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In this paper, we present a composite splitting method for solving fixed point
and variational inclusion problems in a real Hilbert space. The introduced method con-

sists of forward-backward method, Tseng-type method and self-adaptive method. Under

some additional conditions, we prove that the sequence generated by the splitting method
strongly converges to a solution of fixed point and variational inclusion problems.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let
g : H ⇒ 2H be a set-valued operator and h : H → H be a single-valued operator. In this
paper, we investigate the variational inclusion problem which aims to find a point u† ∈ H

such that

0 ∈ (g + h)(u†). (1)

The reason why we are interested in the variational inclusion problem (1) is that is closely
related to the following well-known minimization problem

min
x∈H
{G(x) +H(x)}, (2)

where G,H : H → R ∪ {+∞} are two proper, lower semicontinuous and convex functions
such that G is subdifferentiable and H is differentiable. As a matter of fact, if set g = ∂G
and h = ∇H, then solving (2) is equivalent to solving (1).

Now, it is well known that variational inclusion problems offer a model framework
for discussing many interesting problems, such as fixed point problems ([19–21, 27]), opti-
mization problems ([12, 17, 18, 24]), split problems ([10, 11, 29, 31, 32, 34, 39]), equilibrium
problems ([30, 48]) and variational inequalities ([3, 4, 28, 33, 35–38, 41, 42, 46]). Numerous
iterative algorithms are studied and designed for finding a solution of the variational inclu-
sion (1), see [1, 2, 7, 8, 16, 43, 45]. Especially, an interesting algorithm for solving (1) is the
forward-backward algorithm ([13–15]) which generates a sequence {xn} as follows: x0 ∈ H,

xn+1 = (I +$ng)−1(I −$nh)(xn), n ≥ 0, (3)

where $n is a positive constant for all n ≥ 0.
In the sequel, we use (g + h)−1(0) to stand for the solution set of the variational

inclusion (1). If g is maximal monotone and h is strongly monotone or inverse strongly
monotone, then the sequence {xn} generated by (3) converges weakly to some point in
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(g + h)−1(0). Recently, Cholamjiak, Hieu and Cho [6] combined forward-backward method
and Tseng’s method ([23]) for solving (1) where the operator h is plain monotone.

In this paper, we consider a fixed point problem of finding a point u† ∈ H such that

f(u†) = u†, (4)

where f : H→ H is a pseudocontractive operator. Use Fix(f) to denote the solution set of
(4). We are interest in pseudocontractive operators due to this kind of operators is closely
related to monotone or/and accretive operators ([5, 9]). There are many iterative algorithms
for solving fixed point problem (4), see [22, 25, 44].

Motivated and inspired by the work in the literature, in this paper we consider a
common problem of finding a point u† ∈ H such that

u† ∈ (g + h)−1(0) ∩ Fix(f). (5)

We present a composite splitting method for solving fixed point of pseudocontractive oper-
ator and variational inclusion problems in a real Hilbert space H. The introduced method
consists of forward-backward method, Tseng-type method and self-adaptive method. Under
some additional conditions, we prove that the sequence generated by the splitting method
strongly converges to a point in (g + h)−1(0) ∩ Fix(f).

2. Preliminaries

Let H be a real Hilbert space. Use “ ⇀ ” and “ → ” to denote weak convergence
and strong convergence, respectively. Let {xn} ⊂ H be a sequence. Write ωw(xn) = {x† :
∃{xni

} ⊂ {xn} such that xni
⇀ x†(i→∞)}.

Recall that an operator f : H→ H is said to be pseudocontractive if

〈f(u)− f(u†), u− u†〉 ≤ ‖u− u†‖2, ∀u, u† ∈ H. (6)

Note that the inequality (2) is equivalent to

‖f(u)− f(u†)‖2 ≤ ‖u− u†‖2 + ‖(I − f)u− (I − f)u†)‖2,

⇔〈u− u†, (I − f)u− (I − f)u†〉 ≥ 0,

for all u, u† ∈ H.
Let h : H→ H be a mapping. h is said to be

(i) monotone if 〈h(x)− h(y), x− y〉 ≥ 0, ∀x, y ∈ H.
(ii) L-Lipschitz continuous if ‖h(x) − h(y)‖ ≤ L‖x − y‖, ∀x, y ∈ H, where L > 0 is a

constant. If L < 1, then h is said to be L-contractive.
Recall that a bounded linear operator B : H → H is said to be σ-strongly positive if there
exists a constant σ > 0 such that 〈B(x), x〉 ≥ σ‖x‖2, ∀x ∈ H.

