

A COMPOSITE SPLITTING ALGORITHM FOR SOLVING FIXED POINT AND VARIATIONAL INCLUSION PROBLEMS IN HILBERT SPACES

Xiaopeng Zhao¹, Yufei Zhao²

In this paper, we present a composite splitting method for solving fixed point and variational inclusion problems in a real Hilbert space. The introduced method consists of forward-backward method, Tseng-type method and self-adaptive method. Under some additional conditions, we prove that the sequence generated by the splitting method strongly converges to a solution of fixed point and variational inclusion problems.

Keywords: fixed point, variational inclusion, monotone operator, pseudocontraction.

MSC2020: 47H05, 47H10, 65Y05, 65K15.

1. Introduction

Let \mathcal{H} be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\|\cdot\|$. Let $g : \mathcal{H} \rightrightarrows 2^{\mathcal{H}}$ be a set-valued operator and $h : \mathcal{H} \rightarrow \mathcal{H}$ be a single-valued operator. In this paper, we investigate the variational inclusion problem which aims to find a point $u^\dagger \in \mathcal{H}$ such that

$$0 \in (g + h)(u^\dagger). \quad (1)$$

The reason why we are interested in the variational inclusion problem (1) is that is closely related to the following well-known minimization problem

$$\min_{x \in \mathcal{H}} \{G(x) + H(x)\}, \quad (2)$$

where $G, H : \mathcal{H} \rightarrow \mathbf{R} \cup \{+\infty\}$ are two proper, lower semicontinuous and convex functions such that G is subdifferentiable and H is differentiable. As a matter of fact, if set $g = \partial G$ and $h = \nabla H$, then solving (2) is equivalent to solving (1).

Now, it is well known that variational inclusion problems offer a model framework for discussing many interesting problems, such as fixed point problems ([19–21, 27]), optimization problems ([12, 17, 18, 24]), split problems ([10, 11, 29, 31, 32, 34, 39]), equilibrium problems ([30, 48]) and variational inequalities ([3, 4, 28, 33, 35–38, 41, 42, 46]). Numerous iterative algorithms are studied and designed for finding a solution of the variational inclusion (1), see [1, 2, 7, 8, 16, 43, 45]. Especially, an interesting algorithm for solving (1) is the forward-backward algorithm ([13–15]) which generates a sequence $\{x_n\}$ as follows: $x_0 \in \mathcal{H}$,

$$x_{n+1} = (I + \varpi_n g)^{-1}(I - \varpi_n h)(x_n), \quad n \geq 0, \quad (3)$$

where ϖ_n is a positive constant for all $n \geq 0$.

In the sequel, we use $(g + h)^{-1}(0)$ to stand for the solution set of the variational inclusion (1). If g is maximal monotone and h is strongly monotone or inverse strongly monotone, then the sequence $\{x_n\}$ generated by (3) converges weakly to some point in

¹Corresponding author. School of Mathematical Sciences, Tiangong University, Tianjin 300387, China, e-mail: zhaoxiaopeng.2007@163.com

²School of Mathematical Sciences, Tiangong University, Tianjin 300387, China, e-mail: zyf18863093823@163.com

$(g + h)^{-1}(0)$. Recently, Cholamjiak, Hieu and Cho [6] combined forward-backward method and Tseng's method ([23]) for solving (1) where the operator h is plain monotone.

In this paper, we consider a fixed point problem of finding a point $u^\dagger \in \mathcal{H}$ such that

$$f(u^\dagger) = u^\dagger, \quad (4)$$

where $f : \mathcal{H} \rightarrow \mathcal{H}$ is a pseudocontractive operator. Use $\text{Fix}(f)$ to denote the solution set of (4). We are interested in pseudocontractive operators due to this kind of operators is closely related to monotone or/and accretive operators ([5, 9]). There are many iterative algorithms for solving fixed point problem (4), see [22, 25, 44].

Motivated and inspired by the work in the literature, in this paper we consider a common problem of finding a point $u^\dagger \in \mathcal{H}$ such that

$$u^\dagger \in (g + h)^{-1}(0) \cap \text{Fix}(f). \quad (5)$$

We present a composite splitting method for solving fixed point of pseudocontractive operator and variational inclusion problems in a real Hilbert space \mathcal{H} . The introduced method consists of forward-backward method, Tseng-type method and self-adaptive method. Under some additional conditions, we prove that the sequence generated by the splitting method strongly converges to a point in $(g + h)^{-1}(0) \cap \text{Fix}(f)$.

2. Preliminaries

Let \mathcal{H} be a real Hilbert space. Use “ \rightharpoonup ” and “ \rightarrow ” to denote weak convergence and strong convergence, respectively. Let $\{x_n\} \subset \mathcal{H}$ be a sequence. Write $\omega_w(x_n) = \{x^\dagger : \exists \{x_{n_i}\} \subset \{x_n\} \text{ such that } x_{n_i} \rightharpoonup x^\dagger (i \rightarrow \infty)\}$.

Recall that an operator $f : \mathcal{H} \rightarrow \mathcal{H}$ is said to be pseudocontractive if

$$\langle f(u) - f(u^\dagger), u - u^\dagger \rangle \leq \|u - u^\dagger\|^2, \quad \forall u, u^\dagger \in \mathcal{H}. \quad (6)$$

Note that the inequality (2) is equivalent to

$$\begin{aligned} \|f(u) - f(u^\dagger)\|^2 &\leq \|u - u^\dagger\|^2 + \|(I - f)u - (I - f)u^\dagger\|^2, \\ \Leftrightarrow \langle u - u^\dagger, (I - f)u - (I - f)u^\dagger \rangle &\geq 0, \end{aligned}$$

for all $u, u^\dagger \in \mathcal{H}$.

Let $h : \mathcal{H} \rightarrow \mathcal{H}$ be a mapping. h is said to be

- (i) monotone if $\langle h(x) - h(y), x - y \rangle \geq 0, \forall x, y \in \mathcal{H}$.
- (ii) L -Lipschitz continuous if $\|h(x) - h(y)\| \leq L\|x - y\|, \forall x, y \in \mathcal{H}$, where $L > 0$ is a constant. If $L < 1$, then h is said to be L -contractive.

