U.P.B. Sci. Bull., Series C, Vol. 75, Iss. 1, 2013 ISSN 1454-234x

OPTIMIZING NODE RESPONSE USING REAL-TIME
OPERATING SYSTEM IN WIRELESS SENSORS NETWORKS

Catalin POPEANGA!, Gabriel IONESCU?, Radu DOBRESCU®

Scopul principal al solutiei propuse pentru cercetare §i dezvoltare, intr-o
versiune experimentald, este implementarea/portarea unor sisteme de operare in
timp real OSE[1][2][3] (Operating System Embedded) pe hardware-ul specific unei
arhitecturi tipice nodului din retelele wireless de sensori. Acest studiu de caz va
compara implementarile proprii ale sistemelor de operare OSE cu cele mai
cunoscute sisteme de operare utilizate in retelele de senzori.

The main goal of the proposed solution for research and development, in an
experimental version, is the implementation/porting of real-time operating systems
OSE [1][2]]3] (Operating System Embedded) on a hardware specific to a typical
node architecture in WSNs (wireless sensor networks). This case study will compare
our own OSE operating system implementations with the most popular operating
systems used in WSNs.

Keywords: real time operating system, wireless sensors networks
1. Introduction

In this paper, we will examine the improvements added to nodes
architecture by adapting the OSE operating system to wireless sensors. In
particular, it explores the real-time needs in actual embedded applications on
different platforms used as sensors nodes. We will consider the optimization of
the architecture starts from the beginning of the design (like: the operating system
chosen or developed, new algorithm of coverage) until the hardware platforms.

This case study will focus on performances of the operating system in
approximately worst real conditions. In the case study, we will not introduce
network tests because they can be reduced to any core performance test in the end.

The scope of this case study is to verify if the value-aided (performance,
framework for development) by the OSE is significant to port it for this kind of
projects.

" Eng., Faculty of Automatic Control and Computer Science, University POLITEHNICA of
Bucharest, Romania, e-mail: catalin.popeanga@gmail.com

2 Prof., Faculty of Automatic Control and Computer Science, University POLITEHNICA of
Bucharest, Romania, e-mail, e-mail: gion@clicknet.com

3 Prof., Faculty of Automatic Control and Computer Science, University POLITEHNICA of
Bucharest, Romania, e-mail: rd_dobrescu@yahoo.com

38 Citalin Popeangd, Gabriel Ionescu, Radu Dobrescu

As we know, WSN nodes are resource constrained and the key features of
WSN operating systems should be resource-aware in addition, to be configurable
to adapt to each situation. Most of traditional embedded RTOSs (Real-Time
Operating Systems): VxWorks [4], QNX [5], uC/OS-II [6], RTLinux [7] are unfit
for WSN because they are resource consuming. In addition, they do not meet the
requirement of complex hard real-time applications, e.g. TinyOS [8]. Therefore,
our objective is to choose and to adapt a configurable real-time dedicated
operating system that can adapt to any platform used in a wireless sensor network,
starting with the main node (the network manager) and finishing with the low
power controller.

Two main aspects will be discussed regarding the wireless sensor
networking technology: first, the implementation of a wireless sensors network
with embedded architecture using OSE operating system [1] that offers specific
facilities for integration real time applications on different platforms:
microcontrollers, DSPs or powerful processors and second, the analysis of the
power consumption and response latency to external inputs.

The paper is organized as following: section 2 describes the system
architectures; sections 3, 4, 5 and 6 detail the performance evaluation for every
architecture. Finally, we present the conclusions and the ongoing work.

2. General architecture of a wireless sensors network [9]

There are many challenges in designing operating system to manage an
entire wireless sensor network: resource constraints, limited erasure/write cycles
in external nonvolatile storage (e.g., flash), and lack of hardware features (e.g.,
privileged execution). However, these challenges are not singular in a wireless
sensor network.

