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A COMPOSITE SPLITTING ALGORITHM FOR SOLVING FIXED
POINT AND VARIATIONAL INCLUSION PROBLEMS IN HILBERT
SPACES

Xiaopeng Zhao', Yufei Zhao?

In this paper, we present a composite splitting method for solving fized point
and variational inclusion problems in a real Hilbert space. The introduced method con-
sists of forward-backward method, Tseng-type method and self-adaptive method. Under
some additional conditions, we prove that the sequence generated by the splitting method
strongly converges to a solution of fixed point and variational inclusion problems.
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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and induced norm || - ||. Let
g : 3 = 2% be a set-valued operator and h : H — K be a single-valued operator. In this
paper, we investigate the variational inclusion problem which aims to find a point ut € H
such that

0€ (g+h)(uh). (1)

The reason why we are interested in the variational inclusion problem (1) is that is closely
related to the following well-known minimization problem

min{G(z) + H(z)}, (2)

where G, H : H — R U {+o00} are two proper, lower semicontinuous and convex functions
such that G is subdifferentiable and H is differentiable. As a matter of fact, if set g = 0G
and h = VH, then solving (2) is equivalent to solving (1).

Now, it is well known that variational inclusion problems offer a model framework
for discussing many interesting problems, such as fixed point problems ([19-21, 27]), opti-
mization problems ([12, 17, 18, 24]), split problems ([10, 11, 29, 31, 32, 34, 39]), equilibrium
problems ([30, 48]) and variational inequalities ([3, 4, 28, 33, 35-38, 41, 42, 46]). Numerous
iterative algorithms are studied and designed for finding a solution of the variational inclu-
sion (1), see [1, 2, 7, 8, 16, 43, 45]. Especially, an interesting algorithm for solving (1) is the
forward-backward algorithm ([13-15]) which generates a sequence {z,} as follows: zy € K,

Tpp1 = (I +@ng9) (I — wnh)(z,), n >0, (3)

where w,, is a positive constant for all n > 0.

In the sequel, we use (g + h)~1(0) to stand for the solution set of the variational
inclusion (1). If g is maximal monotone and h is strongly monotone or inverse strongly
monotone, then the sequence {z,} generated by (3) converges weakly to some point in
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(g + h)~1(0). Recently, Cholamjiak, Hieu and Cho [6] combined forward-backward method
and Tseng’s method ([23]) for solving (1) where the operator A is plain monotone.
In this paper, we consider a fixed point problem of finding a point uf € H such that

flut) =l (4)
where f: H — H is a pseudocontractive operator. Use Fix(f) to denote the solution set of
(4). We are interest in pseudocontractive operators due to this kind of operators is closely
related to monotone or/and accretive operators ([5, 9]). There are many iterative algorithms
for solving fixed point problem (4), see [22, 25, 44].

Motivated and inspired by the work in the literature, in this paper we consider a
common problem of finding a point u! € H such that

ul € (g+h)~H0) NFix(f). (5)

We present a composite splitting method for solving fixed point of pseudocontractive oper-
ator and variational inclusion problems in a real Hilbert space H. The introduced method
consists of forward-backward method, Tseng-type method and self-adaptive method. Under
some additional conditions, we prove that the sequence generated by the splitting method
strongly converges to a point in (g + h)~(0) N Fix(f).

2. Preliminaries

Let J be a real Hilbert space. Use “ — 7 and “ — ” to denote weak convergence
and strong convergence, respectively. Let {x,} C H be a sequence. Write wy,(z,) = {zf :
Haxn,} C {xn} such that z,, — x7(i — c0)}.

Recall that an operator f : H — JH is said to be pseudocontractive if

(f(u) = fluh),u—ul) < |lu—ul|]?, Yu,ul € K. (6)
Note that the inequality (2) is equivalent to

1 () = F@D? < Jlu—ul|* + (7 = Fu— (I = HHuh)]?,
su—u',(I - flu—(I- flul) >0,

for all u,u’ € H.

Let h : H — JH be a mapping. h is said to be

(i) monotone if (h(z) — h(y),z —y) >0, Vz,y € H.
(ii) L-Lipschitz continuous if |h(z) — h(y)|| < L||lz — y||, Yo,y € H, where L > 0 is a
constant. If L < 1, then A is said to be L-contractive.

