{w^*} \rho(a_0)$. So

$$\begin{aligned}
\tilde{\phi}(m) &= m(\phi) = [\lambda^{**} \circ \bar{g}(a_0 + L)](\phi) \\
&= [\lambda^{**} \circ g(a_0)](\phi) \\
&= [\lambda^{**} \circ (id_A \otimes \bar{\phi})^{**} \circ (id_A \otimes q)^{**}(\rho(a_0))](\phi) \\
&= [(\lambda \circ (id_A \otimes \bar{\phi}) \circ (id_A \otimes q))^{**}(\rho(a_0))](\phi) \\
&= [w^* - \lim(\lambda \circ (id_A \otimes \bar{\phi}) \circ (id_A \otimes q))^{**}(a_\alpha)](\phi) \\
&= \lim(\lambda \circ (id_A \otimes \bar{\phi}) \circ (id_A \otimes q))^{**}(a_\alpha)(\phi) \\
&= \lim(\lambda \circ (id_A \otimes \bar{\phi}) \circ (id_A \otimes q))(a_\alpha)(\phi) \\
&= \lim \phi \circ \lambda \circ (id_A \otimes \bar{\phi}) \circ (id_A \otimes q)(a_\alpha) \\
&= \lim \phi \circ \pi_A(a_\alpha).
\end{aligned} \tag{2}$$

On the other hand since $a_\alpha \xrightarrow{w^*} \rho(a_0)$, the w^* -continuity of π_A^{**} implies that

$$\pi_A(a_\alpha) = \pi_A^{**}(a_\alpha) \xrightarrow{w^*} \pi_A^{**}(\rho(a_0)).$$

Thus

$$\phi(\pi_A(a_\alpha)) = \pi_A(a_\alpha)(\phi) = \pi_A^{**}(a_\alpha)(\phi) \rightarrow \pi_A^{**}(\rho(a_0))(\phi) = \tilde{\phi} \circ \pi_A^{**}(a_\alpha) = 1. \tag{3}$$

We see that from (2) and (3), $\tilde{\phi}(m) = 1$. Combine this result with (1) implies that A is left ϕ -amenable. Right case is similar to the left one. \square

Example 2.1. Let A be a Banach algebra with $\dim(A) > 1$ such that $ab = \phi(b)a$ for every $a, b \in A$, where $\phi \in \Delta(A)$. Suppose conversely that A has a left approximate identity, say $(e_\alpha)_\alpha$. Suppose that a_0 is an element in A such that $\phi(a_0) = 1$. We claim that $\lim e_\alpha = a_0$. To see this

$$a_0 = \lim e_\alpha a_0 = \lim \phi(a_0)e_\alpha = \lim e_\alpha.$$

It follows that a_0 is a left unit of A . Suppose that a is an arbitrary element of A . Then $a = a_0a = \phi(a)a_0$, for every $a \in A$. It means that $\dim A = 1$ which is a contradiction.

We claim that A is ϕ -biflat. To see this let a_0 be an element in A such that $\phi(a_0) = 1$. Define $\rho : A \rightarrow (A \otimes_p A)^{**}$ by $\rho(a) = a \otimes a_0$ for each $a \in A$. One can easily see that ρ is a bounded A -bimodule morphism and $\tilde{\phi} \circ \pi_A^{**} \circ \rho(a) = \phi(a)$ for each $a \in A$. Hence A is ϕ -biflat.

We claim that A is not left ϕ -amenable. Suppose conversely that A is left ϕ -amenable. Then by [13, Theorem 1.4] there exists a net (a_α) in A such that

$$aa_\alpha - \phi(a)a_\alpha \rightarrow 0 \quad \phi(a_\alpha) = 1, \quad (a \in A). \quad (4)$$

Suppose that a_0 is an element in A such that $\phi(a_0) = 1$. Put a_0 in equation (4) one can see that $\lim a_\alpha = a_0$. Using (4) again follows that $a = \phi(a)a_0$ for every $a \in A$. It implies that $\dim A = 1$ which is a contradiction.

Theorem 2.2. *Let A be a Banach algebra with a left approximate identity. If A^{**} is $\tilde{\phi}$ -biflat then A is left ϕ -amenable.*

Proof. The proof is similar to the proof of Theorem 2.1 which for the sake of completeness we give it here. Suppose that A^{**} is $\tilde{\phi}$ -biflat. Then there exists a A^{**} -bimodule morphism $\rho : A^{**} \rightarrow (A^{**} \otimes_p A^{**})^{**}$ such that $\tilde{\phi} \circ \pi_{A^{**}}^{**} \circ \rho(a) = \tilde{\phi}(a) \quad a \in A^{**}$. By restricting ρ on A , we can assume that $\rho : A \rightarrow (A^{**} \otimes_p A^{**})^{**}$. There exists a bounded linear map $\psi : A^{**} \otimes_p A^{**} \rightarrow (A \otimes_p A)^{**}$ such that for $a, b \in A$ and $m \in A^{**} \otimes_p A^{**}$, the following holds;

- (i) $\psi(a \otimes b) = a \otimes b$,
- (ii) $\psi(m) \cdot a = \psi(m \cdot a), \quad a \cdot \psi(m) = \psi(a \cdot m)$,
- (iii) $\pi_A^{**}(\psi(m)) = \pi_{A^{**}}(m)$,

see [8, Lemma 1.7]. Define

$$g = \lambda^{****} \circ (id_A \otimes \tilde{\phi})^{****} \circ (id_A \otimes q)^{****} \circ \psi^{**} \circ \rho : A \rightarrow A^{****},$$

where id_A, q, λ and $\tilde{\phi}$ are same as in the proof of Theorem 2.1. It is easy to see that g is a left A -module morphism and the restriction of g on $L = \ker \phi$ is 0. Thus g induces a left A -module morphism $\bar{g} : \frac{A}{L} \rightarrow A^{****}$. Pick $a_0 \in A$ such that $\phi(a_0) = 1$. Set $m = \bar{g}(a_0 + L)$. It is easy to see that $\tilde{\phi}(m) = 1$ and $am = \phi(a)m$ for every $a \in A$. Suppose that $\epsilon > 0$ and $F = \{a_1, \dots, a_r\} \subseteq A^{**}$. Set

$$\begin{aligned} V &= \{(a_1n - \phi(a_1)n, \dots, a_rn - \phi(a_r)n, \tilde{\phi}(n) - 1) \mid n \in A^{**}, \|n\| \leq \|m\|\} \\ &\subseteq (\prod_{i=1}^r A^{**}) \oplus_1 \mathbb{C}. \end{aligned}$$