Let g : H ⇒ 2H be a mapping. g is said to be monotone if and only if ∀p, q ∈ H,
〈p − q, u − v〉 ≥ 0 where u ∈ g(p) and v ∈ g(q). A monotone operator g is said to be
maximal monotone if and only if its graph is not strictly contained in the graph of any other
monotone operator. Let g : H→ 2H be a maximal monotone operator. Define its resolvent
Resg$ : H→ H by Resg$ := (I +$g)−1 where $ > 0 is any constant. It is well-known that
Resg$ is a single-valued operator and x ∈ (g + h)−1(0)⇔ x = Resg$(I −$h)(x).

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall the
orthogonal projection projC : H → C, denoted by projC(x) := arg miny∈C ‖x− y‖ satisfies
the following inequality ([40])

x ∈ H, 〈x− projC(x), y − projC(x)〉 ≤ 0, ∀y ∈ C. (7)

In any Hilbert space H, ∀u, u† ∈ H and ∀ς ∈ R, we have

‖ςu+ (1− ς)u†‖2 = ς‖u‖2 + (1− ς)‖u†‖2 − ς(1− ς)‖u− u†‖2. (8)
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Lemma 2.1 ([30, 47]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Let f : C → C be an L-Lipschitz pseudocontractive operator. Then,

(i) f is demiclosed, i.e., un ⇀ z̃ and f(un)→ z† ⇒ f(z̃) = z†.
(ii) ∀ũ ∈ C and u† ∈ Fix(f), we have

‖f [(1− τ)ũ+ τf(ũ)]− u†‖2 ≤ ‖ũ− u†‖2 + (1− τ)‖f [(1− τ)ũ+ τf(ũ)]− ũ‖2,

where 0 < τ < 1√
1+L2+1

.

Lemma 2.2 ([26]). Suppose that {an} ⊂ (0,∞), {bn} ⊂ (0, 1) and {cn} are three real
number sequences. Suppose that an+1 ≤ (1 − bn)an + ancn,∀n ≥ 0,

∑∞
n=1 bn = ∞ and

lim supn→∞ cn ≤ 0. Then limn→∞ an = 0.

3. Main results

In this section, we introduce an iterative algorithm and prove that it converges
strongly to an element in Fix(f)∩ (g+h)−1. Let H be a real Hilbert space. Let f : H→ H

be an L1-Lipschitz pseudocontractive operator and g : H → 2H be a maximal monotone
operator. Let h : H → H be an L2-Lipschitz monotone operator and ϕ : H → H be a
κ-contractive operator. Let B : H → H be a σ-strong positive bounded linear operator.
Suppose that Ω := Fix(f) ∩ (g + h)−1 6= ∅.

Let {ςn}∞n=0 ⊂ (0, 1], {τn}∞n=0 ⊂ (0, 1), {λn}∞n=0 ⊂ (0, 1) and {γn}∞n=0 ⊂ (0, 1) be four
real number sequences. Let δ ∈ (0, 1) and α ∈ (0, σ/κ) be two constants. In what follows,
suppose that limn→∞ γn = 0,

∑∞
n=0 γn = ∞, {ςn}∞n=0 ⊂ [ς, ς̄] ⊂ (0, 1] and 0 < ϑ < λn <

τn <
1√

1+L2
1+1

(∀n ≥ 0).

Next, we present an iterative algorithm for finding an element in Ω.

Algorithm 3.1. Let x0 ∈ H be an initial value and $0 > 0 be a fixed constant.
Step 1. Let xn be known. Compute

zn = Resg$n
(xn −$nh(xn)),

yn = zn −$n(h(zn)− h(xn)),

un = (1− ςn)xn + ςnyn.

