
U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 4, 2022                                                    ISSN 2286-3540 

 

UNDERSTANDING THE OPPORTUNITIES OF APPLYING 

KUBERNETES SCHEDULING CAPABILITIES IN HIGH 

PERFORMANCE COMPUTING 

Ioan-Mihail STAN1, Ștefan-Dan CIOCÎRLAN2, Răzvan RUGHINIȘ3 

High Performance Computing and cloud computing are two paradigms of 

distributed systems, which until recently were based on different governance models. 

As the adoption of containers became an anchor between the two, the scheduling 

methods adopted by the industry began to inherit common elements from both. Thus, 

the current case study aims to analyze and classify architectural models from 

literature in the context of hybrid configurations. It proposes a taxonomy for the 

classification of HPC-Kubernetes hybrid configurations and provides improvements 

to the solutions identified. From the perspective of the cloud provider, Kubernetes 

has been selected for its versatility and for the optimized methodologies 

implemented for intelligent management of containerized workloads. 
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1. Introduction 

High Performance Computing is one of the most prolific concepts in 

Information Technology and one of the drivers of innovation. From the early 

stages of Covid-19 pandemics, companies and institutions brought together an 

incredible number of resources for running studies on the new virus. The Covid19 

HPC Consortium4 shared freely around 6.4 million CPU cores, 603 Petaflops and 

4.9k GPUs for running Covid-19 related projects. Still a rigid infrastructure, HPC 

has begun to adopt the container as a processing unit, inspired by the benefits they 

have brought to the cloud.  

Another important game changer and innovator in the distributed systems 

market is Kubernetes, a container orchestrator, cloud-enabler, with a consistent 

adoption rate worldwide. As announced by CNCF5 (Linux Foundation), there are 
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currently about 5.6 million developers who have adopted Kubernetes globally. 

With a well-developed control plan and an ecosystem built around technology, 

Kubernetes outperforms other competitors and becomes an industry standard.  

As both distributed systems-based platforms focus their efforts on 

containers, the current paper proposes a classification of HPC-Kubernetes hybrid 

implementations and the way in which the important capabilities of both systems 

have merged. This state-of-the-art article aims to analyze the implementations 

found in the literature, to group them and to provide punctual improvements of the 

proposed workflows. Section 2 presents a brief overview of some concepts and 

emerging technologies in the space of distributed systems. Section 3 reveals the 

classification taxonomy and shows improvements in current implementations and 

Section 4 concludes the aspects previously presented. 

2. Background 

Docker [1] is a containerization engine that furnishes industry with a way 

to pack applications and dependencies in executable artifacts able to provide the 

same running experience on heterogeneous systems. It aims to cover the gap 

caused by the lack of consistency between the development environment and 

production environment. As many containerization engines on the market, Docker 

uses two important Kernel native capabilities to run containers: namespaces and 

cgroup. The isolation taxonomy proposed covers six out of seven namespaces 

available: mnt, pid, net, uts, ipc and user and excludes more recently added time 

namespace.  

The Docker community started the Open Container Initiative, a 

governance organization that provides industry with guidelines and standards with 

the aim of interoperability [2]. Founded in 2015, the project maintains two 

important specifications, one related to the containerization runtime and one 

related to the container image definition, both extremely relevant for 

interoperability. Thus, the modularity enforced brought the opportunity to replace 

the Docker native runc runtime with other, more secure solutions [3][4]. In 

addition, image build for Docker can now be easily transferred, with no extra 

effort, to other containerization engines implementing OCI standards [5]. 

For HPC however, the most common containerization engine in use is 

Singularity [5]. Contrary to Docker’s isolation taxonomy, Singularity proposes 

one namespace isolation with mount (mnt) and inherits the entire user context 

from the underlying node. This reflects the way HPC nodes are configured as they 

usually unify the development and execution environments by enforcing the same 

access policy on both. Therefore, a container executed via an HPC task/job is 

running with the same user, shares the same process table, same network and so 

on. The only component that is detached from the underlying node is the 
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collection of artifacts embedded within the container image, that will no longer be 

required to exist on the host. Thus, this may optimize the configuration process 

since the toolset no longer needs to be installed before running a task/job. 

Singularity is OCI compliant, therefore, it can run pre-existing Docker images 

with no refactoring effort. 