By Goldestine's theorem there exists a net (n_α) in A^{**} such that $n_\alpha \xrightarrow{w^*} m$ and $\|n_\alpha\| \leq \|m\|$. Thus $(0, 0, \dots, 0)$ is a w^* -limit point of V . On the other hand since V is a convex set, the weak topology and the norm topology are coincide on V . So $(0, 0, \dots, 0)$ is a $\|\cdot\|$ -limit point of V . Therefore there exists an element $n_{(F, \epsilon)}$ in A^{**} which satisfies

$$\|a_i n_{(F, \epsilon)} - \phi(a_i) n_{(F, \epsilon)}\| < \epsilon, \quad |\tilde{\phi}(n_{(F, \epsilon)}) - 1| < \epsilon \quad (5)$$

for every $i \in \{1, 2, \dots, r\}$. Observe that

$$\Delta = \{(F, \epsilon) : F \text{ is a finite subset of } A, \epsilon > 0\},$$

with the following order

$$(F, \epsilon) \leq (F', \epsilon') \implies F \subseteq F', \quad \epsilon \geq \epsilon'$$

is a directed set. Equation 5 follows that there exists a net bounded net $(n_{(F,\epsilon)})_{(F,\epsilon) \in \Delta}$ in A^{**} such that

$$an_{(F,\epsilon)} - \phi(a)n_{(F,\epsilon)} \rightarrow 0, \quad \tilde{\phi}(n_{(F,\epsilon)}) \rightarrow 1$$

for every $a \in A$. By Alaoglu's theorem suppose that $n = w^* - \lim n_{(F,\epsilon)} \in A^{**}$. It is easy to see that $an = \phi(a)n$ and $\tilde{\phi}(n) = 1$, for every $a \in A$. It means that A is left ϕ -amenable. \square

Suppose that A is a Banach algebra and $\phi \in \Delta(A)$. A is called (approximately) ϕ -inner amenable, if there exists a bounded (not necessarily bounded) net $(a_\alpha)_\alpha$ in A such that $aa_\alpha - a_\alpha a \rightarrow 0$ and $\phi(a_\alpha) \rightarrow 1$, for every $a \in A$, respectively. For more information about ϕ -inner amenability see [11].

Corollary 2.1. *Let A be a Banach algebra with an approximate identity and $\phi \in \Delta(A)$. If A is ϕ -biflat then A is ϕ -inner amenable.*

Proof. Since A is ϕ -biflat with an approximate identity, Theorem 2.1 implies that A is left and right ϕ -amenable. Thus there exist bounded nets $(m_\alpha)_{\alpha \in I}$ and $(n_\beta)_{\beta \in J}$ in A such that

$$am_\alpha - \phi(a)m_\alpha \rightarrow 0, \quad n_\beta a - \phi(a)n_\beta \rightarrow 0, \quad \phi(m_\alpha) = \phi(n_\beta) = 1, \quad (a \in A).$$

Define $a_\alpha^\beta = m_\alpha n_\beta$, it is easy to see that

$$aa_\alpha^\beta - a_\alpha^\beta a \rightarrow 0, \quad \phi(a_\alpha^\beta) = 1, \quad (a \in A).$$

Since $(a_\alpha^\beta)_{\alpha \in I, \beta \in J}$ is a bounded net, A is ϕ -inner amenable. \square

Remark 2.1. For the previous Corollary, the existence of an approximate identity is necessary which we can not remove it. To see this let A be the Banach algebra as in Example 2.1. We showed that A is ϕ -biflat, for some $\phi \in \Delta(A)$. Using the similar method which we used in Example 2.1, one can show that A has an approximate identity if and only if $\dim A = 1$ and also A is ϕ -inner amenable if and only if $\dim A = 1$. So if $\dim A > 1$, then A is ϕ -biflat but A doesn't have an approximate identity and A is not ϕ -inner amenable.

We recall that a Banach algebra is approximately left(right) ϕ -amenable if there exists a not necessarily bounded net $(m_\alpha)_\alpha$ in A such that

$$am_\alpha - \phi(a)m_\alpha \rightarrow 0, \quad (m_\alpha a - \phi(a)m_\alpha \rightarrow 0), \quad \phi(m_\alpha) \rightarrow 1,$$

and for each $a \in A$, respectively. For more details see [1].

Proposition 2.1. *Let A be a Banach algebra and $\phi \in \Delta(A)$. Suppose that A is a ϕ -biflat Banach algebra which is approximately ϕ -inner amenable. Then A is approximately left and right ϕ -amenable.*

Proof. Since A is ϕ -biflat, there exists a bounded A -bimodule morphism $\rho : A \rightarrow (A \otimes_p A)^{**}$ such that $\tilde{\phi} \circ \pi_A^{**} \circ \rho(a) = \phi(a)$ for each $a \in A$. Suppose that $(a_\alpha)_{\alpha \in I}$ is a net in A which satisfies $aa_\alpha - a_\alpha a \rightarrow 0$ and $\phi(a_\alpha) \rightarrow 1$ for each $a \in A$. Set $n_\alpha = \rho(e_\alpha)$. Since ρ is a bounded A -bimodule morphism, we have

$$a \cdot n_\alpha - n_\alpha \cdot a = a \cdot \rho(e_\alpha) - \rho(e_\alpha) \cdot a = \rho(aa_\alpha - a_\alpha a) \rightarrow 0 \quad (a \in A)$$

and

$$\tilde{\phi} \circ \pi_A^{**}(n_\alpha) = \tilde{\phi} \circ \pi_A^{**} \circ \rho(e_\alpha) = \phi(a_\alpha) \rightarrow 1.$$