In addition, nodes with more complex operations needs exist in a network
and from this point of view the necessity of hardware DSP (Digital Signal
Processor) and an OS that can make these operations is required. In addition, the
network will include an access point (AP) or the main node that manages his
network, this node will need more computing power and memory manger for
different applications. With these challenges, it is impossible to use traditional OS
design techniques to implement OS protection, virtual memory, preemptions and
to run the same high-end module application in a single OS that can run on all of
these platforms. To cover all these challenges, we will select a commercial Real
Time Operating System — OSE to compare with the freeware operation system
used in academic environment.[11]

Optimizing node response using real-time operating system in wireless sensors networks 39

{} Sensor node with low power consumption and low computation power.

@ Sensor node with high computation power.

AP - Access point very high computation power, used to manage the network
Fig.1 WSN —general architecture

Three releases depending on the need of the complexity are distributed for
OSE:

- High level RISC CPU (like PowerPC, MIPS, ARM and x86) usually
dedicated to high-end application with the OSE Delta kernel,

- small and medium micro controllers (like Infineon, C166, NEC V850,
ARM, Motorola M-Core, ColdFire, Hitachi) dedicated to medium range and
highly embedded applications with the OSE Epsilon kernel;

- Digital Signal Processors (like TI TMSC5x, C6x, Motorola, Analog
Devices) with the OSEck kernel.

An important point in this selection is that an OSE Epsilon application
runs with no modification on OSE Delta and OSEck. Moreover, what is more
important, the developer implements only once the protocol stack and it will run
on all platforms.

OSE is fully pre-emptive (a process can be pre-empted between two
assembly instructions), scheduling is based on the priority assigned to the
processes (tasks) and the interrupt latency is extremely low. The OSE is a
powerful platform for the design of real-time embedded systems. OSE’s message
based architecture instantly and seamlessly achieves simplicity in complex and
distributed systems.

3. Performance evaluation

The most important evaluation will be on the OSE Epsilon, and the reason
for this are the number of nodes, the challenge added by the limited resources
available in hardware, like energy, memory and compute power.

40 Citalin Popeangd, Gabriel Ionescu, Radu Dobrescu

The most used dedicated operating system in academic development is
TinyOS[13]. This OS, more like task manager, will be the reference operating
system in our evaluation.

The OS architecture [10] is exemplified in the next figure:

() [} Q
OSE app OSE app OSE app
} i P
v v v
OSE framework
! —}
kernel < » | device driver

U

Fig.2 OS architecture

In the comparison, we will use several important parameters to determine
if OSE is the right choice [11]:

- Interrupt Latency: time from assertion of hardware interrupts though
start of ISR execution. Interrupt latency represents the time between the assertion
of signal and the execution of the first instruction of the interrupt service routine
assigned to handle corresponding events;

H/W >|"' vector dispatch ISR

Interrupt latency

Fig.3 Latency in system

- Worst Case: The longest response latency time observed.

Context switch: This operation happens between two processes of the SO
when the second one gets in a run able state and the first one is pulled from
running to a wait state.

4. OSE Epsilon and Tiny OS

OSE Epsilon is a fast, small, low-cost RTOS optimized for resource
constrained embedded microcontroller applications. This fully pre-emptive real-
time kernel, written entirely in assembler, is optimized for each target processor,
employs efficient system calls to reduce application code size, and occupies just 4
kbytes of memory.

Optimizing node response using real-time operating system in wireless sensors networks 41

OSE Epsilon speeds application development by combining simple yet
powerful system calls with high-performance inter process communications
services. In fact, with just eight simple system calls, most designers will have all
they need to write the bulk of their application.

OSE Epsilon employs a simple, intuitive message passing programming
model that makes it easy to break complex applications into simpler concurrent
processes, each communicating via a high-speed, transparent, direct message
passing protocol.

It is implemented in assembler and it is tuned for each processor,
delivering the highest performance and lowest interrupt latency possible.

Table 1
OS performances
Operations TinyOS ATMegal28 6 MHz | OSE MSP430x5xx 8 MHz
Context Switch 23 us 20 ps
Interrupt Latency 21 ps 17 ps
Worst Case Interrupt Latency | 150 ps 50 ps

The worst-case scenario is the most significant measure in a benchmark. In

our measurements, we observed that the value measured on OSE is less than the
one from TinyOS and it depends only by the time spent in the dispatch routine. In
the TinyOS, not fully preempted the latency depends also by the time spent in the

current running task.

