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INVESTIGATION OF THE EVEN-EVEN N=106 ISOTONIC 

CHAIN NUCLEI IN THE GEOMETRIC COLLECTIVE 

MODEL 

Stelian St. CORIIU1 

Geometric-Collective-Model (GCM) is applied in this paper for the first time 

to the chain of even-even N=106 isotones: 176Yb, 178Hf, 180W, 182Os, 184Pt, 186Hg, 
188Pb, 190Po. Experimentally known low lying energy spectra, and electromagnetic 

properties are used in order to establish the parameters required by the model. The 

observables are analyzed as trend on the isotonic chain. In the GCM calculation, 

the absolute values of the ground state energies are taken to be equal with the 

experimental binding energies per nucleon. By using this novel procedure a self 

consistent set of GCM parameters has been obtained, allowing more realistic 

predictions for the absolute values of the nuclear bound state energies. Moreover, 

comparable sets of GCM parameters can be obtained for different isotopic and 

isotonic chains.  

Keywords: The Geometric Collective Model (GCM), spherical, triaxial, 

prolate, oblate deformation, nuclear structure 

1. Introduction  

 

The Geometric Collective Model (GCM) offers  a very powerful 

instrument for the study of nuclear structure [1], and  contains the main  limiting 

cases of nuclear collective features- spherical, triaxial, prolate, oblate, and also 

nuclei with two minima in the potential energy. The GCM can be successfully 

used to calculate the low lying energy spectra, B(E2)  values, and quadrupole 

moments of even-even nuclei from almost entire nuclear chart. There are reported 

several works on GCM investigations of the nuclear isotopic chains. For example 

collective states of 124-132Ba in the GCM framework are reported in [2]. Also the 

GCM analysis was applied to the isotopic chain of Pt, Os, and W in [3]. 
108,110,112Ru and 152Sm are studied in [4] and [5] respectively. To our knowledge 

there is no systematic GCM study on a nuclear isotonic chain reported in the 

literature up to now. In the present work it is presented such a study for the even-

even N=106 isotonic chain nuclei. It is chosen this isotonic chain due to the 

richness of available experimental data and variety of nuclear structure 

phenomenology. It is the main idea in this paper that, in calculating the 

spectroscopic properties (level energies states, electromagnetic transition 

strengths, quadrupole deformation, etc) the first step in importance is to identify a 
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correct absolute energy reference for entire nuclear chain, and even for all nuclei. 

In this work this absolute energy reference is considered to be build on the basis 

of the experimental Binding-Energy per nucleon (BE/A) value, which is 

associated to the ground state (g. s.) energy value [6]. In this way a coherent set of 

model parameters has been obtained for the entire isotonic chain (Table 1-a, b). 

Staying on this point of view, after a brief description of the GCM formalism and 

some details of the calculation procedure, there are presented the nuclear 

observables obtained with GCM and their comparison with the experimental data 

of the even-even N=106  isotonic chain nuclei: 176Yb, 178Hf, 180W, 182Os, 184Pt, 
186Hg, 188Pb, and 190Po. Discussions in terms of nuclear symmetries and 𝛾-band 

staggering are done. A brief summary and conclusions are given in the end. 

 

2. GCM formalism 

 

The collective model ([1], [8],[12]) was build in the collective space’s 

deformation coordinates 𝛼2𝑚  defined via the expansion of the nuclear surface in 

terms of spherical harmonics 𝑌2𝑚  (𝜃, 𝜑): 
                       

𝑅(𝜃, 𝜑, 𝑡)  = 𝑅0(1 + ∑ 𝛼2𝑚  (𝑡) 𝑌2𝑚  (𝜃, 𝜑)𝑚  )       (1) 
 

R(θ, φ, t) is the radius of the nucleus along the direction (θ, φ) in the laboratory-

fixed principal-axes center-of-mass system and 𝑅0=1.1A1/3 fm. The conjugate 

momentum operator 𝜋̂2m to the corresponding 𝛼̂2𝑚 operator coordinates is defined 

by requiring canonical commutation relation: 

                        [𝜋̂2n 𝛼̂2𝑚  
] =  −𝑖ħ𝛿𝑚𝑛   ,  (m, n = -2,-1,0,+1,+2)             (2) 