Let F and Γ be finite subsets of A and $(A \otimes_p A)^*$, respectively and also let $\epsilon > 0$ be an arbitrary element. Take an element $\alpha(\Gamma, F, \epsilon)$ in I such that

$$\|a \cdot n_\alpha - n_\alpha \cdot a\| \leq \frac{\epsilon}{3K} \quad \text{and} \quad |\tilde{\phi} \circ \pi_A^{**}(n_\alpha) - 1| < \frac{\epsilon}{2} \quad (a \in F, \alpha \geq \alpha(\Gamma, F, \epsilon)),$$

where $K = \max\{|f| | f \in \Gamma\}$. Since A is w^* -dense in A^{**} , there exists a net $(m_\beta^{\alpha(\Gamma, F, \epsilon)})_{\beta \in J}$ in $A \otimes_p A$ such that $m_\beta^{\alpha(\Gamma, F, \epsilon)} \xrightarrow{w^*} n_{\alpha(\Gamma, F, \epsilon)}$. Therefore $a \cdot m_\beta^{\alpha(\Gamma, F, \epsilon)} \xrightarrow{w^*} a \cdot n_{\alpha(\Gamma, F, \epsilon)}$, $m_\beta^{\alpha(\Gamma, F, \epsilon)} \cdot a \xrightarrow{w^*} n_{\alpha(\Gamma, F, \epsilon)} \cdot a$.

$a \xrightarrow{w^*} n_{\alpha(\Gamma, F, \epsilon)} \cdot a$ for each $a \in F$. Since π_A^{**} is a w^* -continuous map, $\pi_A(m_{\beta}^{\alpha(\Gamma, F, \epsilon)}) \xrightarrow{w^*} \pi_A^{**}(n_{\alpha(\Gamma, F, \epsilon)})$. Thus for each $a \in F$ and $f \in \Gamma$, there exists $\beta(\Gamma, F, \epsilon)$ in J such that for every $\beta \geq \beta(\Gamma, F, \epsilon)$ we have

$$|a \cdot m_{\beta}^{\alpha(\Gamma, F, \epsilon)}(f) - a \cdot n_{\alpha(\Gamma, F, \epsilon)}(f)| \leq \frac{\epsilon}{3}, \quad |m_{\beta}^{\alpha(\Gamma, F, \epsilon)} \cdot a(f) - a \cdot n_{\alpha(\Gamma, F, \epsilon)}(f)| \leq \frac{\epsilon}{3},$$

and also

$$|\phi \circ \pi_A(m_{\beta}^{\alpha(\Gamma, F, \epsilon)}) - \tilde{\phi} \circ \pi_A^{**}(n_{\alpha(\Gamma, F, \epsilon)})| < \frac{\epsilon}{3}.$$

It follows that

$$\begin{aligned} & |a \cdot m_{\beta}^{\alpha(\Gamma, F, \epsilon)}(f) - m_{\beta}^{\alpha(\Gamma, F, \epsilon)} \cdot a(f)| = \\ & |a \cdot m_{\beta}^{\alpha(\Gamma, F, \epsilon)}(f) - a \cdot n_{\alpha(\Gamma, F, \epsilon)}(f) + a \cdot n_{\alpha(\Gamma, F, \epsilon)}(f) - n_{\alpha(\Gamma, F, \epsilon)} \cdot a(f) \\ & + n_{\alpha(\Gamma, F, \epsilon)} \cdot a(f) - m_{\beta}^{\alpha(\Gamma, F, \epsilon)} \cdot a(f)| \\ & \leq |a \cdot m_{\beta}^{\alpha(\Gamma, F, \epsilon)}(f) - a \cdot n_{\alpha(\Gamma, F, \epsilon)}(f)| + ||a \cdot n_{\alpha(\Gamma, F, \epsilon)} - n_{\alpha(\Gamma, F, \epsilon)} \cdot a|| |f| \\ & + |n_{\alpha(\Gamma, F, \epsilon)} \cdot a(f) - m_{\beta}^{\alpha(\Gamma, F, \epsilon)} \cdot a(f)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{aligned} \quad (6)$$

Also

$$|\phi \circ \pi_A(m_{\beta}^{\alpha(\Gamma, F, \epsilon)}) - 1| = |\phi \circ \pi_A(m_{\beta}^{\alpha(\Gamma, F, \epsilon)}) - \tilde{\phi} \circ \pi_A^{**}(n_{\alpha(\Gamma, F, \epsilon)}) + \tilde{\phi} \circ \pi_A^{**}(n_{\alpha(\Gamma, F, \epsilon)}) - 1| < \epsilon.$$

Set $m_{(\Gamma, F, \epsilon)} = m_{\beta(\Gamma, F, \epsilon)}^{\alpha(\Gamma, F, \epsilon)}$. Using the partial order

$$(\Gamma, F, \epsilon) \leq (\Gamma', F', \epsilon') \Leftrightarrow \Gamma \subseteq \Gamma', F \subseteq F', \epsilon \geq \epsilon'$$

one can show that $\{(\Gamma, F, \epsilon)\}$ is a directed set, where Γ and F are finite subsets of $(A \otimes_p A)^*$ and A , respectively and also $\epsilon > 0$. So for the net $(m_{(\Gamma, F, \epsilon)})_{(\Gamma, F, \epsilon)}$, we have

$$a \cdot m_{(\Gamma, F, \epsilon)} - m_{(\Gamma, F, \epsilon)} \cdot a \xrightarrow{w^*} 0, \quad (a \in A)$$

and

$$\phi \circ \pi_A(m_{(\Gamma, F, \epsilon)}) \rightarrow 1.$$

Using Mazur's Lemma we can assume that

$$a \cdot m_{(\Gamma, F, \epsilon)} - m_{(\Gamma, F, \epsilon)} \cdot a \xrightarrow{\|\cdot\|} 0, \quad (a \in A).$$

