U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 4, 2022 ISSN 2286-3540

UNDERSTANDING THE OPPORTUNITIES OF APPLYING
KUBERNETES SCHEDULING CAPABILITIES IN HIGH
PERFORMANCE COMPUTING

loan-Mihail STAN?, Stefan-Dan CIOCIRLAN?, Rizvan RUGHINIS®

High Performance Computing and cloud computing are two paradigms of
distributed systems, which until recently were based on different governance models.
As the adoption of containers became an anchor between the two, the scheduling
methods adopted by the industry began to inherit common elements from both. Thus,
the current case study aims to analyze and classify architectural models from
literature in the context of hybrid configurations. It proposes a taxonomy for the
classification of HPC-Kubernetes hybrid configurations and provides improvements
to the solutions identified. From the perspective of the cloud provider, Kubernetes
has been selected for its versatility and for the optimized methodologies
implemented for intelligent management of containerized workloads.

Keywords: .HPC, Kubernetes, Docker
1. Introduction

High Performance Computing is one of the most prolific concepts in
Information Technology and one of the drivers of innovation. From the early
stages of Covid-19 pandemics, companies and institutions brought together an
incredible number of resources for running studies on the new virus. The Covid19
HPC Consortium* shared freely around 6.4 million CPU cores, 603 Petaflops and
4.9k GPUs for running Covid-19 related projects. Still a rigid infrastructure, HPC
has begun to adopt the container as a processing unit, inspired by the benefits they
have brought to the cloud.

Another important game changer and innovator in the distributed systems
market is Kubernetes, a container orchestrator, cloud-enabler, with a consistent
adoption rate worldwide. As announced by CNCF® (Linux Foundation), there are

L PhD(c). Eng., Faculty of Automatic Control and Computers, University POLITEHNICA of
Bucharest, Romania, e-mail: ioan.stan@upb.ro

2 PhD(c). Eng., Faculty of Automatic Control and Computers, University POLITEHNICA of
Bucharest, Romania, e-mail: stefan_dan.ciocirlan@upb.ro

3 Prof., PhD., Eng., Faculty of Automatic Control and Computers, University POLITEHNICA of
Bucharest, Romania, e-mail: razvan.rughinis@cs.pub.ro

4 https://covid19-hpc-consortium.org/

5 https://www.cncf.io/announcements/2022/02/10/cncf-sees-record-kubernetes-and-container-
adoption-in-2021-cloud-native-survey/

https://covid19-hpc-consortium.org/
https://www.cncf.io/announcements/2022/02/10/cncf-sees-record-kubernetes-and-container-adoption-in-2021-cloud-native-survey/
https://www.cncf.io/announcements/2022/02/10/cncf-sees-record-kubernetes-and-container-adoption-in-2021-cloud-native-survey/

32 loan-Mihail Stan, Stefan-Dan Ciocirlan, Razvan Rughinis

currently about 5.6 million developers who have adopted Kubernetes globally.
With a well-developed control plan and an ecosystem built around technology,
Kubernetes outperforms other competitors and becomes an industry standard.

As Dboth distributed systems-based platforms focus their efforts on
containers, the current paper proposes a classification of HPC-Kubernetes hybrid
implementations and the way in which the important capabilities of both systems
have merged. This state-of-the-art article aims to analyze the implementations
found in the literature, to group them and to provide punctual improvements of the
proposed workflows. Section 2 presents a brief overview of some concepts and
emerging technologies in the space of distributed systems. Section 3 reveals the
classification taxonomy and shows improvements in current implementations and
Section 4 concludes the aspects previously presented.

2. Background

Docker [1] is a containerization engine that furnishes industry with a way
to pack applications and dependencies in executable artifacts able to provide the
same running experience on heterogeneous systems. It aims to cover the gap
caused by the lack of consistency between the development environment and
production environment. As many containerization engines on the market, Docker
uses two important Kernel native capabilities to run containers: namespaces and
cgroup. The isolation taxonomy proposed covers six out of seven namespaces
available: mnt, pid, net, uts, ipc and user and excludes more recently added time
namespace.