(9)

Step 2. Compute {
vn = (1− τn)un + τnf(un),

wn = (1− λn)un + λnf(vn).
(10)

Step 3. Compute

xn+1 = αγnϕ(xn) + (I − γnB)wn. (11)

Step 4. Update

$n+1 =

min

{
$n,

δ‖xn−zn‖
‖h(xn)−h(zn)‖

}
, if xn 6= zn,

$n, else.
(12)

Replace n by n+ 1 and return to Step 1.

Remark 3.1. We have the following statements: (i) Resg$n
(xn −$nh(xn)) = xn ⇒ xn ∈

(g + h)−1(0). (ii) $n ≥ $n+1 ≥ min{$0,
δ
L2
} and limn→∞$n = $ > 0. (iii) By the

assumptions, we deduce that projΩ ◦ (I−B+αϕ) is contractive. Thus, projΩ ◦ (I−B+αϕ)
has a unique fixed point in Ω, denoted by z†. Therefore, 〈αϕ(z†)−B(z†), x−z†〉 ≤ 0, ∀x ∈ Ω.

Proposition 3.1. The sequence {xn} generated by Algorithm 3.1 is bounded.
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Proof. From (9), we have

‖yn − z†‖2 = ‖zn − z† −$n(h(zn)− h(xn))‖2

= ‖zn − z†‖2 − 2$n〈h(zn)− h(xn), zn − z†〉+$2
n‖h(xn)− h(zn)‖2.

(13)

Observe that ‖zn − z†‖2 = ‖xn − z†‖2 + 2〈zn − xn, zn − z†〉 − ‖xn − zn‖2. By (13), we get

‖yn − z†‖2 = ‖xn − z†‖2 − 2$n〈h(zn)− h(xn), zn − z†〉 − ‖xn − zn‖2

+ 2〈zn − xn, zn − z†〉+$2
n‖h(xn)− h(zn)‖2

= ‖xn − z†‖2 +$2
n‖h(xn)− h(zn)‖2 − ‖xn − zn‖2

+ 2〈zn − xn −$n(h(zn)− h(xn)), zn − z†〉.

(14)

Since zn = (I +$ng)−1(xn −$nh(xn)),

xn −$nh(xn) ∈ zn +$ng(zn). (15)

It yields

xn − zn −$n(h(xn)− h(zn)) ∈ $n(g(zn) + h(zn)). (16)

Since z† ∈ (g+h)−1, we have 0 ∈ $n(g+h)z†. By the monotonicity of $n(g+h) and (16),
we obtain

〈xn − zn −$n(h(xn)− h(zn)), zn − z†〉 ≥ 0. (17)

According to (12), we have ‖h(xn) − h(zn)‖ ≤ δ‖xn−zn‖
$n+1

. Combining (14) with (17), we

acquire

‖yn − z†‖2 ≤ ‖xn − z†‖2 −
(
1− δ2 $2

n

$2
n+1

)
‖xn − zn‖2. (18)

In the light of (7) and (9), we achieve

‖un − z†‖2 = ‖(1− ςn)(xn − z†) + ςn(yn − z†)‖2

= (1− ςn)‖xn − z†‖2 + ςn‖yn − z†‖2 − (1− ςn)ςn‖xn − yn‖2.

This together with (18) implies that

‖un − z†‖2 ≤ ‖xn − z†‖2 − ςn
(
1− δ2 $2

n

$2
n+1

)
‖xn − zn‖2 − (1− ςn)ςn‖xn − yn‖2

≤ ‖xn − z†‖2.
(19)

From (7), we gain

‖wn − z†‖2 = ‖(1− λn)(un − z†) + λn(f(vn)− z†)‖2

= (1− λn)‖un − z†‖2 − λn(1− λn)‖f(vn)− un‖2 + λn‖f(vn)− z†‖2.
(20)

Applying Lemma 2.1, we deduce

‖f(vn)− z†‖2 = ‖f [(1− τn)un + τnf(un)]− z†‖2

≤ ‖un − z†‖2 + (1− τn)‖f(vn)− un‖2.
(21)

Substituting (21) into (20), we receive

‖wn − z†‖2 ≤ (1− λn)‖un − z†‖2 − λn(1− λn)‖f(vn)− un‖2

+ λn‖un − z†‖2 + λn(1− τn)‖f(vn)− un‖2

= ‖un − z†‖2 − λn(τn − λn)‖f(vn)− un‖2

≤ ‖un − z†‖2.