Suppose that $L : A \otimes_p A \rightarrow A$ is a map given by $L(a \otimes b) = \phi(b)a$ ($a, b \in A$). Clearly L is a bounded linear map which satisfies

$$aL(x) = L(a \cdot x), \quad L(x \cdot a) = \phi(a)L(x), \quad \phi(L(x)) = \phi \circ \pi_A(x),$$

for every $a \in A, x \in A \otimes_p A$. It follows that

$$||aL(m_{(\Gamma, F, \epsilon)}) - \phi(a)L(m_{(\Gamma, F, \epsilon)})|| \leq ||L(a \cdot m_{(\Gamma, F, \epsilon)} - m_{(\Gamma, F, \epsilon)} \cdot a)|| \rightarrow 0 \quad (a \in A)$$

and

$$\phi(L(m_{(\Gamma, F, \epsilon)})) = \phi \circ \pi_A(m_{(\Gamma, F, \epsilon)}) \rightarrow 1.$$

It means that A is approximately left ϕ -amenable. Similarly we can show that A is approximately right ϕ -amenable. \square

3. Application to Segal algebras

Throughout this section G is a locally compact group. A linear subspace $S(G)$ of $L^1(G)$ is said to be a Segal algebra on G if it satisfies the following conditions

- (i) $S(G)$ is dense in $L^1(G)$,
- (ii) $S(G)$ with a norm $\|\cdot\|_{S(G)}$ is a Banach space and $\|f\|_{L^1(G)} \leq \|f\|_{S(G)}$ for every $f \in S(G)$,
- (iii) for $f \in S(G)$ and $y \in G$, we have $L_y(f) \in S(G)$ the map $y \mapsto L_y(f)$ from G into $S(G)$ is continuous, where $L_y(f)(x) = f(y^{-1}x)$,
- (iv) $\|L_y(f)\|_{S(G)} = \|f\|_{S(G)}$ for every $f \in S(G)$ and $y \in G$.

It is well-known that $S(G)$ always has a left approximate identity. A Segal algebra $S(G)$ is called symmetric, if for every $f \in S(G)$ and $y \in G$, $R_y(f) \in S(G)$ and the map $y \mapsto R_y(f)$ is continuous. Also $\|R_y(f)\|_S = \|f\|_S$, for $f \in S(G)$ and $y \in G$. We remind that a symmetric Segal algebra is an ideal of $L^1(G)$, for more information see [18].

For a Segal algebra $S(G)$ it has been shown that

$$\Delta(S(G)) = \{\phi|_{S(G)} \mid \phi \in \Delta(L^1(G))\},$$

see [2, Lemma 2.2]. They showed for a locally compact group G , $S(G)$ is left ϕ -amenable if and only if G is amenable [2, Corollary 3.4]. We will show that for a symmetric Segal algebra $S(G)$, ϕ -biflatness is equivalent with amenability of G .

Corollary 3.1. *If $S(G)$ is ϕ -biflat. Then G is amenable*

Proof. Since every Segal algebra has a left approximate identity, by the Theorem 2.1, $S(G)$ is left ϕ -amenable. Then [2, Corollary 3.4] implies that G is amenable. \square

We show that the converse of Corollary 3.1 is valid for symmetric Segal algebras.

Proposition 3.1. *Let G be a locally compact group, and $S(G)$ be a symmetric Segal algebra on G . Then for every $\phi \in \Delta(S(G))$ the followings are equivalent*

- (i) G is amenable,
- (ii) $S(G)$ is ϕ -biflat,
- (iii) $S(G)$ is left ϕ -amenable.

Proof. (i) \Rightarrow (ii) Let G be an amenable group. Then $L^1(G)$ is amenable. So there exists a bounded net (m_α) in $L^1(G) \otimes_p L^1(G)$ such that $a \cdot m_\alpha - m_\alpha \cdot a \rightarrow 0$ and $\pi_{L^1(G)}(m_\alpha)a \rightarrow a$ for every $a \in L^1(G)$. It is easy to see that $\phi \circ \pi_{L^1(G)}(m_\alpha) \rightarrow 1$ for every $\phi \in \Delta(L^1(G))$. Fix $\phi \in \Delta(L^1(G))$. Define a map $R : L^1(G) \otimes_p L^1(G) \rightarrow L^1(G)$ by $R(a \otimes b) = \phi(b)a$ and set $L : L^1(G) \otimes_p L^1(G) \rightarrow L^1(G)$ for a map which is specified by $L(a \otimes b) = \phi(a)b$ for every $a, b \in L^1(G)$. It is easy to see that L and R are bounded linear maps which satisfy

$$L(m \cdot a) = L(m) * a, \quad L(a \cdot m) = \phi(a)L(m) \quad (a \in L^1(G), m \in L^1(G) \otimes_p L^1(G))$$

and

$$R(a \cdot m) = a * R(m) \quad R(m \cdot a) = \phi(a)R(m) \quad (a \in L^1(G), m \in L^1(G) \otimes_p L^1(G)).$$

Thus

$$L(m_\alpha) * a - \phi(a)L(m_\alpha) = L(m_\alpha \cdot a - a \cdot m_\alpha) \rightarrow 0,$$

similarly we have $a * R(m_\alpha) - \phi(a)R(m_\alpha) \rightarrow 0$ for every $a \in L^1(G)$. Since

$$\phi \circ L = \phi \circ R = \phi \circ \pi_{L^1(G)},$$

it is easy to see that

$$\phi \circ L(m_\alpha) = \phi \circ R(m_\alpha) = \phi \circ \pi_{L^1(G)}(m_\alpha) \rightarrow 1.$$

Pick an element i_0 in $S(G)$ such that $\phi(i_0) = 1$. Set $n_\alpha = R(m_\alpha)i_0 \otimes i_0 L(m_\alpha)$ for every α . Since $L(m_\alpha)$ and $R(m_\alpha)$ are bounded nets in $L^1(G)$ and since $S(G)$ is an ideal of $L^1(G)$, we see that (n_α) is a bounded net in $S(G) \otimes_p S(G)$. Also

$$\begin{aligned} \|a \cdot n_\alpha - n_\alpha \cdot a\|_{S \otimes_p S} &= \|a \cdot n_\alpha - \phi(a)n_\alpha + \phi(a)n_\alpha - n_\alpha \cdot a\|_{S \otimes_p S} \\ &= \|a \cdot n_\alpha - \phi(a)n_\alpha\|_{S \otimes_p S} + \|\phi(a)n_\alpha - n_\alpha \cdot a\|_{S \otimes_p S} \rightarrow 0, \end{aligned} \quad (7)$$

for each $a \in S(G)$. Also we have

$$\phi \circ \pi_{S(G)}(n_\alpha) = \phi(R(m_\alpha) * i_0^2 * L(m_\alpha)) = \phi(R(m_\alpha))\phi(L(m_\alpha)) \rightarrow 1. \quad (8)$$