The Docker community started the Open Container Initiative, a
governance organization that provides industry with guidelines and standards with
the aim of interoperability [2]. Founded in 2015, the project maintains two
important specifications, one related to the containerization runtime and one
related to the container image definition, both extremely relevant for
interoperability. Thus, the modularity enforced brought the opportunity to replace
the Docker native runc runtime with other, more secure solutions [3][4]. In
addition, image build for Docker can now be easily transferred, with no extra
effort, to other containerization engines implementing OCI standards [5].

For HPC however, the most common containerization engine in use is
Singularity [5]. Contrary to Docker’s isolation taxonomy, Singularity proposes
one namespace isolation with mount (mnt) and inherits the entire user context
from the underlying node. This reflects the way HPC nodes are configured as they
usually unify the development and execution environments by enforcing the same
access policy on both. Therefore, a container executed via an HPC task/job is
running with the same user, shares the same process table, same network and so
on. The only component that is detached from the underlying node is the

Understanding the opportunities of applying Kubernetes scheduling capabilities in HPC 33

collection of artifacts embedded within the container image, that will no longer be
required to exist on the host. Thus, this may optimize the configuration process
since the toolset no longer needs to be installed before running a task/job.
Singularity is OCI compliant, therefore, it can run pre-existing Docker images
with no refactoring effort.

In High Performance Computing jobs or tasks are stored in batch queues
and executed one by one, in the entire clustered infrastructure, imprinting a
similar experience as in running them on the local development node, but with a
larger spectrum of resources available. The processes triggered during the
workflow are executed within the same user context, therefore untrusted users get
direct access to the underlying systems. Furthermore, each system is preloaded
with the entire toolkit required for running each individual job, thus one new
demanded library or tool needs to be deployed on each individual node. A way to
overcome this operational problem is to run tasks/jobs with containers, entities
that embed the main process with all its dependencies.

Kubernetes is a container orchestrator, a powerful layer that aggregates
and coordinates multiple container engines in order to fulfill complex production
scenarios [6][7]. It offers capabilities like self-healing, smart release management,
equitable distribution of workload on nodes, scaling and so on. Compared to HPC,
Kubernetes implements another paradigm. It is service-oriented, multi-tenant and
has its own dedicated resource management system and scheduling mechanism

[8].
3. Taxonomy

The aim of the current paper is to classify various HPC-Kubernetes
integrations in a way to better express the opportunities that may arise with such a
mix of paradigms. On one side, high performance computing implementations are
less flexible, whereas Kubernetes and the cloud paradigm enforces a quick and
transparent response to change. Gathering attributes from both models, one
classification method is focused on the volatility of the ecosystem around the
HPC-Kubernetes stack. Here one can observe two patterns based on the life cycle
of the hybrid setup - predefined/static topologies and on-demand topologies

In classical HPC implementations, each infrastructure change requires
reloading the distributed control plane to synchronize [9] the resource pool. Thus,
prior to running any task, the entire infrastructure must be deployed and
rigorously configured, with all the involved nodes running indefinitely, waiting
for jobs. In cloud computing each resource can be spawned up on demand. Such
methods can optimize the costs of running infrastructure, as control workload
doesn’t need to be present all the time. Before going further and presenting some
architectures matching the classifiers proposed, both categories can also support

34 loan-Mihail Stan, Stefan-Dan Ciocirlan, Razvan Rughinis

two main subclasses. Thus, each existing hybrid implementation can be defined as
fully managed by Kubernetes or partially managed by Kubernetes. Here, the focus
is on the scheduling component of the control plane and less on the
data/processing plane, as the latter is a concern of the type of tasks running within
the infrastructure and not a generic grouping factor. In addition, the paper assumes
that batch HPC tasks can be containerized with Kubernetes compatible
technologies. The containerization engine must be OCI (Open Container
Initiative) compliant and to implement CRI (Container Runtime Interface) directly
or via an adapter (shim®).