(22)
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Taking into account (11), (19) and (22), we derive

‖xn+1 − z†‖ = ‖αγnϕ(xn) + (I − γnB)wn − z†‖

= ‖αγn(ϕ(xn)− ϕ(z†)) + (I − γnB)(wn − z†) + γn(αϕ(z†)−B(z†))‖

≤ αγn‖ϕ(xn)− ϕ(z†)‖+ |I − γnB|‖wn − z†‖+ γn‖αϕ(z†)−B(z†)‖

≤ αγnκ‖xn − z†‖+ (1− σγn)‖wn − z†‖+ γn‖αϕ(z†)−B(z†)‖

≤ [1− (σ − ακ)γn]‖xn − z†‖+ γn‖αϕ(z†)−B(z†)‖.

(23)

By induction, we have ‖xn − z†‖ ≤ max{‖αϕ(z†) − B(z†)‖/(σ − ακ), ‖x0 − z†‖} and the
sequence {xn} is bounded. �

Proposition 3.2. ωw(xn) ⊂ Fix(f).

Proof. On account of (11), we achieve

‖xn+1 − z†‖2 = ‖αγn(ϕ(xn)− ϕ(z†)) + (I − γnB)(wn − z†) + γn(αϕ(z†)−B(z†))‖2

≤ ‖(I − γnB)(wn − z†)‖2 + 2αγn〈ϕ(xn)− ϕ(z†), xn+1 − z†〉

+ 2γn〈αϕ(z†)−B(z†), xn+1 − z†〉

≤ (1− σγn)2‖wn − z†‖2 + 2ακγn‖xn − z†‖‖xn+1 − z†‖

+ 2γn〈αϕ(z†)−B(z†), xn+1 − z†〉

≤ (1− σγn)2‖wn − z†‖2 + ακγn‖xn − z†‖2 + ακγn‖xn+1 − z†‖2

+ 2γn〈αϕ(z†)−B(z†), xn+1 − z†〉.

It follows that

‖xn+1 − z†‖2 ≤
(1− σγn)2

1− ακγn
‖wn − z†‖2 +

ακγn
1− ακγn

‖xn − z†‖2

+
2γn

1− ακγn
〈αϕ(z†)−B(z†), xn+1 − z†〉.

(24)

Substituting (19) and (22) into (24), we attain

‖xn+1 − z†‖2 ≤
(1− σγn)2

1− ακγn
(
‖xn − z†‖2 − ςn

(
1− δ2 $2

n

$2
n+1

)
‖xn − zn‖2

− (1− ςn)ςn‖xn − yn‖2 − λn(τn − λn)‖f(vn)− un‖2
)

+
ακγn

1− ακγn
‖xn − z†‖2 +

2γn
1− ακγn

〈αϕ(z†)−B(z†), xn+1 − z†〉.

It follows that

‖xn+1 − z†‖2 ≤ [1− 2(σ − ακ)γn
1− ακγn

]‖xn − z†‖2 +
2(σ − ακ)γn

1− ακγn
×
(
− (1− σγn)2

2(σ − ακ)

× ςn
(
1− δ2 $2

n

$2
n+1

)‖xn − zn‖2
γn

− (1− σγn)2

2(σ − ακ)
(1− ςn)ςn

‖xn − yn‖2

γn

− (1− σγn)2

2(σ − ακ)
λn(τn − λn)

‖f(vn)− un‖2

γn
+

σ2γn
2(σ − ακ)

M

+
1

σ − ακ
〈αϕ(z†)−B(z†), xn+1 − z†〉

)
,

(25)

where M is a constant such that M ≥ supn{‖xn − z†‖2 + ‖xn − x∗‖}.
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Put an = ‖xn − z†‖2, bn = 2(σ−ακ)γn
1−ακγn and

cn = − (1− σγn)2

2(σ − ακ)
ςn
(
1− δ2 $2

n

$2
n+1

)‖xn − zn‖2
γn

− (1− σγn)2

2(σ − ακ)
(1− ςn)ςn

‖xn − yn‖2

γn

− (1− σγn)2

2(σ − ακ)
λn(τn − λn)