 

The kinetic energy is constructed to contain the two lowest-order terms 

proportional to the square of the momentum: 

                          𝑇̂ =
1

𝐵2
[𝜋̂ ×  𝜋̂ ][0] +

𝑃3

3
 {[ [𝜋̂ ×𝛼̂][2]   ×𝜋̂][0]}  ,         (3) 

where{…..} is the sum over all permutation between the 𝜋̂ and 𝛼̂. B2 is the 

mass parameter and P3 is the anharmonic kinetic-energy term. The general form 

of Hamiltonian is:  

                                                   𝐻̂ =  𝑇̂ +  𝑉̂                                           (4) 

            The multiplicative potential operator  𝑉̂ , constructed to be a 

polynomial expansion in the deformation coordinates, containing all possible 

independent terms up to sixth order (Ref.[1]): 

𝑉̂(𝛼̂) = C2[𝛼̂×𝛼̂][0] + C3[[𝛼̂×𝛼̂][2]×𝛼̂][0] + C4([𝛼̂×𝛼̂][0])
2

+

C5[[𝛼̂×𝛼̂][2]×𝛼̂]
[0]

[𝛼̂×𝛼̂][0] + C6 ([[𝛼̂×𝛼̂][2]×𝛼̂]
[0]

)
2

+ D6([𝛼̂×𝛼̂][0])
3
     (5) 
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 The square of form [𝜋̂ ×  𝛼̂][2]  and  [𝜋̂ × 𝛼̂ ][0] is the product of spherical 

tensor operators  𝜋̂  and   𝛼̂ coupled to angular momentum two, and zero 

respectively. 

It is more convenient to study the nucleus in the “intrinsic” system of the 

body-fixed principal-axis system, transforming the laboratory-fixed α2m 

coordinates axis  in to the corresponding  intrinsic 𝑎̂2𝜇    (μ = -2,-1,0,+1,+2) ones 

[9]. Further on, we transform this orthogonal intrinsic coordinates in to spherical 

coordinates and, keeping in mind the axial symmetry relation: 

a2-2 = a2+2 , we can  retain  only  two intrinsic  polar coordinates:  β-the 

quadrupolar deformation of nucleus, and the angle γ defined by the relation [6]):  

β ≡ √(
1

√2
𝛽 𝑠𝑖𝑛 γ)2 + (

1

√2
𝛽 𝑠𝑖𝑛 γ)2 + (𝛽 𝑐𝑜𝑠 γ)2 =

√𝑎2−2
2 + 𝑎2+2

2 + 𝑎20
2   (8)   Results:  𝑎0 ≝ β cos 𝛾 = 𝑎20     

𝑎2 ≝ βsin 𝛾 ≡ √(
1

√2
𝛽 𝑠𝑖𝑛 γ)2 + (

1

√2
𝛽 𝑠𝑖𝑛 γ)2 = √𝑎2−2

2 + 𝑎2+2
2        (9) 

 𝑎0 , 𝑎2  are the cartesian intrinsic axial symmetry quadrupolar deformation 

coordinates used in this paper. Represented in this intrinsic referential, the 

multiplicative operator potential 𝑉̂(𝛼̂)  has the expression ([4]):  

 𝑉̂(β, γ) =  C2
1

√5
 β2– C3√

2

35
𝛽3 cos 3𝛾 + C4  

1

5
β4 – C5√

2

175
 β5 𝑐𝑜𝑠3γ +

C6  
2

35
β6( cos 3γ)2 + D6

1

5√5
β6

  
                                                                                            (10) 

and may present or not the axial symmetry. This is the analytical expression of the 

Potential-Energy-Surface (PES) employed in the present study. The real six 

numbers C2, C3, C4, C5, C6, D6, are the PES parameters which, together with the 

kinetic-energy parameters B2 and P3, are the GCM parameters used in our study. 