Let N be a w^* -cluster point of (n_α) in $(S(G) \otimes_p S(G))^{**}$. Combining (7) and (8) with the facts

$$a \cdot n_\alpha \xrightarrow{w^*} a \cdot N, \quad n_\alpha \cdot a \xrightarrow{w^*} N \cdot a, \quad \pi_{S(G)}^{**}(n_\alpha) \xrightarrow{w^*} \pi_{S(G)}^{**}(N) \quad (a \in (S(G)))$$

we have

$$a \cdot N = N \cdot a, \quad \tilde{\phi} \circ \pi_{S(G)}^{**}(N) = 1 \quad (a \in (S(G))).$$

Define a map $\rho : S(G) \rightarrow (S(G) \otimes_p S(G))^{**}$ by $\rho(a) = a \cdot N$ for every $a \in S(G)$. It is easy to see that ρ is a bounded $S(G)$ -bimodule morphism and $\tilde{\phi} \circ \pi_{S(G)}^{**} \circ \rho(a) = \tilde{\phi} \circ \pi_{S(G)}^{**}(a \cdot N) = \phi(a)$, so $S(G)$ is ϕ -biflat.

(ii) \Rightarrow (i) is clear by Corollary 3.1.

(iii) \Leftrightarrow (i) is clear by [2, Corollary 3.4]. \square

Corollary 3.2. *If $S(G)^{**}$ is $\tilde{\phi}$ -biflat then G is amenable.*

Proof. Since $S(G)$ has a left approximate identity, by Theorem 2.2 $\tilde{\phi}$ -biflatness of $S(G)^{**}$ implies that $S(G)$ is left ϕ -amenable. Hence by [2, Corollary 3.4] G is an amenable group. \square

Remark 3.1. The converse of previous Corollary is also true, whenever G is compact group. To see this, let \hat{G} be the dual group of G which consists of all non-zero continuous homomorphism $\rho : G \rightarrow \mathbb{T}$. Since G is compact, $\hat{G} \subseteq L^\infty(G) \subseteq L^1(G)$. It is well-known that every character $\phi \in \Delta(L^1(G))$ has the form $\phi_\rho(f) = \int_G \rho(x)f(x)dx$, where dx is the normalized Haar measure and $\rho \in \hat{G}$, for more details see [9, Theorem 23.7]. Clearly we have

$$\rho * f = f * \rho = \phi_\rho(f)\rho, \quad \phi_\rho(f)(\rho) = 1 \quad (f \in L^1(G)).$$

Note that by [2, Lemma 2.2], $\Delta(S(G))$ is same as $\Delta(L^1(G))$. Now pick $f_0 \in S(G)$ which $\phi_\rho(f_0) = 1$. Since $\rho * f_0 = f_0 * \rho = \phi_\rho(f_0)\rho = \rho$, we have $\rho \in S(G)$. On the other hand since $\rho \in S(G)$, two maps $F \mapsto F\rho$ and $F \mapsto \rho F$ are w^* -continuous on $S(G)^{**}$, we have $F\rho = \rho F = \tilde{\phi}_\rho(F)\rho$ for all $F \in S(G)^{**}$. Hence the map $K : S(G)^{**} \rightarrow (S(G)^{**} \otimes S(G)^{**})^{**}$ defined by $K(F) = F \cdot \rho \otimes \rho$ is a bounded $S(G)^{**}$ -bimodule morphism which satisfies

$$\tilde{\phi}_\rho \circ \pi_{S(G)^{**}}^{**} \circ K(F) = \tilde{\phi}_\rho(F) \quad (F \in S(G)^{**}).$$

It follows that $S(G)^{**}$ is $\tilde{\phi}_\rho$ -biflat.

4. Bounded character biflat Banach algebras

Definition 4.1. Let A be a Banach algebra. A is called character biflat if for each $\phi \in \Delta(A)$ there exists a bounded A -bimodule morphism $\rho_\phi : A \rightarrow (A \otimes_p A)^{**}$ such that

$$\tilde{\phi} \circ \pi_A^{**} \circ \rho_\phi(a) = \phi(a) \quad (a \in A).$$

A is called bounded character biflat if A is character biflat and there exists $C > 0$ such that $\|\rho_\phi\| < C$, for all $\phi \in \Delta(A)$.

It is easy to see that every biflat Banach algebra is bounded character biflat but the converse is not always true. At the following example we give a bounded character biflat Banach algebra which is not biflat.

Example 4.1. Consider the semigroup \mathbb{N}_\wedge , with the semigroup operation $m \wedge n = \min\{m, n\}$, where m and n are in \mathbb{N} . $\Delta(\ell^1(\mathbb{N}_\wedge))$ consists of the all functions $\phi_n : \ell^1(\mathbb{N}_\wedge) \rightarrow \mathbb{C}$ defined by $\phi_n(\sum_{i=1}^{\infty} \alpha_i \delta_i) = \sum_{i=n}^{\infty} \alpha_i$ for every $n \in \mathbb{N}$, where δ_i is point mass at $\{i\}$. See [3] for more details about the semigroup algebra $\ell^1(\mathbb{N}_\wedge)$. Author with A. Pourabas in [20, Example 5.3] showed that $\ell^1(\mathbb{N}_\wedge)$ with respect to the $\ell^1(\mathbb{N}_\wedge)$ -bimodule map $\rho_1 : \ell^1(\mathbb{N}_\wedge) \rightarrow (\ell^1(\mathbb{N}_\wedge))^{**}$ given by $\rho_1(a) = a \cdot \delta_1 \otimes \delta_1$ ($a \in \ell^1(\mathbb{N}_\wedge)$) is ϕ_1 -biflat. Also for each $n > 1$, set $\rho_n : \ell^1(\mathbb{N}_\wedge) \rightarrow (\ell^1(\mathbb{N}_\wedge) \otimes_p \ell^1(\mathbb{N}_\wedge))^{**}$ given by

$$\rho_n(a) = a \cdot \delta_n - \delta_{n-1} \otimes \delta_n - \delta_{n-1} \quad (a \in \ell^1(\mathbb{N}_\wedge)).$$