‖f(vn)− un‖2

γn
+

σ2γn
2(σ − ακ)

M

+
1

σ − ακ
〈αϕ(z†)−B(z†), xn+1 − z†〉,

(26)

for all n ≥ 0.
Owing to (25) and (26), we have

an+1 ≤ (1− bn)an + bncn, ∀n ≥ 0. (27)

Next, we show −1 ≤ lim supn→∞ cn < +∞. First, from (26), we have

cn ≤
σ2γn

2(σ − ακ)
M +

1

σ − ακ
〈αϕ(z†)−B(z†), xn+1 − z†〉

≤ σ2M

2(σ − ακ)
+

M

σ − ακ
‖αϕ(z†)−B(z†)‖,

which implies that lim supn→∞ cn < +∞. Now, we show lim supn→∞ cn ≥ −1 by reduction
to absurdity. Suppose that lim supn→∞ cn < −1. Then there exists N0 such that cn <
−1,∀n ≥ N0. On account of (27), we achieve an+1 ≤ an−bn when n ≥ N0. This implies that
an+1 ≤ aN0 −

∑n
k=N0

bk. It follows that lim supn→∞ an ≤ aN0 − lim supn→∞
∑n
k=N0

bk =

−∞. This contradicts the hypothesis. So, −1 ≤ lim supn→∞ cn < +∞. Choose any x† ∈
ωw(xn). Then, there is a subsequence {ni} ⊂ {n} such that xni ⇀ x† as i→∞ and

lim sup
n→∞

cn = lim
i→∞

cni
= lim
i→∞

[
− (1− σγni)

2

2(σ − ακ)
ςni

(
1− δ2 $2

ni

$2
ni+1

)‖xni
− zni

‖2

γni

− (1− σγni)
2

2(σ − ακ)
(1− ςni

)ςni

‖xni − yni‖2

γni

+
1

σ − ακ
〈αϕ(z†)−B(z†), xni+1 − z†〉

− (1− σγni)
2

2(σ − ακ)
λni

(τni
− λni

)
‖f(vni)− uni‖2

γni

+
σ2γni

2(σ − ακ)
M
]
.

(28)

Since the sequence {xni+1} is bounded, there exists a subsequence of {xni+1}, without loss
of generality, still denoted by {xni+1} such that xni+1 ⇀ x̂(i→∞). Thus, limi→∞〈αϕ(z†)−
B(z†), xni+1 − z†〉 = 〈αϕ(z†)−B(z†), x̂− z†〉 exists. It follows from (28) that

lim
i→∞

[
− (1− σγni

)2

2(σ − ακ)
ςni

(
1− δ2 $2

ni

$2
ni+1

)‖xni
− zni

‖2

γni

− (1− σγni
)2

2(σ − ακ)

× (1− ςni
)ςni

‖xni
− yni

‖2

γni

− (1− σγni
)2

2(σ − ακ)
λni

(τni
− λni

)
‖f(vni

)− uni
‖2

γni

] (29)

exists. Since limi→∞ γni
= 0, from (29), we deduce

lim
i→∞

‖xni − zni‖ = 0, (30)

lim
i→∞

‖xni
− yni

‖ = 0, (31)

and

lim
i→∞

‖f(vni)− uni‖ = 0. (32)

Since h is L2-Lipschitz continuous, by (30), we have

lim
i→∞

‖h(zni
)− h(xni

)‖ = 0. (33)
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Owing to uni − xni = ςni(yni − xni) and (31), we derive

lim
i→∞

‖uni − xni‖ = 0. (34)

In accordance with (10), we receive

‖uni
− f(uni

)‖ ≤ ‖uni
− f(vni

)‖+ ‖f(vni
)− f(uni

)‖
≤ ‖uni

− f(vni
)‖+ L1‖vni

− uni
‖

= ‖uni − f(vni)‖+ L1τni‖uni − f(uni)‖,

which yields

‖uni
− f(uni

)‖ ≤ 1

1− L1τni

‖uni
− f(vni

)‖.