In High Performance Computing jobs or tasks are stored in batch queues 

and executed one by one, in the entire clustered infrastructure, imprinting a 

similar experience as in running them on the local development node, but with a 

larger spectrum of resources available. The processes triggered during the 

workflow are executed within the same user context, therefore untrusted users get 

direct access to the underlying systems. Furthermore, each system is preloaded 

with the entire toolkit required for running each individual job, thus one new 

demanded library or tool needs to be deployed on each individual node. A way to 

overcome this operational problem is to run tasks/jobs with containers, entities 

that embed the main process with all its dependencies.  

Kubernetes is a container orchestrator, a powerful layer that aggregates 

and coordinates multiple container engines in order to fulfill complex production 

scenarios [6][7]. It offers capabilities like self-healing, smart release management, 

equitable distribution of workload on nodes, scaling and so on. Compared to HPC, 

Kubernetes implements another paradigm. It is service-oriented, multi-tenant and 

has its own dedicated resource management system and scheduling mechanism 

[8]. 

3. Taxonomy 

The aim of the current paper is to classify various HPC-Kubernetes 

integrations in a way to better express the opportunities that may arise with such a 

mix of paradigms. On one side, high performance computing implementations are 

less flexible, whereas Kubernetes and the cloud paradigm enforces a quick and 

transparent response to change. Gathering attributes from both models, one 

classification method is focused on the volatility of the ecosystem around the 

HPC-Kubernetes stack. Here one can observe two patterns based on the life cycle 

of the hybrid setup - predefined/static topologies and on-demand topologies 

In classical HPC implementations, each infrastructure change requires 

reloading the distributed control plane to synchronize [9] the resource pool. Thus, 

prior to running any task, the entire infrastructure must be deployed and 

rigorously configured, with all the involved nodes running indefinitely, waiting 

for jobs. In cloud computing each resource can be spawned up on demand. Such 

methods can optimize the costs of running infrastructure, as control workload 

doesn’t need to be present all the time. Before going further and presenting some 

architectures matching the classifiers proposed, both categories can also support 
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two main subclasses. Thus, each existing hybrid implementation can be defined as 

fully managed by Kubernetes or partially managed by Kubernetes. Here, the focus 

is on the scheduling component of the control plane and less on the 

data/processing plane, as the latter is a concern of the type of tasks running within 

the infrastructure and not a generic grouping factor. In addition, the paper assumes 

that batch HPC tasks can be containerized with Kubernetes compatible 

technologies. The containerization engine must be OCI (Open Container 

Initiative) compliant and to implement CRI (Container Runtime Interface) directly 

or via an adapter (shim6).  

With the adoption of Operators, Kubernetes can support the extension of 

the API and scheduling capabilities with additional control plane logic. Thus, in 

theory, developing the entire HPC scheduling, as a plug-and-play module, is 

achievable. However, the extensive complexity of HPC systems may not be 

feasible to fully fit inside the Kubernetes control plane. In this regard, most case 

studies fall under the partially managed Kubernetes category. The closest solution 

to a fully Kubernetes managed workflow has been presented by M. Piras et al [10] 

where the HPC Grid Manager is in charge to attach and detach worker nodes to an 

always-on Kubernetes cluster. A HPC partition is formed on demand, by attaching 

required nodes to the orchestrator control plane. The job scheduling is fully 

outsourced to Kubernetes control plane and triggered via the native Kubernetes 

Deployment mechanism. However, since the Grid Manager is still detached from 

Kubernetes and considered also an essential part of the scheduling mechanism, the 

solution is as well labeled as partially managed by the orchestrator. Furthermore, a 

Deployment object stays indefinitely in Kubernetes, thus, an external mechanism 

must monitor pods toward completion and delete the Deployment during the tear-

down phase. For this case study, adopting batch jobs Kubernetes objects instead 

of deployments can improve the control routines.  

The infeasibility of fully integrating HPC control processes into 

Kubernetes stems from the complexity of the input information the scheduler 

receives. As C. Iacopo et al describe in [11], organizing tasks on the appropriate 

infrastructure nodes is more than a matter of resources available and load. In 

HPC, data localization is an important input parameter to any scheduling 

heuristic, especially in cases where the jobs/tasks are data-intensive or require 

ingesting extremely large datasets. Movement of data may not be always feasible, 

thus, running a job in the proximity of data required can also be weighted for 

scheduling decisions. 