Recall that a bounded linear operator $B : \mathcal{H} \rightarrow \mathcal{H}$ is said to be σ -strongly positive if there exists a constant $\sigma > 0$ such that $\langle B(x), x \rangle \geq \sigma\|x\|^2, \forall x \in \mathcal{H}$.

Let $g : \mathcal{H} \rightrightarrows 2^{\mathcal{H}}$ be a mapping. g is said to be monotone if and only if $\forall p, q \in \mathcal{H}, \langle p - q, u - v \rangle \geq 0$ where $u \in g(p)$ and $v \in g(q)$. A monotone operator g is said to be maximal monotone if and only if its graph is not strictly contained in the graph of any other monotone operator. Let $g : \mathcal{H} \rightarrow 2^{\mathcal{H}}$ be a maximal monotone operator. Define its resolvent $\text{Res}_\varpi^g : \mathcal{H} \rightarrow \mathcal{H}$ by $\text{Res}_\varpi^g := (I + \varpi g)^{-1}$ where $\varpi > 0$ is any constant. It is well-known that Res_ϖ^g is a single-valued operator and $x \in (g + h)^{-1}(0) \Leftrightarrow x = \text{Res}_\varpi^g(I - \varpi h)(x)$.

Let C be a nonempty closed convex subset of a real Hilbert space \mathcal{H} . Recall the orthogonal projection $\text{proj}_C : \mathcal{H} \rightarrow C$, denoted by $\text{proj}_C(x) := \arg \min_{y \in C} \|x - y\|$ satisfies the following inequality ([40])

$$x \in \mathcal{H}, \langle x - \text{proj}_C(x), y - \text{proj}_C(x) \rangle \leq 0, \quad \forall y \in C. \quad (7)$$

In any Hilbert space \mathcal{H} , $\forall u, u^\dagger \in \mathcal{H}$ and $\forall \varsigma \in \mathcal{R}$, we have

$$\|\varsigma u + (1 - \varsigma)u^\dagger\|^2 = \varsigma\|u\|^2 + (1 - \varsigma)\|u^\dagger\|^2 - \varsigma(1 - \varsigma)\|u - u^\dagger\|^2. \quad (8)$$

Lemma 2.1 ([30, 47]). *Let C be a nonempty closed convex subset of a real Hilbert space \mathcal{H} . Let $f : C \rightarrow C$ be an L -Lipschitz pseudocontractive operator. Then,*

- (i) f is demiclosed, i.e., $u_n \rightharpoonup \tilde{z}$ and $f(u_n) \rightarrow z^\dagger \Rightarrow f(\tilde{z}) = z^\dagger$.
- (ii) $\forall \tilde{u} \in C$ and $u^\dagger \in \text{Fix}(f)$, we have

$$\|f[(1-\tau)\tilde{u} + \tau f(\tilde{u})] - u^\dagger\|^2 \leq \|\tilde{u} - u^\dagger\|^2 + (1-\tau)\|f[(1-\tau)\tilde{u} + \tau f(\tilde{u})] - \tilde{u}\|^2,$$

where $0 < \tau < \frac{1}{\sqrt{1+L^2}+1}$.

Lemma 2.2 ([26]). *Suppose that $\{a_n\} \subset (0, \infty)$, $\{b_n\} \subset (0, 1)$ and $\{c_n\}$ are three real number sequences. Suppose that $a_{n+1} \leq (1-b_n)a_n + a_n c_n, \forall n \geq 0$, $\sum_{n=1}^{\infty} b_n = \infty$ and $\limsup_{n \rightarrow \infty} c_n \leq 0$. Then $\lim_{n \rightarrow \infty} a_n = 0$.*

3. Main results

In this section, we introduce an iterative algorithm and prove that it converges strongly to an element in $\text{Fix}(f) \cap (g+h)^{-1}$. Let \mathcal{H} be a real Hilbert space. Let $f : \mathcal{H} \rightarrow \mathcal{H}$ be an L_1 -Lipschitz pseudocontractive operator and $g : \mathcal{H} \rightarrow 2^{\mathcal{H}}$ be a maximal monotone operator. Let $h : \mathcal{H} \rightarrow \mathcal{H}$ be an L_2 -Lipschitz monotone operator and $\varphi : \mathcal{H} \rightarrow \mathcal{H}$ be a κ -contractive operator. Let $B : \mathcal{H} \rightarrow \mathcal{H}$ be a σ -strong positive bounded linear operator. Suppose that $\Omega := \text{Fix}(f) \cap (g+h)^{-1} \neq \emptyset$.

Let $\{\varsigma_n\}_{n=0}^{\infty} \subset (0, 1]$, $\{\tau_n\}_{n=0}^{\infty} \subset (0, 1)$, $\{\lambda_n\}_{n=0}^{\infty} \subset (0, 1)$ and $\{\gamma_n\}_{n=0}^{\infty} \subset (0, 1)$ be four real number sequences. Let $\delta \in (0, 1)$ and $\alpha \in (0, \sigma/\kappa)$ be two constants. In what follows, suppose that $\lim_{n \rightarrow \infty} \gamma_n = 0$, $\sum_{n=0}^{\infty} \gamma_n = \infty$, $\{\varsigma_n\}_{n=0}^{\infty} \subset [\underline{\varsigma}, \bar{\varsigma}] \subset (0, 1]$ and $0 < \vartheta < \lambda_n < \tau_n < \frac{1}{\sqrt{1+L_1^2}+1} (\forall n \geq 0)$.

Next, we present an iterative algorithm for finding an element in Ω .

Algorithm 3.1. *Let $x_0 \in \mathcal{H}$ be an initial value and $\varpi_0 > 0$ be a fixed constant.*

Step 1. Let x_n be known. Compute

$$\begin{cases} z_n = \text{Res}_{\varpi_n}^g(x_n - \varpi_n h(x_n)), \\ y_n = z_n - \varpi_n(h(z_n) - h(x_n)), \\ u_n = (1 - \varsigma_n)x_n + \varsigma_n y_n. \end{cases} \quad (9)$$

Step 2. Compute

$$\begin{cases} v_n = (1 - \tau_n)u_n + \tau_n f(u_n), \\ w_n = (1 - \lambda_n)u_n + \lambda_n f(v_n). \end{cases} \quad (10)$$

Step 3. Compute

$$x_{n+1} = \alpha \gamma_n \varphi(x_n) + (I - \gamma_n B)w_n. \quad (11)$$

Step 4. Update

$$\varpi_{n+1} = \begin{cases} \min \left\{ \varpi_n, \frac{\delta \|x_n - z_n\|}{\|h(x_n) - h(z_n)\|} \right\}, & \text{if } x_n \neq z_n, \\ \varpi_n, & \text{else.} \end{cases} \quad (12)$$

Replace n by $n + 1$ and return to Step 1.