With the adoption of Operators, Kubernetes can support the extension of
the API and scheduling capabilities with additional control plane logic. Thus, in
theory, developing the entire HPC scheduling, as a plug-and-play module, is
achievable. However, the extensive complexity of HPC systems may not be
feasible to fully fit inside the Kubernetes control plane. In this regard, most case
studies fall under the partially managed Kubernetes category. The closest solution
to a fully Kubernetes managed workflow has been presented by M. Piras et al [10]
where the HPC Grid Manager is in charge to attach and detach worker nodes to an
always-on Kubernetes cluster. A HPC partition is formed on demand, by attaching
required nodes to the orchestrator control plane. The job scheduling is fully
outsourced to Kubernetes control plane and triggered via the native Kubernetes
Deployment mechanism. However, since the Grid Manager is still detached from
Kubernetes and considered also an essential part of the scheduling mechanism, the
solution is as well labeled as partially managed by the orchestrator. Furthermore, a
Deployment object stays indefinitely in Kubernetes, thus, an external mechanism
must monitor pods toward completion and delete the Deployment during the tear-
down phase. For this case study, adopting batch jobs Kubernetes objects instead
of deployments can improve the control routines.

The infeasibility of fully integrating HPC control processes into
Kubernetes stems from the complexity of the input information the scheduler
receives. As C. lacopo et al describe in [11], organizing tasks on the appropriate
infrastructure nodes is more than a matter of resources available and load. In
HPC, data localization is an important input parameter to any scheduling
heuristic, especially in cases where the jobs/tasks are data-intensive or require
ingesting extremely large datasets. Movement of data may not be always feasible,
thus, running a job in the proximity of data required can also be weighted for
scheduling decisions.

6 https://kubernetes.io/docs/tasks/administer-cluster/migrating-from-dockershim/check-if-
dockershim-deprecation-affects-you/

https://kubernetes.io/docs/tasks/administer-cluster/migrating-from-dockershim/check-if-dockershim-deprecation-affects-you/
https://kubernetes.io/docs/tasks/administer-cluster/migrating-from-dockershim/check-if-dockershim-deprecation-affects-you/

Understanding the opportunities of applying Kubernetes scheduling capabilities in HPC 35

BTV

Manage
Lifecycle

HPC Job/Task

HPC

BatchJob

K8S Object Infrastructure

Monitor

Kubernetes

Fig 1. HPC-connector concept architecture

Furthermore, many hybrids HPC-Kubernetes implementations follow the
STSC or MTSC model, where one/many task objects trigger one container. STSC
(Single Task Single Container) and MTSC (Multiple Tasks One Container) are
adaptations of the Flynn taxonomy (as defined in [11]) and describe how HPC-
Kubernetes hybrid objects must enforce, isolate and manage the execution of HPC
tasks/jobs. S. Lopez-Huguet et al. [12] follows the STSC/MTSC model where the
hpc-connector (Fig. 1) monitors the lifecycle of a Kubernetes job and replicates
the same behavior within the HPC infrastructure. Therefore, the software running
inside the container can interpret Operating System signals, initiated by the
orchestrator control plane and apply the same directives to the HPC scheduler.
One possible problem with such an approach is when the underlying
containerization engine or Kubernetes decide to instantly kill a pod due to lack of
memory available or if the pod bypasses the memory limits enforced - OOMKill.
Thus, the software may not be able to further capture signals and therefore any
link between a cluster job and HPC job may be lost or interrupted.