 
6 https://kubernetes.io/docs/tasks/administer-cluster/migrating-from-dockershim/check-if-

dockershim-deprecation-affects-you/ 
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Fig 1. HPC-connector concept architecture 

 

Furthermore, many hybrids HPC-Kubernetes implementations follow the 

STSC or MTSC model, where one/many task objects trigger one container. STSC 

(Single Task Single Container) and MTSC (Multiple Tasks One Container) are 

adaptations of the Flynn taxonomy (as defined in [11]) and describe how HPC-

Kubernetes hybrid objects must enforce, isolate and manage the execution of HPC 

tasks/jobs. S. Lopez-Huguet et al. [12] follows the STSC/MTSC model where the 

hpc-connector (Fig. 1) monitors the lifecycle of a Kubernetes job and replicates 

the same behavior within the HPC infrastructure. Therefore, the software running 

inside the container can interpret Operating System signals, initiated by the 

orchestrator control plane and apply the same directives to the HPC scheduler. 

One possible problem with such an approach is when the underlying 

containerization engine or Kubernetes decide to instantly kill a pod due to lack of 

memory available or if the pod bypasses the memory limits enforced - OOMKill. 

Thus, the software may not be able to further capture signals and therefore any 

link between a cluster job and HPC job may be lost or interrupted.   

As described by [11], the most challenging part in an HPC-Kubernetes 

ecosystem is to manage STMC (Single Task Multiple Containers) and MTMC 

(Multiple Tasks Multiple Containers) workloads. For STMC, Kubernetes natively 

supports parallelism for its batch job objects, where multiple instances of the same 

software solution run simultaneously towards completion. Similar behavior can be 

achieved by deploying the kube-batch7 [10] controller and running kube-batch 

specific objects. The coordination on the workload consumption must be made 

internally, within the distributed containerized application. The MTMC paradigm 

requires more complex scheduling and isolation mechanisms which can be also 

fulfilled by current Kubernetes capabilities. However, such deployments may 

 
7 https://github.com/kubernetes-sigs/kube-batch/blob/master/README.md 
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require multiple Kubernetes objects. Based on the use case, one may need to 

enforce complex network policies to isolate communication topology or deploy 

Kubernetes services to ensure inter-pod communication. In some cases, the 

architecture may require intermediary solutions like Message Queues or Caching 

systems in order to ensure asynchronous data consumption8. Another assumption 

that must be made in order to fully align with the taxonomy proposed by case 

study [11] is that a Kubernetes pod must contain only one application container, 

whereas extra containers are only supplements following one of the industry 

specific design patterns: Sidecar, Adaptor or Ambassador [13]. 

Related to data locality, there are situations where data transfer from one 

location to a remote one is mandatory. As proposed by C. Iacopo et al and 

described by case study [11], the workload is distributed among both Kubernetes 

and HPC jobs, where the consumers are hosted by Kubernetes pods, while 

producers are kept in HPC infrastructure. Similarly, I. Stan et. al. [14] enforces a 

tailored system where data processed by the ATLAS Experiment at CERN HPC 

infrastructure for specific Machine Learning jobs is further transferred and 

visualized in Kubernetes, on a demand basis. In both use cases, based on the 

amount of data that must be transferred, the underlying infrastructure must be also 

prepared to achieve quick transfer rates. On one side, as proposed by A.M. Beltre 

et. al. [15] using InfiniBand where possible, increases the overall performance and 

reduces the execution times of jobs/tasks. On the other hand, the container 

technology has also a significant stake in the overall performance. In most cases, 

Singularity behaves better and, in addition, enforces a corresponding security 

policy [15][16] for the execution of HPC jobs/tasks.  

Based on previous use cases, there is another classification that can be 

applied on hybrid HPC-Kubernetes solutions regarding the precedence of the two 

main components in the job execution pipeline. In the case studies [10][11], the 

HPC components precede and trigger Kubernetes data flow, while in cases like 

[12] and [17][18], the pipeline is initiated in Kubernetes and continued by the 

HPC scheduling mechanism. N. Zhou et. al. presents in [17][18] an alternative of 

using the scheduling mechanism of Kubernetes to determine which HPC 

partition/queue fits the current job/task demand. The implementation uses the 

concept of Virtual Kubernetes Node (virtual kubelets), where each abstracted 

node hides an HPC partition/queue and reports the set of resources available to the 

Kubernetes control plane. The Kubernetes master node analyzes the number of 

resources available and schedules the workload to the appropriate partition/queue. 