In the memory footprint, there are some differences gained by the TinyOS.
It is more simple, does not have protection, is not fully preemptive and it does not
offer the same framework for high-end processors.

Table 2
Occupied memory
Memory size (kernel) TinyOS bytes OSE bytes
Code 2145 4133
Data 50 210
The main difference between OSE and TinyOS can be described in few
words.

OSE’s

architecture based on message

signals

achieves powerful

simplicity, instantly responses in real-time systems. The dynamic runtime

configuration enables

faster and more reliable

system deployment and

maintenance. In addition, OSE has a sophisticated framework for creating error

42 Citalin Popeangd, Gabriel Ionescu, Radu Dobrescu

handlers at the system level. The error events during run-time will automatically
activate an error handler. The error handler is called from either the application
process or the OSE real-time kernel for microcontroller itself. As plus the OSE
Epsilon with this error handler adds an important safety issue in user applications.

In OSE, there is no difference in creation of global or local visibility of
private process into a user application. A local process can become globally
visible to the whole system without re-creation.

5. OSE and Linux

The next benchmark shows the performances measured on the access
point. The access point is a powerful processor used to monitor and to manage the
whole network. The access point will have the OSE delta operating system.

The interrupt latency is measured on an ARM board and the concurrent
operating system for OSE will be, of course, Linux 2.6.22 with real-time feature.

Table 3
Hardware device
Manufacturer/model Freescale i.Mx21
CPU ARMO926EJ-S
Clock 266MHz
I/D cache 16K/16K
System memory 128MB SDRAM
32 MB flash
Table 4

OS performances
Operations Linux OSE

Interrupt Latency (average) 7.1 ps 6.4 ps

Worst Case Interrupt Latency | 25 pus 21 ps

In this case, there are many processes that execute in the same time so at
the interrupt latency, they will add a new latency with a big implication in
modifying the response time. This is the preemption latency. The preemption
latency is defined as the time from ISR to the first instruction from the process
destination.

Optimizing node response using real-time operating system in wireless sensors networks 43

Interrupt I]H preempt > Coptext process
handler m switch /

Preempt latency

Fig.4 Preempt latency

In others words the interrupt latency represents the time needed to say “I
know you are here”, while preemption latency constitutes the time needed before
“Now, let’s work”. In bare systems with couple of interrupting devices, the
response time is less than microseconds or even nanosecond in worst cases. In
theory, interrupt latency is independent of load; but in practice the system is
overloaded with many queries of system resources and the latency will increase
very fast. Our results are measured with the operating system in idle to get the
fastest response it can get if it is in a wait state.

Table 5
OS performances
Operations Linux OSE
Preemption Latency 9.1us 7.6 us
6. OSEck

For the special nodes with specific functions and with greater calculation
power, another specialized operating system will be used and this is OSEck.

Like all members of the OSE family, OSEck employs a high-level
message passing programming model that makes it easy to break complex
applications into simpler concurrent processes, each communication via high-
speed direct messages. This high level of abstraction makes complex applications
easier to conceptualize, model, partition, and debug. It also provides transparency
that separates applications from the details of the underlying hardware and
physical topology, thereby making the resulting code more scalable and easier to
migrate.

OSEck provides a simple yet powerful API that offers a high level of
abstraction, typically enabling programmers to code the bulk of their application
with just eight system calls. This versatile API, together with OSEck’s high-level
messaging protocol, reduces application size and complexity, and makes
programs easier to maintain, read and understand. OSEck provides a subset of the
full-featured OSE API, making easy to migrate applications between OSEck,
OSE, and OSE Epsilon with few changes to the application code.

44 Citalin Popeangd, Gabriel Ionescu, Radu Dobrescu

Communication throughput, overhead, and time response have always
been concerning DSP applications that handle data streams on which the DSP
performs real-time processing. These nodes will be used in wireless networks to
transmit some alert messages or messages with little payload. Nevertheless, the
data rates that it needs to handle are increasing dramatically through, for example,
HD video streams and number of voice channels [11].

The throughput and delay allowed by the software needs to be kept good
to handle both the wireless communication and data processing. In addition, the
memory footprint is still a concern as it was for the simplest nodes. Total used
memory adds material costs so it is better to have the executed real-time
processing code and data placed in internal memory instead of external.

