
U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 4, 2022 ISSN 2286-3540

UNDERSTANDING THE OPPORTUNITIES OF APPLYING

KUBERNETES SCHEDULING CAPABILITIES IN HIGH

PERFORMANCE COMPUTING

Ioan-Mihail STAN1, Ștefan-Dan CIOCÎRLAN2, Răzvan RUGHINIȘ3

High Performance Computing and cloud computing are two paradigms of

distributed systems, which until recently were based on different governance models.

As the adoption of containers became an anchor between the two, the scheduling

methods adopted by the industry began to inherit common elements from both. Thus,

the current case study aims to analyze and classify architectural models from

literature in the context of hybrid configurations. It proposes a taxonomy for the

classification of HPC-Kubernetes hybrid configurations and provides improvements

to the solutions identified. From the perspective of the cloud provider, Kubernetes

has been selected for its versatility and for the optimized methodologies

implemented for intelligent management of containerized workloads.

.

Keywords: HPC, Kubernetes, Docker

1. Introduction

High Performance Computing is one of the most prolific concepts in

Information Technology and one of the drivers of innovation. From the early

stages of Covid-19 pandemics, companies and institutions brought together an

incredible number of resources for running studies on the new virus. The Covid19

HPC Consortium4 shared freely around 6.4 million CPU cores, 603 Petaflops and

4.9k GPUs for running Covid-19 related projects. Still a rigid infrastructure, HPC

has begun to adopt the container as a processing unit, inspired by the benefits they

have brought to the cloud.

Another important game changer and innovator in the distributed systems

market is Kubernetes, a container orchestrator, cloud-enabler, with a consistent

adoption rate worldwide. As announced by CNCF5 (Linux Foundation), there are

1 PhD(c). Eng., Faculty of Automatic Control and Computers, University POLITEHNICA of

Bucharest, Romania, e-mail: ioan.stan@upb.ro
2 PhD(c). Eng., Faculty of Automatic Control and Computers, University POLITEHNICA of

Bucharest, Romania, e-mail: stefan_dan.ciocirlan@upb.ro
3 Prof., PhD., Eng., Faculty of Automatic Control and Computers, University POLITEHNICA of

Bucharest, Romania, e-mail: razvan.rughinis@cs.pub.ro
4 https://covid19-hpc-consortium.org/
5 https://www.cncf.io/announcements/2022/02/10/cncf-sees-record-kubernetes-and-container-

adoption-in-2021-cloud-native-survey/

https://covid19-hpc-consortium.org/
https://www.cncf.io/announcements/2022/02/10/cncf-sees-record-kubernetes-and-container-adoption-in-2021-cloud-native-survey/
https://www.cncf.io/announcements/2022/02/10/cncf-sees-record-kubernetes-and-container-adoption-in-2021-cloud-native-survey/

32 Ioan-Mihail Stan, Ștefan-Dan Ciocîrlan, Răzvan Rughiniș

currently about 5.6 million developers who have adopted Kubernetes globally.

With a well-developed control plan and an ecosystem built around technology,

Kubernetes outperforms other competitors and becomes an industry standard.

As both distributed systems-based platforms focus their efforts on

containers, the current paper proposes a classification of HPC-Kubernetes hybrid

implementations and the way in which the important capabilities of both systems

have merged. This state-of-the-art article aims to analyze the implementations

found in the literature, to group them and to provide punctual improvements of the

proposed workflows. Section 2 presents a brief overview of some concepts and

emerging technologies in the space of distributed systems. Section 3 reveals the

classification taxonomy and shows improvements in current implementations and

Section 4 concludes the aspects previously presented.

2. Background

Docker [1] is a containerization engine that furnishes industry with a way

to pack applications and dependencies in executable artifacts able to provide the

same running experience on heterogeneous systems. It aims to cover the gap

caused by the lack of consistency between the development environment and

production environment. As many containerization engines on the market, Docker

uses two important Kernel native capabilities to run containers: namespaces and

cgroup. The isolation taxonomy proposed covers six out of seven namespaces

available: mnt, pid, net, uts, ipc and user and excludes more recently added time

namespace.

The Docker community started the Open Container Initiative, a

governance organization that provides industry with guidelines and standards with

the aim of interoperability [2]. Founded in 2015, the project maintains two

important specifications, one related to the containerization runtime and one

related to the container image definition, both extremely relevant for

interoperability. Thus, the modularity enforced brought the opportunity to replace

the Docker native runc runtime with other, more secure solutions [3][4]. In

addition, image build for Docker can now be easily transferred, with no extra

effort, to other containerization engines implementing OCI standards [5].