This together with (32) implies that

lim
i→∞

‖uni
− f(uni

)‖ = 0. (35)

By (34), we have uni
⇀ x† because xni

⇀ x†. Applying Lemma 2.1 to (35), we deduce
x† ∈ Fix(f). Therefore, ωw(xn) ⊂ Fix(f). �

Proposition 3.3. ωw(xn) ⊂ (g + h)−1(0).

Proof. Pick any (u†, v†) ∈ Graph(g + h). Then,

v† − h(u†) ∈ g(u†). (36)

Thanks to (15), we have

xni
− zni

$ni

− h(xni) ∈ g(zni). (37)

Since g is monotone, from (36) and (37), we acquire

〈v† − h(u†)− (
xni
− zni

$ni

− h(xni)), u
† − zni〉 ≥ 0.

It follows that

〈v†, u† − zni〉 ≥ 〈h(u†)− h(xni) +
xni
− zni

$ni

, u† − zni〉

= 〈h(u†)− h(zni), u
† − zni〉+ 〈h(zni)− h(xni), u

† − zni〉

+
1

$ni

〈xni − zni , u
† − zni〉.

(38)

Since h is monotone, 〈h(u†)− h(zni), u
† − zni〉 ≥ 0. By (38), we get

〈v†, u† − zni
〉 ≥ 〈h(zni

)− h(xni
), u† − zni

〉+
1

$ni

〈xni
− zni

, u† − zni
〉. (39)

Owing to xni
⇀ x†, from (30), we also have zni

⇀ x†. Taking into account (30), and (33),
we conclude that 〈v†, u† − x†〉 ≥ 0 for all (u†, v†) ∈ Graph(g + h). Thus, x† ∈ (g + h)−1.
Therefore, ωw(xn) ∈ (g + h)−1. �

Finally, we demonstrate the convergence of the sequence {xn} generated by Algorithm
3.1.

Theorem 3.1. The sequence {xn} generated by Algorithm 3.1 converges strongly to z†.
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Proof. First, by Propositions 3.2 and 3.3, we have ωw(xn) ∈ Ω. From (10) and (11), we
obtain

xni+1 − xni
= γni

(αϕ(xni
)−B(wni

)) + (wni
− xni

)

= γni
(αϕ(xni

)−B(wni
)) + (1− λni

)(uni
− xni

)

+ λni(f(vni)− uni + uni − xni).

This together with (32) and (34) implies that ‖xni+1 − xni
‖ → 0. Hence, xni+1 ⇀ x† (i→

∞). According to (28), we derive

lim sup
n→∞

cn ≤ lim
i→∞

( σ2γni

2(σ − ακ)
M +

1

σ − ακ
〈αϕ(z†)−B(z†), xni+1 − z†〉

)
=

1

σ − ακ
〈αϕ(z†)−B(z†), x† − z†〉 ≤ 0.

(40)

From (25), we obtain

‖xn+1 − z†‖2 ≤ [1− 2(σ − ακ)γn
1− ακγn

]‖xn − z†‖2 +
2(σ − ακ)γn

1− ακγn
cn, (41)

It is obviously that 2(σ−ακ)γn
1−ακγn → 0 and

∑
n

2(σ−ακ)γn
1−ακγn = +∞. By Lemma 2.2, (40) and (41),

we conclude that xn → z†. This completes the proof. �

4. Conclusions

In this paper, we propose a composite splitting algorithm [Algorithm 3.1] for solv-
ing variational inclusion problem (1) and fixed point problem (4) in a real Hilbert space
H. The introduced algorithm [Algorithm 3.1] consists of forward-backward algorithm (3),
Tseng-type algorithm (9) and self-adaptive rule (12). Under some additional conditions, we
prove that the sequence {xn} generated by the splitting algorithm [Algorithm 3.1] strongly
converges to a point z† = projΩ ◦ (I − B + αϕ)z† which solves the variational inequality
〈αϕ(z†)−B(z†), x− z†〉 ≤ 0, ∀x ∈ Fix(f) ∩ (g + h)−1(0).
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