Since the HPC infrastructure is heterogeneous and sometime segregated per 

category of tasks/jobs [19], the scheduling mechanism can make use of Node 

Affinity, Taints and Tolerations, or Node selection functions to properly select the 

HPC partition/queue in charge to run the current job/task archetype. Thus, as 
 

8 https://kubernetes.io/docs/tasks/job/fine-parallel-processing-work-queue/ 

https://kubernetes.io/docs/tasks/job/fine-parallel-processing-work-queue/


Understanding the opportunities of applying Kubernetes scheduling capabilities in HPC    37 

 

presented by V. Dakic et al [19], a segregation model can be based on the 

underlying computing architecture. Such classification methodology can be 

supported and implemented in Kubernetes through a mix of node labeling and 

node selector or affinity.  

 
Fig 2. Torque-operator concept architecture 

 

As originally announced, all cases studied can be grouped in two main 

categories: static/dedicated topologies vs on-demand topologies. Part of them 

inherit the dynamics of cloud topologies where resources are no longer dedicated 

to a specific workflow but shared in order to leverage the cost and to balance the 

utilization rates. Here the discussion can be further extended as the paradigm itself 

has multiple valences. In case study [14], pods are spawned-up, on request, from a 

service catalog, in order to expose data processed by the HPC infrastructure. In 

case study [11] StreamFlow covers a more extensive use case where the solution 

supports hybrid workflows, implements various connectors towards multiple 

processing systems including Occam HPC setup and Kubernetes and ensures data 

transfer among technologies. Therefore, if required, StreamFlow connects to a 

multi-tenant Kubernetes cluster and executes specific jobs, based on the demand. 

The Kubernetes cluster can be further utilized for other purposes and workflows. 

Case study [9] proposes a different approach where nodes are attached, on 

demand, to a Kubernetes control plane and removed after the execution of the 

task/job. Depending on the number of nodes available another method to achieve 

similar behavior would be to attach all the HPC nodes to the control plane and to 

cordon them if not required for the current execution. Currently the Kubernetes 

control plane supports up to 5000 nodes attached. With the Tolerations and the 
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Affinity mechanisms, the attach/detach mechanism can be avoided also, and 

therefore, exclude the need to outsource such function to a Grid Management 

System.  

Solutions like the one proposed by N. Zhou et al. [17][18] (Fig 2.) goes 

under the predefined-static topology classifier as it requires a precise structure. 

The system includes a bridge/login node settled between the two separated 

infrastructures (HPC and Kubernetes cloud) and various virtual kubelet nodes that 

rely on the HPC manager API to report available resources. The most interesting 

approach for the on-demand paradigm consists of the case study [9] where C. 

Cerin et al not only borrow the execution capacity from a Kubernetes cluster but 

also maintain the HPC control plane/manager in pods on top of an existing on-

premises cloud implementation. As an improvement to the proposed architecture, 

cluster node preparation for HPC workload can be done via Daemon Set objects 

with escalated privileges and filtered via Tolerations. Thus, a privileged Daemon 

Set pod can prepare the underlying node and attach it to the containerized control 

plane once deployed in Kubernetes. 

6. Conclusions 

The case study aimed to define a classification model for Kubernetes 

implementations in High Performance Computing, bringing some specific 

improvements for those found in literature. The classification methodology 

comprises a simplified structure on three layers that aims to cover most 

implementations and to provide a better visibility of the integration methods used 

- Fig 3. 

The three layers taxonomy – fully-managed by Kubernetes, Kubernetes to 

HPC and HPC to Kubernetes - that define the form of communication between the 

control planes of the two distributed infrastructures is doubled by another 

dimensional axis, which represents the volatility of the hosting infrastructure – 

fixed/pre-defined and provisioned on a demand basis. 
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Fig 3. Hybrid HPC-Kubernetes system classification model 

 

This observation perspective nuances the opportunities for cost 

optimization in terms of resource consumption. 

The improvements suggested during the solutions analysis propose small 

but impactful changes in the architecture and design of the solutions found, 

especially in terms of replacing specific Kubernetes objects in certain use cases 

for optimizing the current workflows. 
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