For HPC however, the most common containerization engine in use is

Singularity [5]. Contrary to Docker’s isolation taxonomy, Singularity proposes

one namespace isolation with mount (mnt) and inherits the entire user context

from the underlying node. This reflects the way HPC nodes are configured as they

usually unify the development and execution environments by enforcing the same

access policy on both. Therefore, a container executed via an HPC task/job is

running with the same user, shares the same process table, same network and so

on. The only component that is detached from the underlying node is the

Understanding the opportunities of applying Kubernetes scheduling capabilities in HPC 33

collection of artifacts embedded within the container image, that will no longer be

required to exist on the host. Thus, this may optimize the configuration process

since the toolset no longer needs to be installed before running a task/job.

Singularity is OCI compliant, therefore, it can run pre-existing Docker images

with no refactoring effort.

In High Performance Computing jobs or tasks are stored in batch queues

and executed one by one, in the entire clustered infrastructure, imprinting a

similar experience as in running them on the local development node, but with a

larger spectrum of resources available. The processes triggered during the

workflow are executed within the same user context, therefore untrusted users get

direct access to the underlying systems. Furthermore, each system is preloaded

with the entire toolkit required for running each individual job, thus one new

demanded library or tool needs to be deployed on each individual node. A way to

overcome this operational problem is to run tasks/jobs with containers, entities

that embed the main process with all its dependencies.

Kubernetes is a container orchestrator, a powerful layer that aggregates

and coordinates multiple container engines in order to fulfill complex production

scenarios [6][7]. It offers capabilities like self-healing, smart release management,

equitable distribution of workload on nodes, scaling and so on. Compared to HPC,

Kubernetes implements another paradigm. It is service-oriented, multi-tenant and

has its own dedicated resource management system and scheduling mechanism

[8].

3. Taxonomy

The aim of the current paper is to classify various HPC-Kubernetes

integrations in a way to better express the opportunities that may arise with such a

mix of paradigms. On one side, high performance computing implementations are

less flexible, whereas Kubernetes and the cloud paradigm enforces a quick and

transparent response to change. Gathering attributes from both models, one

classification method is focused on the volatility of the ecosystem around the

HPC-Kubernetes stack. Here one can observe two patterns based on the life cycle

of the hybrid setup - predefined/static topologies and on-demand topologies

In classical HPC implementations, each infrastructure change requires

reloading the distributed control plane to synchronize [9] the resource pool. Thus,

prior to running any task, the entire infrastructure must be deployed and

rigorously configured, with all the involved nodes running indefinitely, waiting

for jobs. In cloud computing each resource can be spawned up on demand. Such

methods can optimize the costs of running infrastructure, as control workload

doesn’t need to be present all the time. Before going further and presenting some

architectures matching the classifiers proposed, both categories can also support

34 Ioan-Mihail Stan, Ștefan-Dan Ciocîrlan, Răzvan Rughiniș

two main subclasses. Thus, each existing hybrid implementation can be defined as

fully managed by Kubernetes or partially managed by Kubernetes. Here, the focus

is on the scheduling component of the control plane and less on the

data/processing plane, as the latter is a concern of the type of tasks running within

the infrastructure and not a generic grouping factor. In addition, the paper assumes

that batch HPC tasks can be containerized with Kubernetes compatible

technologies. The containerization engine must be OCI (Open Container

Initiative) compliant and to implement CRI (Container Runtime Interface) directly

or via an adapter (shim6).

With the adoption of Operators, Kubernetes can support the extension of

the API and scheduling capabilities with additional control plane logic. Thus, in

theory, developing the entire HPC scheduling, as a plug-and-play module, is

achievable. However, the extensive complexity of HPC systems may not be

feasible to fully fit inside the Kubernetes control plane. In this regard, most case

studies fall under the partially managed Kubernetes category. The closest solution

to a fully Kubernetes managed workflow has been presented by M. Piras et al [10]

where the HPC Grid Manager is in charge to attach and detach worker nodes to an

always-on Kubernetes cluster. A HPC partition is formed on demand, by attaching

required nodes to the orchestrator control plane. The job scheduling is fully

outsourced to Kubernetes control plane and triggered via the native Kubernetes

Deployment mechanism. However, since the Grid Manager is still detached from

Kubernetes and considered also an essential part of the scheduling mechanism, the

solution is as well labeled as partially managed by the orchestrator. Furthermore, a

Deployment object stays indefinitely in Kubernetes, thus, an external mechanism

must monitor pods toward completion and delete the Deployment during the tear-

down phase. For this case study, adopting batch jobs Kubernetes objects instead

of deployments can improve the control routines.