It is easy to see that

$$\phi_n \circ \pi_{\ell^1(\mathbb{N}_\wedge)} \circ \rho_n(a) = \phi(a) \quad (a \in \ell^1(\mathbb{N}_\wedge))$$

and $\|\rho_n\| \leq 4$ for every $n \in \mathbb{N}$. It follows that $\ell^1(\mathbb{N}_\wedge)$ is bounded character biflat. But $\ell^1(\mathbb{N}_\wedge)$ is not biflat Banach algebra. To see this suppose conversely that $\ell^1(\mathbb{N}_\wedge)$ is biflat. Since $(\delta_n)_{n \in \mathbb{N}}$ is a bounded approximate identity for $\ell^1(\mathbb{N}_\wedge)$ see [3, Proposition 3.3.1], biflatness of $\ell^1(\mathbb{N}_\wedge)$ implies that $\ell^1(\mathbb{N}_\wedge)$ is amenable. Then [5, Theorem 2] follows that $E_{\mathbb{N}_\wedge}$ the set of idempotents of \mathbb{N}_\wedge must be finite but as we know $\{\delta_n | n \in \mathbb{N}\}$ is an infinite subset of $E(\mathbb{N}_\wedge)$ which is impossible.

Let A be a Banach algebra and $\Delta(A)$ be a non-empty set. A is called C -left ϕ -amenable, if there exists $C > 0$ such that for each $\phi \in \Delta(A)$ and $m_\phi \in A^{**}$ which satisfies

$$am_\phi = \phi(a)m_\phi, \quad \tilde{\phi}(m) = 1$$

we have $\|m_\phi\| < C$. A subset Y of a metric space (X, d) is called uniformly discrete if there exists a $\epsilon > 0$ such that for each x, y in X , $d(x, y) > \epsilon$.

Lemma 4.1. *Let A be a Banach algebra with a bounded left approximate identity. If A is bounded character biflat, then $\Delta(A)$ is a uniformly discrete subset of A^* .*

Proof. Suppose that A is bounded character biflat. Let $\phi \in \Delta(A)$ and ρ_ϕ be a bounded A -bimodule morphism such that

$$\tilde{\phi} \circ \pi_A^{**} \circ \rho_\phi(a) = \phi(a) \quad (a \in A),$$

which $\|\rho_\phi\|$ is bounded by some $C > 0$. Suppose that $(e_\alpha)_\alpha$ is a bounded left approximate identity for A with bound $K > 0$. It is easy to see that a net $(\rho_\phi(e_\alpha))$ is a bounded net in A^{**} with bound CK . Using Alaoglu's Theorem, after passing to a subnet, we can assume that $\rho_\phi(e_\alpha) \xrightarrow{w^*} E$ for some E in A^{**} which $\|E\| < CK$. Now similar to the arguments as in the proof of Theorem 2.1 set $m_\phi = [\lambda^{**} \circ (id_A \otimes \bar{\phi})^{**} \circ (id_A \otimes q)^{**}(E)]$. Using the similar method as in Theorem 1 and also Theorem 2 we can see that

$$am_\phi = \phi(a)m_\phi \rightarrow 0 \quad \tilde{\phi}(m_\phi) \rightarrow 1 \quad (a \in A).$$

Hence m_ϕ is a left ϕ -mean and also the net $(m_\phi)_{\phi \in \Delta(A)}$ is a bounded net with bound MCK , where $M > 0$. So A is left MCK - ϕ -amenable for all $\phi \in \Delta(A)$. Applying [4, Corollary 2.2] one can see that $\Delta(A)$ is a uniformly discrete subset of A^* . \square

5. Application to biflatness of upper triangular Matrix algebras

In this section we study the biflatness of some matrix algebras via the notion of ϕ -biflatness and right ϕ -amenability.

Proposition 5.1. *Let A be a Banach algebra and $\phi \in \Delta(A)$. Suppose that I is a two-sided closed ideal of A which $\phi|_I \neq 0$. A is approximately left(right) ϕ -amenable if and only if I is approximately left(right) $\phi|_I$ -amenable, respectively.*

Proof. For if part, suppose that A is approximately left ϕ -amenable. Then there exists a net $(m_\alpha)_\alpha$ in A such that $am_\alpha - \phi(a)m_\alpha \rightarrow 0$ and $\phi(m_\alpha) = 1$ for all $a \in A$. Pick $i_0 \in I$ which $\phi(i_0) = 1$. Set $n_\alpha = m_\alpha i_0$, then (n_α) is a net in I which

$$\|in_\alpha - \phi(i)n_\alpha\| = \|im_\alpha i_0 - \phi(i)m_\alpha i_0\| \leq \|im_\alpha - \phi(i)m_\alpha\| \|i_0\| \rightarrow 0 \quad (i \in I)$$

and

$$\phi(n_\alpha) = \phi(m_\alpha i_0) = \phi(m_\alpha) = 1.$$

Hence I is approximately left $\phi|_I$ -amenable.

For converse, suppose that I is approximately left $\phi|_I$ -amenable. Then there exists a net (m_α) in I such that $im_\alpha - \phi(i)m_\alpha \rightarrow 0$ and $\phi(m_\alpha) = 1$ for all $i \in I$. Pick $i_0 \in I$ which $\phi(i_0) = 1$. Consider

$$\begin{aligned} \|am_\alpha - \phi(a)m_\alpha\| &= \|am_\alpha - ai_0m_\alpha + ai_0m_\alpha - \phi(a)m_\alpha\| \\ &\leq \|am_\alpha - ai_0m_\alpha\| + \|ai_0m_\alpha - \phi(a)m_\alpha\| \\ &\leq \|m_\alpha - i_0m_\alpha\| \|a\| + \|ai_0m_\alpha - \phi(ai_0)m_\alpha\| \\ &\rightarrow 0 \quad (a \in A) \end{aligned}$$

and $\phi(m_\alpha) = 1$. Then A is approximately left ϕ -amenable.