Recall that a bounded linear operator B : H — H is said to be o-strongly positive if there
exists a constant o > 0 such that (B(x),z) > ol||z||?, Vz € 3.

Let g: H = 2% be a mapping. ¢ is said to be monotone if and only if Vp,q € H,
(p — q,u—v) > 0 where u € g(p) and v € g(¢). A monotone operator g is said to be
maximal monotone if and only if its graph is not strictly contained in the graph of any other
monotone operator. Let g: H — 2%t be a maximal monotone operator. Define its resolvent
Res? : H — H by Res? := (I + wg)~! where w > 0 is any constant. It is well-known that
Res is a single-valued operator and = € (g + h)~1(0) & z = Res (I — wh)(x).

Let C be a nonempty closed convex subset of a real Hilbert space J{. Recall the
orthogonal projection proj. : H — C, denoted by proj-(z) := arg min,ecc ||z — y|| satisfies
the following inequality ([40])

v € H, {z— proje(a),y — proje(z)) <0, ¥y € C. (7)
In any Hilbert space H, Vu,u! € 3 and Vs € R, we have
llow+ (1 = )ul[|* = elful]® + (1 = ) Jul[|* = <(1 = ¢)[Ju — || (8)
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Lemma 2.1 ([30, 47]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Let f: C — C be an L-Lipschitz pseudocontractive operator. Then,

(i) f is demiclosed, i.e., u, — % and f(u,) — 2 = f(2) = 2T.

(43) Vi € C and u' € Fix(f), we have

IF1(L = 7)a +7f(@)] = ut|® < [la —u[|* + (1= 1) /(1 - 7)a+7f(@)] - al,
1

where 0<t< m
Lemma 2.2 ([26]). Suppose that {a,} C (0,00), {b,} C (0,1) and {c,} are three real
number sequences. Suppose that ant1 < (1 — bp)a, + ancn,Vn > 0, Y 0° 1 b, = oo and
limsup,, .o ¢n < 0. Then lim,_, a, = 0.

3. Main results

In this section, we introduce an iterative algorithm and prove that it converges
strongly to an element in Fix(f) N (g+h)~!. Let 3 be a real Hilbert space. Let f : 3 — K
be an Li-Lipschitz pseudocontractive operator and ¢ : H — 27¢ be a maximal monotone
operator. Let h : 5{ — J{ be an Ly-Lipschitz monotone operator and ¢ : 5 — I be a
k-contractive operator. Let B : H — H be a o-strong positive bounded linear operator.
Suppose that Q := Fix(f) N (g +h)~L #0.

Let {gn}%o=0 - (05 1]7 {Tn}%ozo - (07 1)7 {>‘7l}%o=0 - (07 1) and {’Yn}vozozo - (07 1) be four
real number sequences. Let 6 € (0,1) and o € (0,0/k) be two constants. In what follows,
suppose that lim, e ¥ = 0, D07 07 = 00, {sn}o2g C [s,¢] € (0,1] and 0 < ¥ < X, <

1
—_— > .
Tn < TV (Vn > 0)

Next, we present an iterative algorithm for finding an element in €.

Algorithm 3.1. Let xg € H be an initial value and wy > 0 be a fized constant.
Step 1. Let x,, be known. Compute

2p = Res?, (xn — wnh(z,)),
Yn = Zn — wn(h’(zn) - h(xn))v (9)
Up = (1 - gn)xn + SnYn-

Step 2. Compute

{vn = (1 = 7m)un + 7o f(un), o)
Wy, = (1= A )un + Anf(vn).
Step 3. Compute
Tnt1 = aYn@(n) + (I = Y B)wn. ()
Step 4. Update
- min {wm M}, if 2, # 2n, 12)

W, else.
Replace n by n + 1 and return to Step 1.

Remark 3.1. We have the following statements: (i) Resy (2, — wph(zn)) = 0 = 5 €
(94 h)7H0). (i) @wn > @wnp1 > min{wo, £} and lim, oo @, = @ > 0. (idi) By the
assumptions, we deduce that projg o (I — B+ ay) is contractive. Thus, projg o (I — B+ ayp)
has a unique fized point in Q, denoted by 2. Therefore, (ap(z")—B(z"),z—2") <0, Vx € Q.