The infeasibility of fully integrating HPC control processes into

Kubernetes stems from the complexity of the input information the scheduler

receives. As C. Iacopo et al describe in [11], organizing tasks on the appropriate

infrastructure nodes is more than a matter of resources available and load. In

HPC, data localization is an important input parameter to any scheduling

heuristic, especially in cases where the jobs/tasks are data-intensive or require

ingesting extremely large datasets. Movement of data may not be always feasible,

thus, running a job in the proximity of data required can also be weighted for

scheduling decisions.

6 https://kubernetes.io/docs/tasks/administer-cluster/migrating-from-dockershim/check-if-

dockershim-deprecation-affects-you/

https://kubernetes.io/docs/tasks/administer-cluster/migrating-from-dockershim/check-if-dockershim-deprecation-affects-you/
https://kubernetes.io/docs/tasks/administer-cluster/migrating-from-dockershim/check-if-dockershim-deprecation-affects-you/

Understanding the opportunities of applying Kubernetes scheduling capabilities in HPC 35

Fig 1. HPC-connector concept architecture

Furthermore, many hybrids HPC-Kubernetes implementations follow the

STSC or MTSC model, where one/many task objects trigger one container. STSC

(Single Task Single Container) and MTSC (Multiple Tasks One Container) are

adaptations of the Flynn taxonomy (as defined in [11]) and describe how HPC-

Kubernetes hybrid objects must enforce, isolate and manage the execution of HPC

tasks/jobs. S. Lopez-Huguet et al. [12] follows the STSC/MTSC model where the

hpc-connector (Fig. 1) monitors the lifecycle of a Kubernetes job and replicates

the same behavior within the HPC infrastructure. Therefore, the software running

inside the container can interpret Operating System signals, initiated by the

orchestrator control plane and apply the same directives to the HPC scheduler.

One possible problem with such an approach is when the underlying

containerization engine or Kubernetes decide to instantly kill a pod due to lack of

memory available or if the pod bypasses the memory limits enforced - OOMKill.

Thus, the software may not be able to further capture signals and therefore any

link between a cluster job and HPC job may be lost or interrupted.

As described by [11], the most challenging part in an HPC-Kubernetes

ecosystem is to manage STMC (Single Task Multiple Containers) and MTMC

(Multiple Tasks Multiple Containers) workloads. For STMC, Kubernetes natively

supports parallelism for its batch job objects, where multiple instances of the same

software solution run simultaneously towards completion. Similar behavior can be

achieved by deploying the kube-batch7 [10] controller and running kube-batch

specific objects. The coordination on the workload consumption must be made

internally, within the distributed containerized application. The MTMC paradigm

requires more complex scheduling and isolation mechanisms which can be also

fulfilled by current Kubernetes capabilities. However, such deployments may

7 https://github.com/kubernetes-sigs/kube-batch/blob/master/README.md

https://github.com/kubernetes-sigs/kube-batch/blob/master/README.md

36 Ioan-Mihail Stan, Ștefan-Dan Ciocîrlan, Răzvan Rughiniș

require multiple Kubernetes objects. Based on the use case, one may need to

enforce complex network policies to isolate communication topology or deploy

Kubernetes services to ensure inter-pod communication. In some cases, the

architecture may require intermediary solutions like Message Queues or Caching

systems in order to ensure asynchronous data consumption8. Another assumption

that must be made in order to fully align with the taxonomy proposed by case

study [11] is that a Kubernetes pod must contain only one application container,

whereas extra containers are only supplements following one of the industry

specific design patterns: Sidecar, Adaptor or Ambassador [13].

Related to data locality, there are situations where data transfer from one

location to a remote one is mandatory. As proposed by C. Iacopo et al and

described by case study [11], the workload is distributed among both Kubernetes

and HPC jobs, where the consumers are hosted by Kubernetes pods, while

producers are kept in HPC infrastructure. Similarly, I. Stan et. al. [14] enforces a

tailored system where data processed by the ATLAS Experiment at CERN HPC

infrastructure for specific Machine Learning jobs is further transferred and

visualized in Kubernetes, on a demand basis. In both use cases, based on the

amount of data that must be transferred, the underlying infrastructure must be also

prepared to achieve quick transfer rates. On one side, as proposed by A.M. Beltre

et. al. [15] using InfiniBand where possible, increases the overall performance and

reduces the execution times of jobs/tasks. On the other hand, the container

technology has also a significant stake in the overall performance. In most cases,

Singularity behaves better and, in addition, enforces a corresponding security

policy [15][16] for the execution of HPC jobs/tasks.