Remark 3.1. *We have the following statements: (i) $\text{Res}_{\varpi_n}^g(x_n - \varpi_n h(x_n)) = x_n \Rightarrow x_n \in (g+h)^{-1}(0)$. (ii) $\varpi_n \geq \varpi_{n+1} \geq \min\{\varpi_0, \frac{\delta}{L_2}\}$ and $\lim_{n \rightarrow \infty} \varpi_n = \varpi > 0$. (iii) By the assumptions, we deduce that $\text{proj}_{\Omega} \circ (I - B + \alpha \varphi)$ is contractive. Thus, $\text{proj}_{\Omega} \circ (I - B + \alpha \varphi)$ has a unique fixed point in Ω , denoted by z^\dagger . Therefore, $\langle \alpha \varphi(z^\dagger) - B(z^\dagger), x - z^\dagger \rangle \leq 0, \forall x \in \Omega$.*

Proposition 3.1. *The sequence $\{x_n\}$ generated by Algorithm 3.1 is bounded.*

Proof. From (9), we have

$$\begin{aligned}\|y_n - z^\dagger\|^2 &= \|z_n - z^\dagger - \varpi_n(h(z_n) - h(x_n))\|^2 \\ &= \|z_n - z^\dagger\|^2 - 2\varpi_n\langle h(z_n) - h(x_n), z_n - z^\dagger \rangle + \varpi_n^2\|h(x_n) - h(z_n)\|^2.\end{aligned}\quad (13)$$

Observe that $\|z_n - z^\dagger\|^2 = \|x_n - z^\dagger\|^2 + 2\langle z_n - x_n, z_n - z^\dagger \rangle - \|x_n - z_n\|^2$. By (13), we get

$$\begin{aligned}\|y_n - z^\dagger\|^2 &= \|x_n - z^\dagger\|^2 - 2\varpi_n\langle h(z_n) - h(x_n), z_n - z^\dagger \rangle - \|x_n - z_n\|^2 \\ &\quad + 2\langle z_n - x_n, z_n - z^\dagger \rangle + \varpi_n^2\|h(x_n) - h(z_n)\|^2 \\ &= \|x_n - z^\dagger\|^2 + \varpi_n^2\|h(x_n) - h(z_n)\|^2 - \|x_n - z_n\|^2 \\ &\quad + 2\langle z_n - x_n - \varpi_n(h(z_n) - h(x_n)), z_n - z^\dagger \rangle.\end{aligned}\quad (14)$$

Since $z_n = (I + \varpi_n g)^{-1}(x_n - \varpi_n h(x_n))$,

$$x_n - \varpi_n h(x_n) \in z_n + \varpi_n g(z_n). \quad (15)$$

It yields

$$x_n - z_n - \varpi_n(h(x_n) - h(z_n)) \in \varpi_n(g(z_n) + h(z_n)). \quad (16)$$

Since $z^\dagger \in (g + h)^{-1}$, we have $0 \in \varpi_n(g + h)z^\dagger$. By the monotonicity of $\varpi_n(g + h)$ and (16), we obtain

$$\langle x_n - z_n - \varpi_n(h(x_n) - h(z_n)), z_n - z^\dagger \rangle \geq 0. \quad (17)$$

According to (12), we have $\|h(x_n) - h(z_n)\| \leq \frac{\delta\|x_n - z_n\|}{\varpi_{n+1}}$. Combining (14) with (17), we acquire

$$\|y_n - z^\dagger\|^2 \leq \|x_n - z^\dagger\|^2 - \left(1 - \delta^2 \frac{\varpi_n^2}{\varpi_{n+1}^2}\right)\|x_n - z_n\|^2. \quad (18)$$

In the light of (7) and (9), we achieve

$$\begin{aligned}\|u_n - z^\dagger\|^2 &= \|(1 - \varsigma_n)(x_n - z^\dagger) + \varsigma_n(y_n - z^\dagger)\|^2 \\ &= (1 - \varsigma_n)\|x_n - z^\dagger\|^2 + \varsigma_n\|y_n - z^\dagger\|^2 - (1 - \varsigma_n)\varsigma_n\|x_n - y_n\|^2.\end{aligned}$$

This together with (18) implies that

$$\begin{aligned}\|u_n - z^\dagger\|^2 &\leq \|x_n - z^\dagger\|^2 - \varsigma_n\left(1 - \delta^2 \frac{\varpi_n^2}{\varpi_{n+1}^2}\right)\|x_n - z_n\|^2 - (1 - \varsigma_n)\varsigma_n\|x_n - y_n\|^2 \\ &\leq \|x_n - z^\dagger\|^2.\end{aligned}\quad (19)$$

From (7), we gain

$$\begin{aligned}\|w_n - z^\dagger\|^2 &= \|(1 - \lambda_n)(u_n - z^\dagger) + \lambda_n(f(v_n) - z^\dagger)\|^2 \\ &= (1 - \lambda_n)\|u_n - z^\dagger\|^2 - \lambda_n(1 - \lambda_n)\|f(v_n) - u_n\|^2 + \lambda_n\|f(v_n) - z^\dagger\|^2.\end{aligned}\quad (20)$$

Applying Lemma 2.1, we deduce

$$\begin{aligned}\|f(v_n) - z^\dagger\|^2 &= \|f[(1 - \tau_n)u_n + \tau_n f(u_n)] - z^\dagger\|^2 \\ &\leq \|u_n - z^\dagger\|^2 + (1 - \tau_n)\|f(v_n) - u_n\|^2.\end{aligned}\quad (21)$$