             Using the spherical harmonics in the intrinsic system in polar angle, for 

radius (1) of the nucleus results Refs.([9],[12]) :  

             𝑅(θ, φ) = R0(1 + δRk ), with δRk  being the increments of the nucleus’ 

radius  along the three semi-axes 𝑎̂2𝜇 in the intrinsic referential ([1]): 

              δR𝜇 = R0 √
5

4𝜋
  β 𝑐𝑜𝑠 (γ −

2𝜋

3
𝜇),      with 𝜇 =1,2,3     (9) 
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Fig.1 Various axial symmetries in the (β, γ) intrinsic deformation plane for Potential-Energy-

Surface contour plot of 184Pt nucleus, calculated with the GCM parameters obtained in this work  

 

From (9), results for a nucleus various nuclear shape in (β, γ) intrinsic 

deformation plane for axial symmetric deformation: 

1) γ equal with 0o, 120o, 240o results axial prolate spheroids (β>0).  

2)  2) γ equal with 180o, 300o, 60o results axial oblate spheroids (β<0). 

 For γ not multiple of 60o results non axial, but triaxial symmetry shapes ([9]). 

             In Fig.1 it is shown an exemplification for axial symmetries in (β, γ) 

intrinsic deformation plane present in the potential of 184Pt nucleus established 

with the GCM parameters obtained in the present study.  
 

       3. GCM code description 

 

The GCM code employed in the present work has been developed in 

Frankfurt by D. Troltenier, J.A. Maruhn, and P.O. Hess and published in [1]. In 

this code, the eigenstates of Hamiltonian (4) are calculated by diagonalization in 

the basic functions of the five dimensional harmonic oscillator as described in 

([1], [12]).  

For calculating matrix elements of the quadrupole moments and transition 

probabilities it is used the quadrupole operator, whose expression in the 

laboratory-fixed pricipale-axes is:  
 

𝑄̂2𝑚 =
3𝑍

4𝜋
 𝑅0

2(𝛼̂2𝑚
∗ −

10

√70𝜋
[𝛼̂×𝛼̂]2𝑚

∗ ),       (11) 

 

Transforming 𝑄̂2𝑚 in the 𝑄̂2𝜇    given in intrinsic a2μ referential, the quadrupole 

moment of excited states becomes: 
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Q(δ, L) = √
16𝜋

5
(   𝐿    0     𝐿

−𝐿    0     𝐿
)⟨δ, L M = L|𝑄̂2|δ, L M = L⟩, 

where the angular momentum dependence is expressed through the Wigner 3J-

symbol, |δ, L M〉 is a collective state with angular momentum L, projection M, and 

δ summarizing all other quantum numbers, 𝑄̂2 -intrinsic quadrupol operator, 

([1],[12]).The reduced transition probability is: 

B(E2, 𝛿𝑖 , 𝐿𝑖 →  𝛿𝑓  , 𝐿𝑓  )  =  
1

2𝐿𝑖  + 1
∑ |⟨𝛿𝑓 , 𝐿𝑓 𝑀𝑓|𝑄̂2𝜇|𝛿𝑖, 𝐿𝑖 𝑀𝑖⟩|

2

𝑀𝑖, 𝑀𝑓,𝜇

=  
2𝐿𝑓  + 1

2𝐿𝑖  + 1
|⟨𝛿𝑓 , 𝐿𝑓 ||𝑄̂2||𝛿𝑖, 𝐿𝑖 ⟩|2 = B(E2,  𝐿𝑖 →   𝐿𝑓 ), 

where   ⟨𝛿𝑓 , 𝐿𝑓 ||𝑄̂2||𝛿𝑖 , 𝐿𝑖 ⟩is the reduced matrix element of the quadrupole 

operator between ”i” and “f” states. The GCM code calculates only the upwards 

transition probabilities [1] (from smaller to larger angular momentum L 

transition); All experimental data has been taken from Ref.[10] where are given 

also the experimental adopted upwards transition  probabilities and has been 

adopted in the present work. The usual downwards formula transformation for 

reduced transition probabilities is: 

B(E2,  𝐿𝑓 →   𝐿𝑖 )  =  
2𝐿𝑖  + 1

2𝐿𝑓  + 1
B(E2,  𝐿𝑖 →   𝐿𝑓  )  

4. GCM calculations along the N=106 isotonic chain 
 

For the N=106 isotonic chain considered in the present work, the GCM 

parameters are calculated separately for each nucleus. The GCM code performs an 

automatic fitting of a set of experimental data by adjusting the eight GCM 

parameters of Hamiltonian (4).  
                                                                                                         Table 1-a 

The Potential-Energy-Surface parameters for even-even N=106 isotonic chain nuclei 

obtained in the present study 
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                                                                                                                                           Table 1-b    

 The kinetic-energy parameters B2, P3, and the absolute values of the ground state (g. s.) 

energy obtained in the present study,(the last value almost equal with the experimental BE/A  

for each  nucleus, last column)  for  even-even  N=106 isotonic chain 

. 