As described by [11], the most challenging part in an HPC-Kubernetes
ecosystem is to manage STMC (Single Task Multiple Containers) and MTMC
(Multiple Tasks Multiple Containers) workloads. For STMC, Kubernetes natively
supports parallelism for its batch job objects, where multiple instances of the same
software solution run simultaneously towards completion. Similar behavior can be
achieved by deploying the kube-batch’ [10] controller and running kube-batch
specific objects. The coordination on the workload consumption must be made
internally, within the distributed containerized application. The MTMC paradigm
requires more complex scheduling and isolation mechanisms which can be also
fulfilled by current Kubernetes capabilities. However, such deployments may

7 https://github.com/kubernetes-sigs/kube-batch/blob/master/README.md

https://github.com/kubernetes-sigs/kube-batch/blob/master/README.md

36 loan-Mihail Stan, Stefan-Dan Ciocirlan, Razvan Rughinis

require multiple Kubernetes objects. Based on the use case, one may need to
enforce complex network policies to isolate communication topology or deploy
Kubernetes services to ensure inter-pod communication. In some cases, the
architecture may require intermediary solutions like Message Queues or Caching
systems in order to ensure asynchronous data consumption®. Another assumption
that must be made in order to fully align with the taxonomy proposed by case
study [11] is that a Kubernetes pod must contain only one application container,
whereas extra containers are only supplements following one of the industry
specific design patterns: Sidecar, Adaptor or Ambassador [13].

Related to data locality, there are situations where data transfer from one
location to a remote one is mandatory. As proposed by C. lacopo et al and
described by case study [11], the workload is distributed among both Kubernetes
and HPC jobs, where the consumers are hosted by Kubernetes pods, while
producers are kept in HPC infrastructure. Similarly, I. Stan et. al. [14] enforces a
tailored system where data processed by the ATLAS Experiment at CERN HPC
infrastructure for specific Machine Learning jobs is further transferred and
visualized in Kubernetes, on a demand basis. In both use cases, based on the
amount of data that must be transferred, the underlying infrastructure must be also
prepared to achieve quick transfer rates. On one side, as proposed by A.M. Beltre
et. al. [15] using InfiniBand where possible, increases the overall performance and
reduces the execution times of jobs/tasks. On the other hand, the container
technology has also a significant stake in the overall performance. In most cases,
Singularity behaves better and, in addition, enforces a corresponding security
policy [15][16] for the execution of HPC jobs/tasks.

Based on previous use cases, there is another classification that can be
applied on hybrid HPC-Kubernetes solutions regarding the precedence of the two
main components in the job execution pipeline. In the case studies [10][11], the
HPC components precede and trigger Kubernetes data flow, while in cases like
[12] and [17][18], the pipeline is initiated in Kubernetes and continued by the
HPC scheduling mechanism. N. Zhou et. al. presents in [17][18] an alternative of
using the scheduling mechanism of Kubernetes to determine which HPC
partition/queue fits the current job/task demand. The implementation uses the
concept of Virtual Kubernetes Node (virtual kubelets), where each abstracted
node hides an HPC partition/queue and reports the set of resources available to the
Kubernetes control plane. The Kubernetes master node analyzes the number of
resources available and schedules the workload to the appropriate partition/queue.
Since the HPC infrastructure is heterogeneous and sometime segregated per
category of tasks/jobs [19], the scheduling mechanism can make use of Node
Affinity, Taints and Tolerations, or Node selection functions to properly select the
HPC partition/queue in charge to run the current job/task archetype. Thus, as

8 https://kubernetes.io/docs/tasks/job/fine-parallel-processing-work-queue/

https://kubernetes.io/docs/tasks/job/fine-parallel-processing-work-queue/

Understanding the opportunities of applying Kubernetes scheduling capabilities in HPC 37

presented by V. Dakic et al [19], a segregation model can be based on the
underlying computing architecture. Such classification methodology can be
supported and implemented in Kubernetes through a mix of node labeling and

node selector or affinity.
Forwards job/task

specification to a HPC

queue from the pod

hee spawned-up by the
o Custom Operator

RN Task embedded into the K8S
~ object is submitted via

O red-box socket to the HPC
infrastructure

Client Node (Login Node)