Substituting (21) into (20), we receive

$$\begin{aligned}\|w_n - z^\dagger\|^2 &\leq (1 - \lambda_n)\|u_n - z^\dagger\|^2 - \lambda_n(1 - \lambda_n)\|f(v_n) - u_n\|^2 \\ &\quad + \lambda_n\|u_n - z^\dagger\|^2 + \lambda_n(1 - \tau_n)\|f(v_n) - u_n\|^2 \\ &= \|u_n - z^\dagger\|^2 - \lambda_n(\tau_n - \lambda_n)\|f(v_n) - u_n\|^2 \\ &\leq \|u_n - z^\dagger\|^2.\end{aligned}\quad (22)$$

Taking into account (11), (19) and (22), we derive

$$\begin{aligned}
\|x_{n+1} - z^\dagger\| &= \|\alpha\gamma_n\varphi(x_n) + (I - \gamma_n B)w_n - z^\dagger\| \\
&= \|\alpha\gamma_n(\varphi(x_n) - \varphi(z^\dagger)) + (I - \gamma_n B)(w_n - z^\dagger) + \gamma_n(\alpha\varphi(z^\dagger) - B(z^\dagger))\| \\
&\leq \alpha\gamma_n\|\varphi(x_n) - \varphi(z^\dagger)\| + |I - \gamma_n B|\|w_n - z^\dagger\| + \gamma_n\|\alpha\varphi(z^\dagger) - B(z^\dagger)\| \\
&\leq \alpha\gamma_n\kappa\|x_n - z^\dagger\| + (1 - \sigma\gamma_n)\|w_n - z^\dagger\| + \gamma_n\|\alpha\varphi(z^\dagger) - B(z^\dagger)\| \\
&\leq [1 - (\sigma - \alpha\kappa)\gamma_n]\|x_n - z^\dagger\| + \gamma_n\|\alpha\varphi(z^\dagger) - B(z^\dagger)\|.
\end{aligned} \tag{23}$$

By induction, we have $\|x_n - z^\dagger\| \leq \max\{\|\alpha\varphi(z^\dagger) - B(z^\dagger)\|/(\sigma - \alpha\kappa), \|x_0 - z^\dagger\|\}$ and the sequence $\{x_n\}$ is bounded. \square

Proposition 3.2. $\omega_w(x_n) \subset \text{Fix}(f)$.

Proof. On account of (11), we achieve

$$\begin{aligned}
\|x_{n+1} - z^\dagger\|^2 &= \|\alpha\gamma_n(\varphi(x_n) - \varphi(z^\dagger)) + (I - \gamma_n B)(w_n - z^\dagger) + \gamma_n(\alpha\varphi(z^\dagger) - B(z^\dagger))\|^2 \\
&\leq \|(I - \gamma_n B)(w_n - z^\dagger)\|^2 + 2\alpha\gamma_n\langle\varphi(x_n) - \varphi(z^\dagger), x_{n+1} - z^\dagger\rangle \\
&\quad + 2\gamma_n\langle\alpha\varphi(z^\dagger) - B(z^\dagger), x_{n+1} - z^\dagger\rangle \\
&\leq (1 - \sigma\gamma_n)^2\|w_n - z^\dagger\|^2 + 2\alpha\kappa\gamma_n\|x_n - z^\dagger\|\|x_{n+1} - z^\dagger\| \\
&\quad + 2\gamma_n\langle\alpha\varphi(z^\dagger) - B(z^\dagger), x_{n+1} - z^\dagger\rangle \\
&\leq (1 - \sigma\gamma_n)^2\|w_n - z^\dagger\|^2 + \alpha\kappa\gamma_n\|x_n - z^\dagger\|^2 + \alpha\kappa\gamma_n\|x_{n+1} - z^\dagger\|^2 \\
&\quad + 2\gamma_n\langle\alpha\varphi(z^\dagger) - B(z^\dagger), x_{n+1} - z^\dagger\rangle.
\end{aligned}$$

It follows that

$$\begin{aligned}
\|x_{n+1} - z^\dagger\|^2 &\leq \frac{(1 - \sigma\gamma_n)^2}{1 - \alpha\kappa\gamma_n}\|w_n - z^\dagger\|^2 + \frac{\alpha\kappa\gamma_n}{1 - \alpha\kappa\gamma_n}\|x_n - z^\dagger\|^2 \\
&\quad + \frac{2\gamma_n}{1 - \alpha\kappa\gamma_n}\langle\alpha\varphi(z^\dagger) - B(z^\dagger), x_{n+1} - z^\dagger\rangle.
\end{aligned} \tag{24}$$

Substituting (19) and (22) into (24), we attain

$$\begin{aligned}
\|x_{n+1} - z^\dagger\|^2 &\leq \frac{(1 - \sigma\gamma_n)^2}{1 - \alpha\kappa\gamma_n}(\|x_n - z^\dagger\|^2 - \varsigma_n(1 - \delta^2\frac{\varpi_n^2}{\varpi_{n+1}^2})\|x_n - z_n\|^2 \\
&\quad - (1 - \varsigma_n)\varsigma_n\|x_n - y_n\|^2 - \lambda_n(\tau_n - \lambda_n)\|f(v_n) - u_n\|^2) \\
&\quad + \frac{\alpha\kappa\gamma_n}{1 - \alpha\kappa\gamma_n}\|x_n - z^\dagger\|^2 + \frac{2\gamma_n}{1 - \alpha\kappa\gamma_n}\langle\alpha\varphi(z^\dagger) - B(z^\dagger), x_{n+1} - z^\dagger\rangle.
\end{aligned}$$

It follows that

$$\begin{aligned}
\|x_{n+1} - z^\dagger\|^2 &\leq [1 - \frac{2(\sigma - \alpha\kappa)\gamma_n}{1 - \alpha\kappa\gamma_n}]\|x_n - z^\dagger\|^2 + \frac{2(\sigma - \alpha\kappa)\gamma_n}{1 - \alpha\kappa\gamma_n} \times \left(-\frac{(1 - \sigma\gamma_n)^2}{2(\sigma - \alpha\kappa)}\right. \\
&\quad \times \varsigma_n(1 - \delta^2\frac{\varpi_n^2}{\varpi_{n+1}^2})\frac{\|x_n - z_n\|^2}{\gamma_n} - \frac{(1 - \sigma\gamma_n)^2}{2(\sigma - \alpha\kappa)}(1 - \varsigma_n)\varsigma_n\frac{\|x_n - y_n\|^2}{\gamma_n} \\
&\quad - \frac{(1 - \sigma\gamma_n)^2}{2(\sigma - \alpha\kappa)}\lambda_n(\tau_n - \lambda_n)\frac{\|f(v_n) - u_n\|^2}{\gamma_n} + \frac{\sigma^2\gamma_n}{2(\sigma - \alpha\kappa)}M \\
&\quad \left. + \frac{1}{\sigma - \alpha\kappa}\langle\alpha\varphi(z^\dagger) - B(z^\dagger), x_{n+1} - z^\dagger\rangle\right),
\end{aligned} \tag{25}$$

where M is a constant such that $M \geq \sup_n\{\|x_n - z^\dagger\|^2 + \|x_n - x^*\|\}$.