The proof of right case is same as the left one. \square

Let A be a Banach algebra and I be a totally ordered set. By $UP_I(A)$ we denote the set of $I \times I$ upper triangular matrices which its entries come from A and

$$\|(a_{i,j})_{i,j \in I}\| = \sum_{i,j \in I} \|a_{i,j}\| < \infty.$$

With matrix operations and $\|\cdot\|$ as a norm, $UP_I(A)$ becomes a Banach algebra. These algebras are similar (in properties) to the ℓ^1 -Munn algebras. Existence of bounded approximate identity for ℓ^1 -Munn algebras has been studied in [6] by Esslamzadeh. Using this approach Ramsden in [17] characterized biprojectivity and biflatness of some semigroup algebras which are related to a class of ℓ^1 -Munn algebras.

Lemma 5.1. *Let A be a Banach algebra with a left (right) identity and I be a totally ordered set. Then $UP_I(A)$ has a left (right) approximate identity, respectively.*

Proof. It is clear that $UP_I(A)$ has left identity, whenever I is a finite set. Then suppose that I is an infinite set. Put $F(I)$ for the set of all finite subsets of I and 1_A for a left identity of A . Let $b = (b_{i,j})_{i,j \in I}$ be an arbitrary element of $UP_I(A)$. Then there exists an element $F \in F(I)$ such that $\sum_{i,j \in I-F} \|b_{i,j}\| < \epsilon$. Define $e_F = (a_{i,j})_{i,j \in I}$ with $a_{i,j} = 1_A$ whenever $i = j \in F$, otherwise $a_{i,j} = 0$.

$$\|e_F b - b\| = \left\| \sum_{i,j \in I-F} b_{i,j} \right\| \leq \sum_{i,j \in I-F} \|b_{i,j}\| < \epsilon.$$

It means $UP_I(A)$ has a left approximate identity. Right case is similar to the left one. \square

Theorem 5.1. *Let A be a Banach algebra with a right identity and $\Delta(A) \neq \emptyset$ and also let (I, \leq) be a totally ordered set which has a smallest element. $UP_I(A)$ is biflat if and only if A is biflat and I is singleton.*

Proof. Only if part is clear.

Suppose $UP_I(A)$ is biflat. Then $UP_I(A)$ is ψ -biflat for every $\psi \in \Delta(UP_I(A))$. Let $i_0 \in I$ be a smallest element of I with respect to \leq and $\phi \in \Delta(A)$. Define $\psi_{i_0}((a_{i,j})_{i,j \in I}) = \phi(a_{i_0, i_0})$, for every $(a_{i,j})_{i,j \in I} \in UP_I(A)$. It is easy to see that ψ_{i_0} is a character on $UP_I(A)$. Then $UP_I(A)$ is ψ_{i_0} -biflat. Using previous Lemma and Theorem 2.1, one can see that $UP_I(A)$ is right ψ_{i_0} -amenable. Let

$$J = \{(a_{i,j})_{i,j \in I} \in UP_I(A) | a_{i,j} = 0 \text{ for } i \neq i_0\}.$$

It is easy to see that J is a closed ideal of $UP_I(A)$ and $\psi_{i_0}|_J \neq 0$. Thus by the right version of [13, Lemma 3.1] we have J is right ψ_{i_0} -amenable. Using the right version of [13, Theorem 1.4] there exists a bounded net (j_α) in J such that

$$j_\alpha j - \psi_\phi(j)j_\alpha \rightarrow 0, \quad \psi_\phi(j_\alpha) = 1 \quad (j \in J). \quad (9)$$

Suppose that I has at least two elements. We claim that $|I| = 1$. Suppose conversely that

$|I| > 1$. Let a_0 be an element in A such that $\phi(a_0) = 1$. Set $j = \begin{pmatrix} 0 & a_0 & \cdots & a_0 & \cdots \\ 0 & 0 & \cdots & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \end{pmatrix}$. We know that for every α the element j_α has a form $\begin{pmatrix} j_{i_0}^\alpha & \cdots & j_i^\alpha & \cdots \\ 0 & \cdots & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$, where $j_i^\alpha \in A$

for every $i \in I$. Now put j and j_α in (9) we have $j_0^\alpha a_0 \rightarrow 0$. Since ϕ is continuous, we have $\phi(j_0^\alpha) \rightarrow 0$. On the other hand $\psi_\phi(j_\alpha) = \phi(j_0^\alpha) = 1$ which is a contradiction. So I must be singleton and the proof is complete. \square

Lemma 5.2. *Let A be a Banach algebra and $\phi \in \Delta(A)$. Suppose that x_0 is an element in A which satisfies $ax_0 = x_0a$ and $\phi(x_0) = 1$, for every $a \in A$. Then $UP_{\mathbb{N} \cup \{0\}}(A)$ is approximately ψ -inner amenable, for some $\psi \in \Delta(UP_{\mathbb{N} \cup \{0\}}(A))$.*

Proof. Suppose that $I = \mathbb{N} \cup \{0\}$. Define $\psi(\sum_{i,j \in I} a_{i,j}) = \phi(a_{0,0})$, it is clear that ψ is a character on $UP_I(A)$. Put $F(I)$ for the set of all finite subsets of I . Let a be an arbitrary element of $UP_I(A)$ and $F \in F(I)$ be such that $\sum_{i,j \in I-F} \|a_{i,j}\| < \frac{\epsilon}{\|x_0\|}$. Set

$$n_F = \max\{n | i_n \in F\}.$$

Define $a_{n_F} = \sum_{i,j \in \{1, 2, \dots, n_F\}} a_{i,j}$ with $a_{i,j} = x_0$ whenever $i = j \in \{1, 2, \dots, n_F\}$, otherwise $a_{i,j} = 0$. Consider

$$\|aa_{n_F} - a_{n_F}a\| \leq \|x_0\| \|\sum_{i,j \in I-F} a_{i,j}\| < \epsilon, \quad \psi(a_{n_F}) = \phi(x_0) = 1.$$