Proposition 3.1. The sequence {x,} generated by Algorithm 3.1 is bounded.
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Proof. From (9), we have
lyn = 2112 = llzn — 2" = wn(h(2n) = B(zn))|® (13)
= llzn = 211 = 25 (h(z0) = h(@n), 20 — 27) + @i[Ih(20) = h(za)|*.

Observe that ||z, — 27||% = ||z — 27|12 + 2(2n — Tn, 20 — 27) — |20 — 20 ||%. By (13), we get

lym = 2¥* = llon = 2¥* = 20 (h(2n) = P(@n), 20 = 21) = ll20 — 20|
+2(zn — T, 20 — T>+wn|‘h($n) — h(z)|? (14)
= [l = 2" + @2 ll7(2n) = h(zn)|? = llzn — 2al®
+ 2(zp — Tp — @n(h(zn) — h(x0)), 20 — 27).
Since z, = (I + @ng) " H(zn — wnh(zy)),
Tp, — W h(Tn) € 2n + wWng(2n)- (15)
It yields
T = Zn = @n(A(@n) = h(z0)) € @n(9(zn) + h(zn)). (16)

Since 2t € (g+h)~!, we have 0 € @, (g + h)z'. By the monotonicity of @, (¢ +h) and (16),
we obtain

(€0 — 2p — @n(h(xp) — h(2n)), 20 — 2T) > 0. (17)

According to (12), we have ||h(z,) — h(z,)| < ‘w;nijj”u Combining (14) with (17), we
acquire

2
lyn — 21|12 < e — 21)% = (1 — 62
wn+1

Mzn = 2a*. (18)

In the light of (7) and (9), we achieve
[un = 212 = 11 = ) (@ — 27) + 6y — 2017
=1 —)llzn — ZTHQ + Snllyn — Z]L”2 — (I =)snllzn —yn
This together with (18) implies that

2.

2
w
llwn — ZJ[”2 <||zn — ZTHQ - gn(l -5 )Hxn Zn||2 -(1- gn)gnHIn - yn||2
wn+1 (19)

<l — 212
From (7), we gain

lwn = 212 = 111 = Xa)(wn = 27) + An(F(vn) = 2112

= (1 At — 2T AnL— A F00) — - Al F ) — 2
Applying Lemma 2.1, we deduce
1) — 22 = 11— 7ot + 7 Fn)] — 212
< Jhtm — 212 4 (1 = 7)1 () — el 2y
Substituting (21) into (20), we receive
i — 2112 < (1= At — 2 = AL — AL F(t) —
$ Al — 22 4 A1 = 7)) — -

= [Jun — 2% = M (70 = M) |1 f (0n) — un?
< Jun — ZT”Q'
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Taking into account (11), (19) and (22), we derive
|zn41 = 2]l = lovnp(zn) + (I = B)w, — 21|
= llavn(p(zn) = (") + (I = mB)(wn — 21) + yu(ap(z") = BN)|
< avullp(@n) = o(ZN + 1T = mBllwn = 21| + mllaw(z") = BEN - (23)
< afnhillzn = 21 + (1= oyn)lwn = 21 +mllap(=") - BEY||
<1 = (0 = ar)mmlllen = M +ullap(zh) = BEDI.

By induction, we have ||z, — 27| < max{||ap(z") — B(z")|/(c — ar), ||z — 27|} and the
sequence {x,} is bounded.

Proposition 3.2. wy(z,) C Fix(f).

Proof. On account of (11), we achieve

|zn41 = 2112 = lamm(@(@n) — ©(z1) + (I = 3 B)(wn — 21) + m(ap(z") — B(z1)|?

<N =30 B)(wn — 2N)? + 207m(p(a) — (2h), 2nir — 21
+ 290 (ap(2t) — B(2T), 241 — 27)

< (1= 09n)?lwn — 212 + 2067|2220 — 2T
+ 29 ap(zt) = B(z"), 241 — 21)

< (1= oyn)?llwn — 2112 + amvnllzn — 21 + arsyallzng — 2112
+ 29 (ap(2h) = B(eh), g1 — 2.