Put $a_n = \|x_n - z^\dagger\|^2$, $b_n = \frac{2(\sigma - \alpha\kappa)\gamma_n}{1 - \alpha\kappa\gamma_n}$ and

$$\begin{aligned} c_n &= -\frac{(1 - \sigma\gamma_n)^2}{2(\sigma - \alpha\kappa)}\varsigma_n(1 - \delta^2\frac{\varpi_n^2}{\varpi_{n+1}^2})\frac{\|x_n - z_n\|^2}{\gamma_n} - \frac{(1 - \sigma\gamma_n)^2}{2(\sigma - \alpha\kappa)}(1 - \varsigma_n)\varsigma_n\frac{\|x_n - y_n\|^2}{\gamma_n} \\ &\quad - \frac{(1 - \sigma\gamma_n)^2}{2(\sigma - \alpha\kappa)}\lambda_n(\tau_n - \lambda_n)\frac{\|f(v_n) - u_n\|^2}{\gamma_n} + \frac{\sigma^2\gamma_n}{2(\sigma - \alpha\kappa)}M \\ &\quad + \frac{1}{\sigma - \alpha\kappa}\langle\alpha\varphi(z^\dagger) - B(z^\dagger), x_{n+1} - z^\dagger\rangle, \end{aligned} \quad (26)$$

for all $n \geq 0$.

Owing to (25) and (26), we have

$$a_{n+1} \leq (1 - b_n)a_n + b_n c_n, \quad \forall n \geq 0. \quad (27)$$

Next, we show $-1 \leq \limsup_{n \rightarrow \infty} c_n < +\infty$. First, from (26), we have

$$\begin{aligned} c_n &\leq \frac{\sigma^2\gamma_n}{2(\sigma - \alpha\kappa)}M + \frac{1}{\sigma - \alpha\kappa}\langle\alpha\varphi(z^\dagger) - B(z^\dagger), x_{n+1} - z^\dagger\rangle \\ &\leq \frac{\sigma^2M}{2(\sigma - \alpha\kappa)} + \frac{M}{\sigma - \alpha\kappa}\|\alpha\varphi(z^\dagger) - B(z^\dagger)\|, \end{aligned}$$

which implies that $\limsup_{n \rightarrow \infty} c_n < +\infty$. Now, we show $\limsup_{n \rightarrow \infty} c_n \geq -1$ by reduction to absurdity. Suppose that $\limsup_{n \rightarrow \infty} c_n < -1$. Then there exists N_0 such that $c_n < -1, \forall n \geq N_0$. On account of (27), we achieve $a_{n+1} \leq a_n - b_n$ when $n \geq N_0$. This implies that $a_{n+1} \leq a_{N_0} - \sum_{k=N_0}^n b_k$. It follows that $\limsup_{n \rightarrow \infty} a_n \leq a_{N_0} - \limsup_{n \rightarrow \infty} \sum_{k=N_0}^n b_k = -\infty$. This contradicts the hypothesis. So, $-1 \leq \limsup_{n \rightarrow \infty} c_n < +\infty$. Choose any $x^\dagger \in \omega_w(x_n)$. Then, there is a subsequence $\{n_i\} \subset \{n\}$ such that $x_{n_i} \rightharpoonup x^\dagger$ as $i \rightarrow \infty$ and

$$\begin{aligned} \limsup_{n \rightarrow \infty} c_n &= \lim_{i \rightarrow \infty} c_{n_i} = \lim_{i \rightarrow \infty} \left[-\frac{(1 - \sigma\gamma_{n_i})^2}{2(\sigma - \alpha\kappa)}\varsigma_{n_i}(1 - \delta^2\frac{\varpi_{n_i}^2}{\varpi_{n_i+1}^2})\frac{\|x_{n_i} - z_{n_i}\|^2}{\gamma_{n_i}} \right. \\ &\quad - \frac{(1 - \sigma\gamma_{n_i})^2}{2(\sigma - \alpha\kappa)}(1 - \varsigma_{n_i})\varsigma_{n_i}\frac{\|x_{n_i} - y_{n_i}\|^2}{\gamma_{n_i}} + \frac{1}{\sigma - \alpha\kappa}\langle\alpha\varphi(z^\dagger) - B(z^\dagger), x_{n_i+1} - z^\dagger\rangle \\ &\quad \left. - \frac{(1 - \sigma\gamma_{n_i})^2}{2(\sigma - \alpha\kappa)}\lambda_{n_i}(\tau_{n_i} - \lambda_{n_i})\frac{\|f(v_{n_i}) - u_{n_i}\|^2}{\gamma_{n_i}} + \frac{\sigma^2\gamma_{n_i}}{2(\sigma - \alpha\kappa)}M \right]. \end{aligned} \quad (28)$$