The least-square fitting procedure has been used in the GCM code, with a 

optimal agreement of some experimental data (level energies, B(E2), electric 

quadrupole  moment). For the PES’ parameters calculation, the fitting routine was 

completely computerized by GCM code [1]. The fit of the following available 

experimental data has been done: energy levels with J≤6+, electric quadrupole 

moments of the 21 states and several B(E2)  values if experimentally known. It is 

started from the 186Os parameters given in Ref.[1]. Then, have been determined 

GCM parameters (PES and Kinetic-energy parameters) of 182Os, and so on. For 

fitting procedure in GCM code, it has found the experimental data for the 

following nuclei in the N=106 isotonic chain: 176Yb, 178Hf, 180W, 182Os, 184Pt, 

186Hg, 188Pb, and 190Po. Then, the PES and the kinetic-energy parameters for these 

nuclei have been determined and are reported in Tables 1-a,1-b. With the eight 

determined GCM parameters, the GCM code calculates the theoretical model 

observables: the low-lying energy levels, B(E2) values, absolute value of ground 

state, and quadrupole moments for each nucleus.  

In Fig. 2-a it is presented a comparison along N=106 isotonic chain of the 

ground state band (gsb) experimental energy levels with GCM calculations. A 

spin-parity limit 10+ has been considered. For nuclei where nuclear collectivity is 

well established (176Yb, 178Hf, 180W) the precision of the levels energy position 

obtained with GCM calculation is better than 6% in comparison with the 

experiment, for all states in the g. s. bands. For 180W nucleus this precision is even 

better than 1.8%. For the nuclei near closed proton shells the quality of the fit is 

less precise, for example in 186Hg where the precision in describing experimental 

results is about 10.5%. In these nuclei, single-particle mixing in the low-lying 

states is expected, and relative poor description in GCM theory is obtained, since 

these degrees of freedom are outside this collective model. 
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Fig. 2-a Ground state bands of even-even  isotonic N=106 chain nuclei  obtained in the present   

study, compared with experiment 

           

 In the present work, GCM predicts for all considered nuclei very good results for  

absolute values of ground state (g.s.) energy (Table 1-b), allowing more realistic 

prediction for the absolute values of the energies nuclear bound states than in 

other references. For example, in the case of 180W the g.s. absolute value obtained 

is equal with -8.0259MeV, much realistic value than the value -1.707MeV 

obtained in Ref.[2] for the same nucleus. 

                    As a general evolution feature along the even-even N=106 isotonic 

chain, in Fig.2-b it is present the ratio E41
+/E21

+ as a fingerprint of the collective 

structure in nuclei, even for the nucleus with closet proton shell (188Pb). The 

collectivity found in 188Pb by GCM calculation appears to be compatible with the 

valence p-n interaction scheme (Ref.[8]) which extends the nucleus’ collectivity. 

Fig.2-b Value of the E41
+/E21

+ ratio in even-even N=106 isotonic chain nuclei obtained in the 

present study (Model of presentation inspired from Ref.[9]) 
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The deformation shape changes in the even-even N=106 isotonic chain 

nuclei, from deformed asymmetric rotor for (176Yb, 178Hf, 180W, 182Os with nearly 

ideal rotor ratio R4/2 =3.33, 3.33>R4/2 >2.67) to the transitional and spherical 

region with transitional point (R4/2 =2.67, 2.67>R4/2 >2.23 for 184Pt), and (186Hg 

to, 190Po) respectively (with 2.23> R4/2>1.82, at the point R4/2 =2.23 the moment 

of inertia  Jo vanishes), to magic region (for 188Pb, R4/2 =1.47, 1.82>R4/2 >1) is 

shown. 