It follows that

T”Z < (1 707n) QR Yn

2
lwn — 2F|% +

_ ——m _ T2
fones — 2117 < G=220) g, — | o
27
%(mﬂ(ﬂ) — B(z"), 2041 — 2).
Substituting (19) and (22) into (24), we attain
1—o07v,)2 w%
[@ns1 — 27| < (177)(||xn =22 =6 (1= 2 =) |z — 2all®
— akYn Wy
— (1= u)snllzn — yn||2 = AT = A1 f (vn) — un||2)
QK n _ 29n By _ Bt _
0, — ST 2 (ap(a) - B, — )
It follows that
2(0 — ak)y 2(0 — ak)y, (1—o07,)?
e Ao m ARy o (L n
||l'n+1 z H —[ 1_@,{7” }Hxn z || + ]._Ollf’yn X ( 2(0’-0&&)
w2 Tn, — 2n || 1—o079,)? Ty — Yn?
S Y EYE A L Lo N e
wn+1 Tn 2(0 - O"%) Tn (25)
1- n 2 n) — Yn 2 2 n
e GNP 0 B O A
2(0 — ak) Vn 2(0 — akr)
1

o — ak <0‘90(ZT) - B(ZT))xn-‘rl - ZT>)7

where M is a constant such that M > sup, {||z, — 2'||? + ||z, — z*|}.
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Put a, = ||z, — 2'||?, b, = W and
’YTL
— (1- U’Yn)Qg (1 _ 52 @n | = 2)? . (1—07.)? (1 - s |20 — ynll?
" 2(0 —ar) " w24 Tn 2(c — ak) noen Tn
(1 - U’WL)Q ”f(vn) - unH2 0'2%
2(0 — ak) (7 ) Yn + 2(c — ak)
Ny — B(zt _ Lt
+ 070“@(@%0(2 ) (2"), g1 — 21,
for all n > 0.
Owing to (25) and (26), we have
an+1 S (]- - bn)an + bncna vn 2 0 (27)

Next, we show —1 < limsup,,_, . ¢, < +00. First, from (26), we have

T arp L fap(e) — BGan o)
2(0 — ak) o —akK ’

0_2
M lag(=) - B,

~ 2(0 — ak) Jra—om
which implies that limsup,,_,., ¢n < 4+00. Now, we show limsup,,_,., ¢, > —1 by reduction
to absurdity. Suppose that limsup,,_,. ¢, < —1. Then there exists Ny such that ¢, <
—1,Vn > Np. On account of (27), we achieve a,+1 < a,—b, when n > Ny. This implies that
ant1 < any = Yop—n, bk It follows that limsup,, . an < an, — limsup,,_, . > "p_n br =
—o0. This contradicts the hypothesis. So, —1 < limsup,,_, ., ¢, < +00. Choose any z' €
W (7y). Then, there is a subsequence {n;} C {n} such that z,,, — zf as i — oo and

cn <

2

1-— ) w? )
limsupc, = hm Cp, = lim | — % (11— 52 ) |0, = 2n,
msu I = S an) = S

1 — 0n; Tn; — Yn,; 2
((U—Odf))(l neJSns H Yrg o — om<ag0(zT) — B(z"),ap, 41— 2T)  (28)
(I*U'Yn )2 ”f(vn)*un”Z %Y,
= n — \ny - . - M.
2(oc — ak) An (T = Any) Yn +2(U—O¢I€) ]

Since the sequence {x,,11} is bounded, there exists a subsequence of {1}, without loss
of generality, still denoted by {1} such that z,, ;1 — #(i — 00). Thus, lim;_, (ap(z")—
B(z"),zn, 11 — 27) = (ap(zT) — B(z1), % — 2T) exists. It follows from (28) that

1— ) ) 2 1— v 2
lim | = ﬂ S, (1 _ 52 TZ )me Zngll” ( O"Ym)
im0 2(0c —akr) W41 Yn; 2(c — ak) (29)
Tn, —Yni > (1= 0ym,)? on ) — |2
X (1 _C’ﬂi)g’ﬂi H - Y. - ( ik l) )\'rh(T’rh - Anl)M]
Tri 2(0 —ar) Y,
exists. Since lim; o0 v, = 0, from (29), we deduce
Im ||z, — 2n,]| =0, (30)
71— 00
1— 00
and
71— 00