Based on previous use cases, there is another classification that can be

applied on hybrid HPC-Kubernetes solutions regarding the precedence of the two

main components in the job execution pipeline. In the case studies [10][11], the

HPC components precede and trigger Kubernetes data flow, while in cases like

[12] and [17][18], the pipeline is initiated in Kubernetes and continued by the

HPC scheduling mechanism. N. Zhou et. al. presents in [17][18] an alternative of

using the scheduling mechanism of Kubernetes to determine which HPC

partition/queue fits the current job/task demand. The implementation uses the

concept of Virtual Kubernetes Node (virtual kubelets), where each abstracted

node hides an HPC partition/queue and reports the set of resources available to the

Kubernetes control plane. The Kubernetes master node analyzes the number of

resources available and schedules the workload to the appropriate partition/queue.

Since the HPC infrastructure is heterogeneous and sometime segregated per

category of tasks/jobs [19], the scheduling mechanism can make use of Node

Affinity, Taints and Tolerations, or Node selection functions to properly select the

HPC partition/queue in charge to run the current job/task archetype. Thus, as

8 https://kubernetes.io/docs/tasks/job/fine-parallel-processing-work-queue/

https://kubernetes.io/docs/tasks/job/fine-parallel-processing-work-queue/

Understanding the opportunities of applying Kubernetes scheduling capabilities in HPC 37

presented by V. Dakic et al [19], a segregation model can be based on the

underlying computing architecture. Such classification methodology can be

supported and implemented in Kubernetes through a mix of node labeling and

node selector or affinity.

Fig 2. Torque-operator concept architecture

As originally announced, all cases studied can be grouped in two main

categories: static/dedicated topologies vs on-demand topologies. Part of them

inherit the dynamics of cloud topologies where resources are no longer dedicated

to a specific workflow but shared in order to leverage the cost and to balance the

utilization rates. Here the discussion can be further extended as the paradigm itself

has multiple valences. In case study [14], pods are spawned-up, on request, from a

service catalog, in order to expose data processed by the HPC infrastructure. In

case study [11] StreamFlow covers a more extensive use case where the solution

supports hybrid workflows, implements various connectors towards multiple

processing systems including Occam HPC setup and Kubernetes and ensures data

transfer among technologies. Therefore, if required, StreamFlow connects to a

multi-tenant Kubernetes cluster and executes specific jobs, based on the demand.

The Kubernetes cluster can be further utilized for other purposes and workflows.

Case study [9] proposes a different approach where nodes are attached, on

demand, to a Kubernetes control plane and removed after the execution of the

task/job. Depending on the number of nodes available another method to achieve

similar behavior would be to attach all the HPC nodes to the control plane and to

cordon them if not required for the current execution. Currently the Kubernetes

control plane supports up to 5000 nodes attached. With the Tolerations and the

38 Ioan-Mihail Stan, Ștefan-Dan Ciocîrlan, Răzvan Rughiniș

Affinity mechanisms, the attach/detach mechanism can be avoided also, and

therefore, exclude the need to outsource such function to a Grid Management

System.

Solutions like the one proposed by N. Zhou et al. [17][18] (Fig 2.) goes

under the predefined-static topology classifier as it requires a precise structure.

The system includes a bridge/login node settled between the two separated

infrastructures (HPC and Kubernetes cloud) and various virtual kubelet nodes that

rely on the HPC manager API to report available resources. The most interesting

approach for the on-demand paradigm consists of the case study [9] where C.

Cerin et al not only borrow the execution capacity from a Kubernetes cluster but

also maintain the HPC control plane/manager in pods on top of an existing on-

premises cloud implementation. As an improvement to the proposed architecture,

cluster node preparation for HPC workload can be done via Daemon Set objects

with escalated privileges and filtered via Tolerations. Thus, a privileged Daemon

Set pod can prepare the underlying node and attach it to the containerized control

plane once deployed in Kubernetes.

6. Conclusions

The case study aimed to define a classification model for Kubernetes

implementations in High Performance Computing, bringing some specific

improvements for those found in literature. The classification methodology

comprises a simplified structure on three layers that aims to cover most

implementations and to provide a better visibility of the integration methods used

- Fig 3.

The three layers taxonomy – fully-managed by Kubernetes, Kubernetes to

HPC and HPC to Kubernetes - that define the form of communication between the

control planes of the two distributed infrastructures is doubled by another

dimensional axis, which represents the volatility of the hosting infrastructure –

fixed/pre-defined and provisioned on a demand basis.