Another advantage of this is that it saves cycles, but can decrease the
number of cache misses if the code is placed in external memory to be more
compact.

These advantages and disadvantage have to be balanced against keeping
overhead at a minimum to allow the DSP to spend as much time as possible doing
real-time processing. It is better to compile the kernel with the specific tools for
that architecture and used by the manufacturer to get the footprint as small as
possible.

The OSEck kernel has, in the normal run, a routine for runtime error
checks, an extended framework API for system calls unavailable with standard
system calls. The performance will not be compared with any operating system
because these devices depends of the application used and for wireless sensor
network it has enough power to deal with the messages manager.

The most important thing in using the proposed operating system is to
maintain a low footprint, as it shows the tests, to have the same framework easily
to develop applications for working on the three architectures and also to have a
good support if something is getting wrong in the applications development. An
example of a board used in wireless networks is EVM6488 with TI C6488 DSP,
which is mainly a DSP for wireless infrastructure baseband.

Table 6
OS memory footprint
Memory footprint OSE
(bytes)
Code 4380

Data 992

Optimizing node response using real-time operating system in wireless sensors networks 45

7. Conclusions

RTOSes evolved over time performing more application-specific
functions. Unlike most traditional RTOSes, OSE was designed specifically with
distributed, fault-tolerant telecommunications systems in mind. OSE’s message-
passing architecture and general approach to process and memory management,
process scheduling, error handling, and distributed communications have made it
the choice for millions of telecommunications applications worldwide.

Our own ported OSE operating systems on the specific architectures with
the real-time feature and a common framework can be included in a wireless
sensors network system becoming an alternative to other operating systems
available in this industry.

The ongoing work will concern to implement a network stack in OSE
operating system with a powerful coverage algorithm in parallel with selecting
different power modes in processors, to decrease the power consumption and
maintain the monitoring and connections in certain quality levels. Another aspect
to keep in mind when trying to develop big projects is the support offered for
using a certain operating system. This is an advantage for commercial operating
systems but this implies also a bigger price. Depending on the destination of the
project this is the most important one and it is one of the decisive attribute in
choosing the operating system.

REFERENCES

[1] *** OSE — high-level operating system, http://www.enea.com/, 2009,

[2] *¥** OSE Epsilon — microprocessor operating system, hitp.//www.enea.com/, 2009;

[3] *** OSEck — DSP operating system, http://www.enea.com/, 2009;

[4] J.J. Labrosse, “MicroC/OS-II, The Real-time Kernel, R & D Books”, Technical Document,
Oct. 1998;

[5] *** VxWorks/x86 5.3.1 evaluation, Dedicated Systems Magazine, http://www.dedicated-
systems.com , 2000;

[6] *** QNX4.25 Evaluation Executive Summary, Dedicated Systems Magazine,
http://www.dedicated-systems.com , 2000 ;

[7] V. Yodaiken, “An Introduction to RTLinux”, Technical Document, New Mexico Institute of
Technology, Oct. 1997,

[8] *** PSOS 2.2.6 Evaluation Executive Summary, Dedicated Systems Magazine,
http://www.dedicated-systems.com , 2000;

[9] R. Dobrescu, M. Nicolae, F. Stoica and R. Varbanescu, “Design of an Intelligent Sensor
Network Node”, in Proceedings of the 10thInternational Conference on Optimization of
Electrical and Electronic Equipments OPTIM'06, Brasov, 2006;

46 Citalin Popeangd, Gabriel Ionescu, Radu Dobrescu

[10] K. Singh, “Design and Evaluation of an Embedded Realtime Microkernel”, Master thesis,
Faculty of the Virginia Polytechnic Institute and State University, 2002;

[11] M. Barr, “Choosing an RTOS”, Embedded Systems Programming, January 2003;

[12] Maximilian Nicolae, Radu Dobrescu, Matei Dobrescu, Dan Popescu - “Embedded Node
around a DSP core for Mobile Sensor Networks over 802.11 infrastructure” - IEEE
Proceedings of the 6th Symposium on Communication Systems, Networks and Digital
Signal Processing, Graz 2008;

[13] *** TinyOS, User Guide, www.tinyos.net , 2009.