Submit K8S
Custom Object -
TorqueJob

Custom
operator

(pluggable
control plane)

abstracts K8S nodes

Virtual Node and allows redefining
WILUEINTEENES the routines that
manage the lifecycle
of pods

Custom controller
schedule pod
objects to virtual
node

Kubernetes

Fig 2. Torque-operator concept architecture

As originally announced, all cases studied can be grouped in two main
categories: static/dedicated topologies vs on-demand topologies. Part of them
inherit the dynamics of cloud topologies where resources are no longer dedicated
to a specific workflow but shared in order to leverage the cost and to balance the
utilization rates. Here the discussion can be further extended as the paradigm itself
has multiple valences. In case study [14], pods are spawned-up, on request, from a
service catalog, in order to expose data processed by the HPC infrastructure. In
case study [11] StreamFlow covers a more extensive use case where the solution
supports hybrid workflows, implements various connectors towards multiple
processing systems including Occam HPC setup and Kubernetes and ensures data
transfer among technologies. Therefore, if required, StreamFlow connects to a
multi-tenant Kubernetes cluster and executes specific jobs, based on the demand.
The Kubernetes cluster can be further utilized for other purposes and workflows.
Case study [9] proposes a different approach where nodes are attached, on
demand, to a Kubernetes control plane and removed after the execution of the
task/job. Depending on the number of nodes available another method to achieve
similar behavior would be to attach all the HPC nodes to the control plane and to
cordon them if not required for the current execution. Currently the Kubernetes
control plane supports up to 5000 nodes attached. With the Tolerations and the

38 loan-Mihail Stan, Stefan-Dan Ciocirlan, Razvan Rughinis

Affinity mechanisms, the attach/detach mechanism can be avoided also, and
therefore, exclude the need to outsource such function to a Grid Management
System.

Solutions like the one proposed by N. Zhou et al. [17][18] (Fig 2.) goes
under the predefined-static topology classifier as it requires a precise structure.
The system includes a bridge/login node settled between the two separated
infrastructures (HPC and Kubernetes cloud) and various virtual kubelet nodes that
rely on the HPC manager API to report available resources. The most interesting
approach for the on-demand paradigm consists of the case study [9] where C.
Cerin et al not only borrow the execution capacity from a Kubernetes cluster but
also maintain the HPC control plane/manager in pods on top of an existing on-
premises cloud implementation. As an improvement to the proposed architecture,
cluster node preparation for HPC workload can be done via Daemon Set objects
with escalated privileges and filtered via Tolerations. Thus, a privileged Daemon
Set pod can prepare the underlying node and attach it to the containerized control
plane once deployed in Kubernetes.

6. Conclusions

The case study aimed to define a classification model for Kubernetes
implementations in High Performance Computing, bringing some specific
improvements for those found in literature. The classification methodology
comprises a simplified structure on three layers that aims to cover most
implementations and to provide a better visibility of the integration methods used
- Fig 3.

The three layers taxonomy — fully-managed by Kubernetes, Kubernetes to
HPC and HPC to Kubernetes - that define the form of communication between the
control planes of the two distributed infrastructures is doubled by another
dimensional axis, which represents the volatility of the hosting infrastructure —
fixed/pre-defined and provisioned on a demand basis.

Understanding the opportunities of applying Kubernetes scheduling capabilities in HPC 39

On-demand

Fixed/Predefined/Static infrastructure

infrastructure

- 0
— Fully managed \ T
_ [10] M. Piras et. al by Kubernetes (K8S) y

HPC control plane devel. as Operator ‘

Partially managed —
by Kubernetes (K8S) \ T

K8S to HPC

| [10] M. Piras et. al. |

[11] C. lacopo et al

HPC to K8S

[14] IM. Stan et. al.
[17,18] N. Zhou et. al.

[12] S. Lépez-Huguet et. al.

Fig 3. Hybrid HPC-Kubernetes system classification model

This observation perspective nuances the opportunities for cost
optimization in terms of resource consumption.