            Gamma band reproduction of the experimental energies levels it is shown 

in Fig. 2-c for the entire N=106 isotonic chain up to the state 5+. Higher spin states 

are also compared with calculation in the nuclei where the experimental data are 

reported, as indicated in the figure. An overall agreement of the absolute values 

and 𝛾 staggering is obtained with the smooth variation of the model parameters 

obtained in this work. The 𝛾-band heads of the lighter isotones from the chain 

(176Yb,178Hf) has a poor description comparative with the heavier isotones from 

the chain (180W, 182Os, 184Pt, 186Hg, 188Pb), although the staggering in these  𝛾-

bands is  well described.   

 

Fig. 2-c Gamma  bands of even-even  isotonic N=106 chain nuclei  obtained in the present study, 

compared with experiment (For 188Pb and 190Po, no experimental data has been found) 

 

 

            The staggering in 𝛾-band as defined in Ref. [11], with 𝐸(𝐼𝛾
+) the excited 

energy of the 𝛾-band level with angular momentum   𝐼𝛾
+, is: 

 

S(𝐼𝛾 
+ ) =  

{𝐸[𝐼𝛾
+] − 𝐸[(𝐼 − 1)𝛾

+]} − {𝐸[(𝐼 − 1)𝛾
+] − 𝐸[(𝐼 − 2)𝛾 

+ ]}

E21
+
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As shown in Ref.[11], the staggering S(𝐼𝛾
+) in 𝛾-band  is very sensitive to 

structural potential shape change in nuclei. For a nucleus with axial symmetry, 

S(𝐼𝛾
+) is constant with the spin 𝐼𝛾

+ variation in 𝛾-band.  For deformed 𝛾-soft S(𝐼𝛾
+) 

oscillates between negative values for even-spin states ((S(4𝛾
+), S(6𝛾

+), S(8𝛾
+)),  

and positive values for odd-spin states ((S(5𝛾
+), S(7𝛾

+)), (S(9𝛾
+)). For triaxial rigid 

potential, S(𝐼𝛾
+) oscillates in the (quasi) 𝛾-band between positive values for even-

spin states and negative values for odd-spin states. In the case of triaxiality, the 

magnitude of the S(𝐼𝛾
+) increases more rapidly with spin as compared with the 

gamma soft potential. Fig.2-e shows that no triaxial potential shapes are present in 

the N=106 isotonic chain, but only axial symmetry and gamma soft feature are 

present. Because the 𝛾rms is nearly the same as the 𝛾 value in 𝛾 rigid triaxial cases 

most predictions are similar for the two cases, but the staggering S(𝐼𝛾
+) can make 

the difference between them ([8], [11]). 
 

Fig.2-e    Staggering S(𝐼𝛾
+) evolution  of the even-even isotonic N=106 chain nuclei obtained in          

the present study, compared with experiment 
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            The staggering S(𝐼𝛾
+) calculated with GCM parameters obtained (Fig.2-e) 

in this study, compared with experiment one for all considered  nuclei  changes 

the sign between  negative values for even-spin states and positive values for odd-

spin states. The situation is consistent with 𝛾- soft potential, but not with the 

triaxial one. The experimental poor data, with S(3𝛾
+)≈S(4𝛾

+)≈25 in 176Yb confirms 

only axial symmetry in potential, but the theoretical data completes this potential 

picture with 𝛾-soft features for larger excitation energy E(𝐼𝛾
+)  >𝐸(6𝛾

+). For the 

first 3 nuclei (176Yb, 178Hf, 180W), S(4𝛾
+) and S(5𝛾

+), are positive in their values, 

resulting that the potential of this nuclei presents axial symmetry features, arising 

transition to 𝛾-soft feature in potential  only for larger excitation energies  E(𝐼𝛾
+)  

≳𝐸(5𝛾
+). For the 182Os nucleus, the experimental S(3𝛾

+)>0 and S(4𝛾
+)<0, resulting 

a transition from   axial symmetry potential region  to a 𝛾-soft potential region  

with a deformed 𝛾-valley, at the excitation energies transition point  

E(𝐼𝛾
+) ≈𝐸(4𝛾

+). The transition from axial symmetry potential region to the 𝛾-soft 

potential region arises in all nuclei from this chain but only the excitation energy 

transition point differs, being lower for 188Pb and gradually increases with 
proton valence number until 176Yb, as can be seen in Fig.2-e. This fact is 

consistent with the shown potential barrier in the middle of 𝛾-valley region, lower 

for 188Pb, but increasingly in height with proton valence number.  