Understanding the opportunities of applying Kubernetes scheduling capabilities in HPC 39

Fig 3. Hybrid HPC-Kubernetes system classification model

This observation perspective nuances the opportunities for cost

optimization in terms of resource consumption.

The improvements suggested during the solutions analysis propose small

but impactful changes in the architecture and design of the solutions found,

especially in terms of replacing specific Kubernetes objects in certain use cases

for optimizing the current workflows.

R E F E R E N C E S

[1]. B. B. Rad, H. J. Bhatti, and M. Ahmadi, An introduction to docker and analysis of its

performance., International Journal of Computer Science and Network Security (IJCSNS)

17.3, 2017 pp. 228.

[2]. L. Benedicic, et al., Sarus: Highly scalable Docker containers for HPC systems., International

Conference on High Performance Computing. Springer, Cham, 2019.

[3]. X. Wang, J. Du, and H. Liu, Performance and isolation analysis of RunC, gVisor and Kata

Containers runtimes., Cluster Computing, 2022 pp. 1-17.

[4]. I. Mavridis, and H. Karatza., Orchestrated sandboxed containers, unikernels, and virtual

machines for isolation‐enhanced multitenant workloads and serverless computing in cloud.

Concurrency and Computation: Practice and Experience, 2021 e6365.

[5]. G. M. Kurtzer, V. Sochat, and M. W. Bauer., Singularity: Scientific containers for mobility of

compute., PloS one 12.5, 2017 e0177459.

[6]. F. H. B. Megino, et al., Using Kubernetes as an ATLAS computing site., EPJ Web of

Conferences. Vol. 245. EDP Sciences, 2020.

[7]. A. P. Ferreira, and R. Sinnott., A performance evaluation of containers running on managed

kubernetes services., 2019 IEEE International Conference on Cloud Computing

Technology and Science (CloudCom). IEEE, 2019.

40 Ioan-Mihail Stan, Ștefan-Dan Ciocîrlan, Răzvan Rughiniș

[8]. Z. Wei-guo, M. Xi-lin, and Z. Jin-zhong., Research on Kubernetes' Resource Scheduling

Scheme., Proceedings of the 8th International Conference on Communication and Network

Security., 2018.

[9]. C. Cérin, N. Greneche, and T. Menouer. Towards pervasive containerization of HPC job

schedulers., 2020 IEEE 32nd International Symposium on Computer Architecture and High

Performance Computing (SBAC-PAD). IEEE, 2020.

[10]. M. E. Piras, et al., Container orchestration on HPC clusters., International Conference on

High Performance Computing. Springer, Cham, 2019.

[11]. I. Colonnelli, et al., StreamFlow: cross-breeding cloud with HPC., IEEE Transactions on

Emerging Topics in Computing 9.4, 2020 pp.1723-1737.

[12]. S. López-Huguet, et al., Seamlessly managing HPC workloads through Kubernetes.,

International Conference on High Performance Computing. Springer, Cham, 2020.

[13]. B. Burns, and D. Oppenheimer., Design patterns for container-based distributed systems., 8th

USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16)., 2016.

[14]. I. Stan, S. Padolski, and C. J. Lee, Exploring the self-service model to visualize the results of

the ATLAS Machine Learning analysis jobs in BigPanDA with Openshift OKD3., EPJ

Web of Conferences. Vol. 251. EDP Sciences, 2021.

[15]. A. M. Beltre, et al., Enabling HPC workloads on cloud infrastructure using Kubernetes

container orchestration mechanisms., 2019 IEEE/ACM International Workshop on

Containers and New Orchestration Paradigms for Isolated Environments in HPC

(CANOPIE-HPC). IEEE, 2019.

[16]. I. Stan, D. Rosner, and Ş. Ciocîrlan., Enforce a global security policy for user access to

clustered container systems via user namespace sharing., 2020 19th RoEduNet Conference:

Networking in Education and Research (RoEduNet). IEEE, 2020.

[17]. N. Zhou, et al., Container orchestration on HPC systems., 2020 IEEE 13th International

Conference on Cloud Computing (CLOUD). IEEE, 2020.

[18]. N. Zhou, et al., Container orchestration on HPC systems through Kubernetes., Journal of

Cloud Computing 10.1, 2021 pp. 1-14.

[19]. V. Dakic, M. Kovac, and J. Redzepagic., Optimizing Kubernetes performance, efficiency and

energy footprint in heterogenous HPC environments, Annals of DAAAM & Proceedings

10.2, 2021.