Then $UP_I(A)$ is approximately ψ -inner amenable. \square

Theorem 5.2. *Let A be a Banach algebra and $\phi \in \Delta(A)$. Suppose that x_0 is an element in A which satisfies $ax_0 = x_0a$ and $\phi(x_0) = 1$, for every $a \in A$. Then $UP_{\mathbb{N} \cup \{0\}}(A)$ is not biflat.*

Proof. Let $I = \mathbb{N} \cup \{0\}$. Suppose conversely that $UP_I(A)$ is biflat. Then $UP_I(A)$ is ψ -biflat, where ψ is the character which we defined as in the proof of Lemma 5.2. Using the Lemma 5.2, $UP_I(A)$ is approximately ψ -inner amenable. Thus by Proposition 2.1, we have $UP_I(A)$ is right approximate ψ -amenable. Set

$$J = \{(a_{i,j})_{i,j \in I} \in UP_I(A) | a_{i,j} = 0 \text{ for } i \neq 0\}.$$

It is easy to see that J is a closed ideal of $UP_I(A)$ and $\psi|_J \neq 0$. By Proposition 5.1, we have J is approximately right ψ -amenable. Following the same way as in the proof of Theorem 5.1, we have a contradiction. \square

Corollary 5.1. *Let G be a SIN group. Then $UP_{\mathbb{N} \cup \{0\}}(S(G))$ is not biflat.*

Proof. It is well-known that, if G is an SIN group, then $S(G)$ has a central approximate identity, say $(e_\alpha)_{\alpha \in I}$, see [14]. It follows that $ae_\alpha = e_\alpha a$ and $\phi(e_\alpha) \rightarrow 1$. Replacing e_α with $\frac{e_\alpha}{\phi(e_\alpha)}$ we can assume that $\phi(e_\alpha) = 1$. Applying Theorem 5.2, one can see that $UP_{\mathbb{N} \cup \{0\}}(S(G))$ is not biflat. \square

Corollary 5.2. *Let A be a commutative Banach algebra which $\Delta(A)$ is non-empty. Then $UP_{\mathbb{N} \cup \{0\}}(A)$ is not biflat.*

Remark 5.1. Suppose that X is a compact space. Then $C(X)$ is an amenable Banach algebra [19, Example 2.3.4]. Since amenability implies the biflatness, $C(X)$ is biflat but using previous Corollary we can see that $UP_{\mathbb{N}}(C(X))$ is not biflat.

Set $M_I(A)$, for the set of all $I \times I$ -matrices, say $(a_{i,j})_{i,j \in I}$, which $(a_{i,j})$ comes from A and $\sum_{i,j} \|a_{i,j}\| < \infty$. Note that $UP_I(A)$ is a subalgebra of $M_I(A)$. In the case of $I = \mathbb{N}$ and $A = \mathbb{C}$, $M_I(A)$ is biprojective so is biflat see [17, Proposition 2.7] but by previous Corollary $UP_I(A)$ is not biflat.

REFERENCES

- [1] H. P. Aghababa, L. Y. Shi and Y. J. Wu, *Generalized notions of character amenability* Act. Math. Sin, **29** (2013) 1329-1350.
- [2] M. Alaghmandan, R. Nasr Isfahani and M. Nemat, *Character amenability and contractibility of abstract Segal algebras*, Bull. Aust. Math. Soc, **82** (2010) 274-281.
- [3] H. G. Dales and R. J. Loy, *Approximate amenability of semigroup algebras and Segal algebras*, Dissertationes Math. (Rozprawy Mat.) 474 (2010).
- [4] M. Dashti, R. Nasr Isfahani and S. Soltani Renani, *Character Amenability of Lipschitz Algebras*, Canad. Math. Bull. Vol. **57** (1), 2014 pp. 37-41
- [5] J. Duncan and A. L. T. Paterson, *Amenability for discrete convolution semigroup algebras*, Math. Scand. **66** (1990) 141-146.
- [6] G. H. Esslamzadeh, *Double centralizer algebras of certain Banach algebras*, Monatsh. Math. **142** (2004), 193-203.
- [7] A. Ya. Helemskii, *The homology of Banach and topological algebras*, Kluwer, Academic Press, Dordrecht, 1989.
- [8] F. Ghahramani, R. J. Loy and G. A. Willis, *Amenability and weak amenability of second conjugate Banach algebras*, Proc. Amer. Math.
- [9] E. Hewitt and K. A. Ross, *Abstract harmonic analysis I*, Springer-Verlag, Berlin, (1963). Soc. **124** (1996), 1489-1497.
- [10] Z. Hu, M. S. Monfared and T. Traynor, *On character amenable Banach algebras*, Studia Math. **193** (2009) 53-78.
- [11] A. Jabbari, T. Mehdi Abad and M. Zaman Abadi, *On ϕ -inner amenable Banach algebras*, Colloq. Math. vol **122** (2011) 1-10.
- [12] B. E. Johnson, *Cohomology in Banach algebras*, Mem. Amer. Math. Soc. **127** (1972).
- [13] E. Kaniuth, A. T. Lau and J. Pym, *On ϕ -amenability of Banach algebras*, Math. Proc. Cambridge Philos. Soc. **144** (2008) 85-96.
- [14] E. Kotzmann and H. Rindler, *Segal algebras on non-abelian groups*, Trans. Amer. Math. Soc. 237 (1978), 271-281.
- [15] M. S. Monfared, *Character amenability of Banach algebras*, Math. Proc. Camb. Philos. Soc. **144** (2008) 697-706.
- [16] R. Nasr Isfahani and S. Soltani Renani, *Character contractibility of Banach algebras and homological properties of Banach modules*, Studia Math. **202** (3) (2011) 205-225.
- [17] P. Ramsden: *Biflatness of semigroup algebras*. Semigroup Forum **79**, (2009) 515-530.
- [18] H. Reiter; *L^1 -algebras and Segal Algebras*, Lecture Notes in Mathematics **231** (Springer, 1971).
- [19] V. Runde, *Lectures on Amenability*, (Springer, New York, 2002).
- [20] A. Sahami and A. Pourabbas, *On ϕ -biflat and ϕ -biprojective Banach algebras*, Bull. Belg. Math. Soc. Simon Stevin, **20**(2013) 789-801.