Since h is Lg-Lipschitz continuous, by (30), we have
i {|A(zn;) = B(@n,)[| = 0. (33)
71— 00
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Owing t0 Upn, — Tn, = Sn, (Yn, — Tn,) and (31), we derive

—0. (34)

lim ||un, — @n,
11— 00

In accordance with (10), we receive

+ 1f(vn,) = flun,)
+ L1 ||vn, — un,
Un,; — f(um)Ha

which yields

l[tn, = f(un,)|| < m”“ni ACI
This together with (32) implies that

i—00

By (34), we have u,, — z! because z,, — x. Applying Lemma 2.1 to (35), we deduce
xt € Fix(f). Therefore, wy, (z,) C Fix(f). O
Proposition 3.3. w,(z,) C (g +h)~1(0).
Proof. Pick any (uf,v) € Graph(g + h). Then,
vl — h(u®) € g(ul). (36)

Thanks to (15), we have

Tn; — Zn,

B (o) € (). (37)
Since g is monotone, from (36) and (37), we acquire
— Zn,

W,

i

(of —n(u®) = (

It follows that

(hat = 2,) > (h(uf) = Alza,) + T 0l — 2, )
W,
= <h(uT) - h(zni)»uT - Zn1> + <h(Zn7) - h(xni)7uT - Zn1> (38)
+ —{(xn, — zm,uJr — Zn,)-

W,

7

Since h is monotone, (h(u') — h(zy,),ul — 2,,) > 0. By (38), we get

1
<UT7’U’T - Zm> > <h(2n1) - h(gcni),uT - Zm> + <xnz - Z’ﬂivuT - Z7h> (39)
Wn;

Owing to z,,, — z', from (30), we also have z,, — x'. Taking into account (30), and (33),
we conclude that (vf,uf —2) > 0 for all (uf,v!) € Graph(g + h). Thus, zt € (g + h)~".
Therefore, wy,(z,) € (g +h)~L. O

Finally, we demonstrate the convergence of the sequence {x,,} generated by Algorithm
3.1.

Theorem 3.1. The sequence {x,} generated by Algorithm 3.1 converges strongly to z.
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Proof. First, by Propositions 3.2 and 3.3, we have wy,(z,) € Q. From (10) and (11), we
obtain

Tn;+1 — Tn; = In, (a(p(xm) - B<w7’bz>) + (wni - mm)
= Yo (@p(2n,;) — Blwn,)) + (1 = An,) (Un, — Tn,)
+ Ay (f (Vny) = Uny + Un, — Tn,)-

This together with (32) and (34) implies that ||z, 41 — Zn, | — 0. Hence, z,,,41 — 27 (i —
00). According to (28), we derive

2
v 1
limsup ¢, < lim ( T Oni_ppg (p(z") = B(z), 2,41 — ZT>)
00 i—oo *2(0 — ak) o — ak ! (40)
1
- N — B(z"),2" - 2f) <o.
L ap(h) - B(:N).ot - ) <

From (25), we obtain

2(0 — ak)Yn 2(0 — ak)vyn
lensr - 212 < [1 = 200Dy, ey HoZ 0 (a1)
1 — akyy, 1 —aky,
It is obviously that 2(1(:1#”" —0and ), 2(1‘:1#)% = 4o00. By Lemma 2.2, (40) and (41),
we conclude that z,, — zf. This completes the proof. O

4. Conclusions

In this paper, we propose a composite splitting algorithm [Algorithm 3.1] for solv-
ing variational inclusion problem (1) and fixed point problem (4) in a real Hilbert space
H. The introduced algorithm [Algorithm 3.1] consists of forward-backward algorithm (3),
Tseng-type algorithm (9) and self-adaptive rule (12). Under some additional conditions, we
prove that the sequence {z,,} generated by the splitting algorithm [Algorithm 3.1] strongly
converges to a point z' = projy o (I — B + ay)z! which solves the variational inequality
{ap(2h) — B(z1), 2 — 2T) <0, Vz € Fix(f) N (g + h)~1(0).
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