Since the sequence $\{x_{n_i+1}\}$ is bounded, there exists a subsequence of $\{x_{n_i+1}\}$, without loss of generality, still denoted by $\{x_{n_i+1}\}$ such that $x_{n_i+1} \rightharpoonup \hat{x} (i \rightarrow \infty)$. Thus, $\lim_{i \rightarrow \infty} \langle\alpha\varphi(z^\dagger) - B(z^\dagger), x_{n_i+1} - z^\dagger\rangle = \langle\alpha\varphi(z^\dagger) - B(z^\dagger), \hat{x} - z^\dagger\rangle$ exists. It follows from (28) that

$$\begin{aligned} \lim_{i \rightarrow \infty} &\left[-\frac{(1 - \sigma\gamma_{n_i})^2}{2(\sigma - \alpha\kappa)}\varsigma_{n_i}(1 - \delta^2\frac{\varpi_{n_i}^2}{\varpi_{n_i+1}^2})\frac{\|x_{n_i} - z_{n_i}\|^2}{\gamma_{n_i}} - \frac{(1 - \sigma\gamma_{n_i})^2}{2(\sigma - \alpha\kappa)} \right. \\ &\quad \times (1 - \varsigma_{n_i})\varsigma_{n_i}\frac{\|x_{n_i} - y_{n_i}\|^2}{\gamma_{n_i}} - \left. \frac{(1 - \sigma\gamma_{n_i})^2}{2(\sigma - \alpha\kappa)}\lambda_{n_i}(\tau_{n_i} - \lambda_{n_i})\frac{\|f(v_{n_i}) - u_{n_i}\|^2}{\gamma_{n_i}} \right] \end{aligned} \quad (29)$$

exists. Since $\lim_{i \rightarrow \infty} \gamma_{n_i} = 0$, from (29), we deduce

$$\lim_{i \rightarrow \infty} \|x_{n_i} - z_{n_i}\| = 0, \quad (30)$$

$$\lim_{i \rightarrow \infty} \|x_{n_i} - y_{n_i}\| = 0, \quad (31)$$

and

$$\lim_{i \rightarrow \infty} \|f(v_{n_i}) - u_{n_i}\| = 0. \quad (32)$$

Since h is L_2 -Lipschitz continuous, by (30), we have

$$\lim_{i \rightarrow \infty} \|h(z_{n_i}) - h(x_{n_i})\| = 0. \quad (33)$$

Owing to $u_{n_i} - x_{n_i} = \varsigma_{n_i}(y_{n_i} - x_{n_i})$ and (31), we derive

$$\lim_{i \rightarrow \infty} \|u_{n_i} - x_{n_i}\| = 0. \quad (34)$$

In accordance with (10), we receive

$$\begin{aligned} \|u_{n_i} - f(u_{n_i})\| &\leq \|u_{n_i} - f(v_{n_i})\| + \|f(v_{n_i}) - f(u_{n_i})\| \\ &\leq \|u_{n_i} - f(v_{n_i})\| + L_1 \|v_{n_i} - u_{n_i}\| \\ &= \|u_{n_i} - f(v_{n_i})\| + L_1 \tau_{n_i} \|u_{n_i} - f(u_{n_i})\|, \end{aligned}$$

which yields

$$\|u_{n_i} - f(u_{n_i})\| \leq \frac{1}{1 - L_1 \tau_{n_i}} \|u_{n_i} - f(v_{n_i})\|.$$

This together with (32) implies that

$$\lim_{i \rightarrow \infty} \|u_{n_i} - f(u_{n_i})\| = 0. \quad (35)$$

By (34), we have $u_{n_i} \rightharpoonup x^\dagger$ because $x_{n_i} \rightharpoonup x^\dagger$. Applying Lemma 2.1 to (35), we deduce $x^\dagger \in \text{Fix}(f)$. Therefore, $\omega_w(x_n) \subset \text{Fix}(f)$. \square

Proposition 3.3. $\omega_w(x_n) \subset (g + h)^{-1}(0)$.

Proof. Pick any $(u^\dagger, v^\dagger) \in \text{Graph}(g + h)$. Then,

$$v^\dagger - h(u^\dagger) \in g(u^\dagger). \quad (36)$$

Thanks to (15), we have

$$\frac{x_{n_i} - z_{n_i}}{\varpi_{n_i}} - h(x_{n_i}) \in g(z_{n_i}). \quad (37)$$

Since g is monotone, from (36) and (37), we acquire

$$\langle v^\dagger - h(u^\dagger) - \left(\frac{x_{n_i} - z_{n_i}}{\varpi_{n_i}} - h(x_{n_i}) \right), u^\dagger - z_{n_i} \rangle \geq 0.$$

It follows that

$$\begin{aligned} \langle v^\dagger, u^\dagger - z_{n_i} \rangle &\geq \langle h(u^\dagger) - h(x_{n_i}) + \frac{x_{n_i} - z_{n_i}}{\varpi_{n_i}}, u^\dagger - z_{n_i} \rangle \\ &= \langle h(u^\dagger) - h(z_{n_i}), u^\dagger - z_{n_i} \rangle + \langle h(z_{n_i}) - h(x_{n_i}), u^\dagger - z_{n_i} \rangle \\ &\quad + \frac{1}{\varpi_{n_i}} \langle x_{n_i} - z_{n_i}, u^\dagger - z_{n_i} \rangle. \end{aligned} \quad (38)$$

Since h is monotone, $\langle h(u^\dagger) - h(z_{n_i}), u^\dagger - z_{n_i} \rangle \geq 0$. By (38), we get

$$\langle v^\dagger, u^\dagger - z_{n_i} \rangle \geq \langle h(z_{n_i}) - h(x_{n_i}), u^\dagger - z_{n_i} \rangle + \frac{1}{\varpi_{n_i}} \langle x_{n_i} - z_{n_i}, u^\dagger - z_{n_i} \rangle. \quad (39)$$

Owing to $x_{n_i} \rightharpoonup x^\dagger$, from (30), we also have $z_{n_i} \rightharpoonup x^\dagger$. Taking into account (30), and (33), we conclude that $\langle v^\dagger, u^\dagger - x^\dagger \rangle \geq 0$ for all $(u^\dagger, v^\dagger) \in \text{Graph}(g + h)$. Thus, $x^\dagger \in (g + h)^{-1}$. Therefore, $\omega_w(x_n) \in (g + h)^{-1}$. \square

Finally, we demonstrate the convergence of the sequence $\{x_n\}$ generated by Algorithm 3.1.