The improvements suggested during the solutions analysis propose small
but impactful changes in the architecture and design of the solutions found,
especially in terms of replacing specific Kubernetes objects in certain use cases
for optimizing the current workflows.

REFERENCES

[1]. B. B. Rad, H. J. Bhatti, and M. Ahmadi, An introduction to docker and analysis of its
performance., International Journal of Computer Science and Network Security (IJCSNS)
17.3, 2017 pp. 228.

[2]. L. Benedicic, et al., Sarus: Highly scalable Docker containers for HPC systems., International
Conference on High Performance Computing. Springer, Cham, 2019.

[3]. X. Wang, J. Du, and H. Liu, Performance and isolation analysis of RunC, gVisor and Kata
Containers runtimes., Cluster Computing, 2022 pp. 1-17.

[4]. 1. Mavridis, and H. Karatza., Orchestrated sandboxed containers, unikernels, and virtual
machines for isolation-enhanced multitenant workloads and serverless computing in cloud.
Concurrency and Computation: Practice and Experience, 2021 e6365.

[5]. G. M. Kurtzer, V. Sochat, and M. W. Bauer., Singularity: Scientific containers for mobility of
compute., PloS one 12.5, 2017 e0177459.

[6]. F. H. B. Megino, et al., Using Kubernetes as an ATLAS computing site., EPJ Web of
Conferences. Vol. 245. EDP Sciences, 2020.

[7]. A. P. Ferreira, and R. Sinnott., A performance evaluation of containers running on managed
kubernetes services., 2019 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE, 2019.

40 loan-Mihail Stan, Stefan-Dan Ciocirlan, Razvan Rughinis

[8]. Z. Wei-guo, M. Xi-lin, and Z. Jin-zhong., Research on Kubernetes' Resource Scheduling
Scheme., Proceedings of the 8th International Conference on Communication and Network
Security., 2018.

[9]. C. Cérin, N. Greneche, and T. Menouer. Towards pervasive containerization of HPC job
schedulers., 2020 IEEE 32nd International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). IEEE, 2020.

[10]. M. E. Piras, et al., Container orchestration on HPC clusters., International Conference on
High Performance Computing. Springer, Cham, 2019.

[11]. I. Colonnelli, et al., StreamFlow: cross-breeding cloud with HPC., IEEE Transactions on
Emerging Topics in Computing 9.4, 2020 pp.1723-1737.

[12]. S. Lopez-Huguet, et al., Seamlessly managing HPC workloads through Kubernetes.,
International Conference on High Performance Computing. Springer, Cham, 2020.

[13]. B. Burns, and D. Oppenheimer., Design patterns for container-based distributed systems., 8th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16)., 2016.

[14]. 1. Stan, S. Padolski, and C. J. Lee, Exploring the self-service model to visualize the results of
the ATLAS Machine Learning analysis jobs in BigPanDA with Openshift OKD3., EPJ
Web of Conferences. Vol. 251. EDP Sciences, 2021.

[15]. A. M. Beltre, et al., Enabling HPC workloads on cloud infrastructure using Kubernetes
container orchestration mechanisms., 2019 IEEE/ACM International Workshop on
Containers and New Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE-HPC). IEEE, 2019.

[16]. I Stan, D. Rosner, and §. Ciocirlan., Enforce a global security policy for user access to
clustered container systems via user namespace sharing., 2020 19th RoEduNet Conference:
Networking in Education and Research (RoEduNet). IEEE, 2020.

[17]. N. Zhou, et al., Container orchestration on HPC systems., 2020 IEEE 13th International
Conference on Cloud Computing (CLOUD). IEEE, 2020.

[18]. N. Zhou, et al., Container orchestration on HPC systems through Kubernetes., Journal of
Cloud Computing 10.1, 2021 pp. 1-14.

[19]. V. Dakic, M. Kovac, and J. Redzepagic., Optimizing Kubernetes performance, efficiency and
energy footprint in heterogenous HPC environments, Annals of DAAAM & Proceedings
10.2, 2021.