             In Fig. 2-d, the experimental levels energy position of the excited 

 K π =0+ bands are compared with GCM theory prediction. The same GCM 

“global” parameters from Table 1-a,b are employed in the calculation. As can be 

observed, the overall agreement is poorer than in g.s.b. and gamma band. But 

ordering of the experiment band energy-levels position is correctly predicted. 

Also, in most cases, in-band staggering of the energy levels is qualitatively well 

reproduced. It is well known that a correct understanding of the excited Kπ = 0+ 

bands is difficult to be obtained in a pure collective model ([7]). 

 Fig. 2-d Beta bands of even-even isotonic N=106 chain nuclei obtained in the present study,          

compared with experiment 
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Mixing of the single-particle and collective degrees of freedom is a strong feature 

in these bands, and part of the energy levels is not included in the GCM model 

space.  

           In Fig.2-e, the BE2(01
+⇾21

+) values evolution of the even-even isotonic 

N=106 chain nuclei obtained in the present study, compared with experiment is 

given. As expected, the smallest value of this observable is associated with the 

shell closure and a smooth variation is obtained from a nucleus to other. For 190Po, 

is found no experimental BE2 (01
+⇾21

+) values, but the GCM predicts for this 

nucleus a value of 1.41 e2b2. 

 
Fig.2-e    The BE2 (01

+⇾21
+) evolution of the even-even isotonic N=106 chain nuclei obtained with 

the used fitting procedure in the present study, compared with experimental data [10]. 

As expected, from the reduced transition probabilities BE2 (01
+⇾21

+) in Fig.2-

e and excitation energies of 21
+ states in Fig. 2-a as functions of proton number, it 

appears less collectivity in the closed shell proton and vicinity (186Hg, 188Pb, 
190Po), but enhanced collectivity with the increasing of the proton valence number 

in the case of 184Pt, 182Os, 180W, 178Hf, and 176Yb nuclei ([8],[9],[12]). 
 

3. Conclusions 

             In this paper, it is applied the GCM to the even-even isotonic N=106 

chain nuclei (176Yb, 178Hf, 180W, 182Os, 184Pt, 186Hg, 188Pb, and 190Po. The 

model parameters are obtained imposing for the g.s. absolute values, the 

experimental BE/A. The “in-band” energy levels ordering and the band-heads 

values are well predicted. A good agreement is obtained for the g. s. bands and 

𝛾-bands. Less accurate description of the bandheads position is obtained for 

the Kπ = 0+ bands, but the “in-band” structures are reasonable described. For 

some cases where experimental information is scarce, the GCM calculations 

provide predictions that can guide experimental investigation.   

             It is shown that the geometrical shape of the potential determines very 

well the low-lying energy spectra, and the absolute B(E2) values are in general, 
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well reproduced. From the staggering S(𝐼𝛾
+) in 𝛾–band,  results for all nuclei a 

transition from a potential  region with axial symmetry,  to a potential region with 

𝛾-soft valley,  at an excitation energy transition point smaller for 188Pb but  

increasing with the proton valence number, in agreement with the potential barrier 

from the middle of the 𝛾-valley. 
                   Evolution of the nuclear shape in the even-even N=106 chain nuclei                 

( Fig.2-b) shows a transition from deformed asymmetric rotor (for176Yb, 178Hf, 
180W, 182Os) to transitional region (for  184P) and then to spherical region (for 
186Hg and 190Po) and magical region (for 188Pb) respectively. 

            By using the GCM parameters from the present work, a detailed 

presentation of the PES and two proton separation energies will be given in 

Ref.[7], for the even-even N=106 isotonic chain nuclei. A detailed comparison 

between GCM and experimental data applied to each nucleus from the even-even 

N=106 isotonic chain will be presented in a future work. 
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