Theorem 3.1. *The sequence $\{x_n\}$ generated by Algorithm 3.1 converges strongly to z^\dagger .*

Proof. First, by Propositions 3.2 and 3.3, we have $\omega_w(x_n) \in \Omega$. From (10) and (11), we obtain

$$\begin{aligned} x_{n_i+1} - x_{n_i} &= \gamma_{n_i}(\alpha\varphi(x_{n_i}) - B(w_{n_i})) + (w_{n_i} - x_{n_i}) \\ &= \gamma_{n_i}(\alpha\varphi(x_{n_i}) - B(w_{n_i})) + (1 - \lambda_{n_i})(u_{n_i} - x_{n_i}) \\ &\quad + \lambda_{n_i}(f(v_{n_i}) - u_{n_i} + u_{n_i} - x_{n_i}). \end{aligned}$$

This together with (32) and (34) implies that $\|x_{n_i+1} - x_{n_i}\| \rightarrow 0$. Hence, $x_{n_i+1} \rightharpoonup x^\dagger$ ($i \rightarrow \infty$). According to (28), we derive

$$\begin{aligned} \limsup_{n \rightarrow \infty} c_n &\leq \lim_{i \rightarrow \infty} \left(\frac{\sigma^2 \gamma_{n_i}}{2(\sigma - \alpha\kappa)} M + \frac{1}{\sigma - \alpha\kappa} \langle \alpha\varphi(z^\dagger) - B(z^\dagger), x_{n_i+1} - z^\dagger \rangle \right) \\ &= \frac{1}{\sigma - \alpha\kappa} \langle \alpha\varphi(z^\dagger) - B(z^\dagger), x^\dagger - z^\dagger \rangle \leq 0. \end{aligned} \quad (40)$$

From (25), we obtain

$$\|x_{n+1} - z^\dagger\|^2 \leq [1 - \frac{2(\sigma - \alpha\kappa)\gamma_n}{1 - \alpha\kappa\gamma_n}] \|x_n - z^\dagger\|^2 + \frac{2(\sigma - \alpha\kappa)\gamma_n}{1 - \alpha\kappa\gamma_n} c_n, \quad (41)$$

It is obviously that $\frac{2(\sigma - \alpha\kappa)\gamma_n}{1 - \alpha\kappa\gamma_n} \rightarrow 0$ and $\sum_n \frac{2(\sigma - \alpha\kappa)\gamma_n}{1 - \alpha\kappa\gamma_n} = +\infty$. By Lemma 2.2, (40) and (41), we conclude that $x_n \rightarrow z^\dagger$. This completes the proof. \square

4. Conclusions

In this paper, we propose a composite splitting algorithm [Algorithm 3.1] for solving variational inclusion problem (1) and fixed point problem (4) in a real Hilbert space \mathcal{H} . The introduced algorithm [Algorithm 3.1] consists of forward-backward algorithm (3), Tseng-type algorithm (9) and self-adaptive rule (12). Under some additional conditions, we prove that the sequence $\{x_n\}$ generated by the splitting algorithm [Algorithm 3.1] strongly converges to a point $z^\dagger = \text{proj}_\Omega \circ (I - B + \alpha\varphi)z^\dagger$ which solves the variational inequality $\langle \alpha\varphi(z^\dagger) - B(z^\dagger), x - z^\dagger \rangle \leq 0, \forall x \in \text{Fix}(f) \cap (g + h)^{-1}(0)$.

REFERENCES

- [1] *F. Alvarez and H. Attouch*, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, *Set-Valued Anal.*, **9**(2001), 3-11.
- [2] *C. M. Asanya and D. F. Agbebaku*, Iterative method with inertial and error terms for monotone inclusion and fixed point problems in Hilbert spaces, *Appl. Anal. Optim.*, **5(3)**(2021), 291-307.
- [3] *L. C. Ceng, C. F. Wen, J. C. Yao and Y. Yao*, Hybrid Viscosity Approximation Methods for Systems of Variational Inequalities and Hierarchical Fixed Point Problems, *Filomat*, **34**(2020), 1927-1947.
- [4] *L. C. Ceng, J. C. Yao and Y. Yao*, Composite steepest-descent method for the triple hierarchical variational inequalities, *Filomat*, **33**(2019), 4403-4419.
- [5] *C. E. Chidume and H. Zegeye*, Iterative solution of nonlinear equations of accretive and pseudocontractive types, *J. Math. Anal. Appl.*, **282**(2003), 756-765.
- [6] *P. Cholamjiak, D. V. Hieu and Y. J. Cho*, Relaxed forward-backward splitting methods for solving variational inclusions and applications, *J. Sci. Comput.*, **88**(2021), Article Number 85.
- [7] *V. Dadashi and M. Postolache*, Forward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators, *Arab. J. Math.*, **9**(2020), 89-99.
- [8] *D. Davis and W. T. Yin*, A three-operator splitting scheme and its optimization applications, *Set-Valued Var. Anal.*, **25**(2017), 829-858.

- [9] *K. Deimling*, Zeros of accretive operators, *Manuscripta Math.*, **13**(1974), 365-374.
- [10] *Q. L. Dong, L. Liu and Y. Yao*, Self-adaptive projection and contraction methods with alternated inertial terms for solving the split feasibility problem, *J. Nonlinear Convex Anal.*, **23(3)**(2022), 591-605.
- [11] *Q. L. Dong, Y. Peng and Y. Yao*, Alternated inertial projection methods for the split equality problem, *J. Nonlinear Convex Anal.*, **22**(2021), 53-67.
- [12] *S. He, Z. Wang, Q. Dong, Y. Yao and Y. Tang*, The dual randomized Kaczmarz algorithm, *J. Nonlinear Convex Anal.*, in press.
- [13] *P. L. Lions and B. Mercier*, Splitting algorithms for the sum of two nonlinear operators, *SIAM J. Numer. Anal.*, **16**(1979), 964-979.
- [14] *Y. Malitsky and M. K. Tam*, A forward-backward splitting method for monotone inclusions without cocoercivity, *SIAM J. Optim.*, **30**(2020), 1451-1472.
- [15] *G. B. Passty*, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, *J. Math. Anal. Appl.*, **72**(1979), 383-390.
- [16] *R. T. Rockafellar*, Monotone operators and the proximal point algorithm, *SIAM J. Control Optim.*, **14**(1976), 877-898.
- [17] *D. R. Sahu, A. Pitea and M. Verma*, A new iteration technique for nonlinear operators as concerns convex programming and feasibility problems, *Numer. Algor.*, **83(2)**(2020), 421-449.
- [18] *S. S. Santra, O. Bazighifan and M. Postolache*, New conditions for the oscillation of second-order differential equations with sublinear neutral terms, *Mathematics*, **9(11)**(2021), Article Number 1159.
- [19] *W. Sintunavarat and A. Pitea*, On a new iteration scheme for numerical reckoning fixed points of Berinde mappings with convergence analysis, *J. Nonlinear Sci. Appl.*, **9**(2016), 2553-2562.
- [20] *B. S. Thakur, D. Thakur and M. Postolache*, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, *Appl. Math. Comput.*, **275**(2016), 147-155.
- [21] *B. S. Thakur, D. Thakur and M. Postolache*, A new iteration scheme for approximating fixed points of nonexpansive mappings, *Filomat*, **30**(2016), 2711-2720.
- [22] *D. Thakur, B. S. Thakur and M. Postolache*, New iteration scheme for numerical reckoning fixed points of nonexpansive mappings, *J. Inequal. Appl.*, **2014**(2014), Article Number 328.
- [23] *P. Tseng*, A modified forward-backward splitting method for maximal monotone mappings, *SIAM J. Control Optim.*, **38**(2000), 431-446.
- [24] *G. I. Uzarelu, A. Bejenaru and M. Postolache*, Newton-like methods and polynomio-graphic visualization of modified Thakur processes, *Int. J. Comput. Math.*, **98**(2021), No. 5, 1049-1068.
- [25] *G. I. Uzarelu and M. Postolache*, Algorithm for generalized hybrid operators with numerical analysis and applications, *J. Nonlinear Variational Anal.*, **6(3)**(2022), 255-277.
- [26] *H. K. Xu*, Iterative algorithms for nonlinear operators, *J. London Math. Soc.*, **2**(2002), 1-17.
- [27] *Y. Yao, R. P. Agarwal, M. Postolache and Y.C. Liou*, Algorithms with strong convergence for the split common solution of the feasibility problem and fixed point problem, *Fixed Point Theory Appl.*, **2014**(2014), Art. No. 183.
- [28] *Y. Yao, Olaniyi S. Iyiola and Y. Shehu*, Subgradient extragradient method with double inertial steps for variational inequalities, *J. Sci. Comput.*, **90**(2022), Article number 71.
- [29] *Y. Yao, L. Leng, M. Postolache and X. Zheng*, Mann-type iteration method for solving the split common fixed point problem, *J. Nonlinear Convex Anal.*, **18**(2017), 875-882.
- [30] *Y. Yao, H. Li and M. Postolache*, Iterative algorithms for split equilibrium problems of monotone operators and fixed point problems of pseudo-contractions, *Optim.*, in press,

- DOI: 10.1080/02331934.2020.1857757.
- [31] *Y. Yao, Y. C. Liou and M. Postolache*, Self-adaptive algorithms for the split problem of the demicontractive operators, *Optim.*, **67**(2018), 1309-1319.
 - [32] *Y. Yao, Y. C. Liou and J. C. Yao*, Split common fixed point problem for two quasi-pseudocontractive operators and its algorithm construction, *Fixed Point Theory Appl.*, **2015**(2015), Article Number 127.
 - [33] *Y. Yao, Y. C. Liou and J. C. Yao*, Iterative algorithms for the split variational inequality and fixed point problems under nonlinear transformations, *J. Nonlinear Sci. Appl.*, **10**(2017), 843-854.
 - [34] *Y. Yao, M. Postolache and Y. C. Liou*, Strong convergence of a self-adaptive method for the split feasibility problem, *Fixed Point Theory Appl.*, **2013**(2013), Article Number 201.
 - [35] *Y. Yao, M. Postolache, Y. C. Liou and Z. Yao*, Construction algorithms for a class of monotone variational inequalities, *Optim. Lett.*, **10**(2016), 1519-1528.
 - [36] *Y. Yao, M. Postolache and J. C. Yao*, Iterative algorithms for the generalized variational inequalities, *U.P.B. Sci. Bull., Series A*, **81**(2019), 3-16.
 - [37] *Y. Yao, M. Postolache and J. C. Yao*, An iterative algorithm for solving the generalized variational inequalities and fixed points problems, *Mathematics*, **7**(2019), Article Number 61.
 - [38] *Y. Yao, M. Postolache and J. C. Yao*, Strong convergence of an extragradient algorithm for variational inequality and fixed point problems, *U.P.B. Sci. Bull., Series A*, **82(1)**(2020), 3-12.
 - [39] *Y. Yao, M. Postolache and Z. Zhu*, Gradient methods with selection technique for the multiple-sets split feasibility problem, *Optim.*, **69**(2020), 269-281.
 - [40] *Y. Yao, X. Qin and J. C. Yao*, Projection methods for firmly type nonexpansive operators, *J. Nonlinear Convex Anal.*, **19**(2018), 407-415.
 - [41] *Y. Yao, N. Shahzad, M. Postolache and J. C. Yao*, Convergence of self-adaptive Tseng-type algorithms for split variational inequalities and fixed point problems, *Carpathian J. Math.*, in press.
 - [42] *Y. Yao, N. Shahzad and J. C. Yao*, Convergence of Tseng-type self-adaptive algorithms for variational inequalities and fixed point problems, *Carpathian J. Math.*, **37**(2021), 541-550.
 - [43] *Y. Yao, Y. Shehu, X. Li and Q. Dong*, A method with inertial extrapolation step for split monotone inclusion problems, *Optim.*, **70**(2021), 741-761.
 - [44] *Y. Yao, J. C. Yao, Y. C. Liou and M. Postolache*, Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms, *Carpathian J. Math.*, **34**(2018), 459-466.
 - [45] *Y. Yao, J. C. Yao and M. Postolache*, An iterate for solving quasi-variational inclusions and nonmonotone equilibrium problems, *J. Nonlinear Convex Anal.*, in press.
 - [46] *C. Zhang, Z. Zhu, Y. Yao and Q. Liu*, Homotopy method for solving mathematical programs with bounded box-constrained variational inequalities, *Optim.*, **68**(2019), 2293-2312.
 - [47] *H. Zhou*, Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces, *J. Math. Anal. Appl.*, **343**(2008), 546-556.
 - [48] *L. J. Zhu, Y. Yao and M. Postolache*, Projection methods with linesearch technique for pseudomonotone equilibrium problems and fixed point problems, *U.P.B. Sci. Bull., Series A*, **83**(2021), 3-14.