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The aim of this paper is to study a viscosity algorithm for finding a common

element of the set of fixed points of a nonexpansive mapping and the set of solutions

to a new variational inequality problem of two inverse-strongly monotone operators in

2-uniformly smooth and uniformly convex Banach spaces. Under some suitable assump-

tions imposed on the parameters, we obtain strong convergence theorems. The results

obtained in this paper may be an improvement of many recent ones in the literature.
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1. Introduction

Variational inequality theory plays an important role for solving many problems aris-

ing in several branches of pure and applied sciences, such as mathematical programming,

equilibrium problems and signal recovery problems. See [1-8,21-29] for more details and the

references contained therein.

In this paper, we study a generalized viscosity algorithm for finding a common element

of the set of fixed points of a nonexpansive mapping and the set of solutions to a new

variational inequality problem for two inverse-strongly monotone operators in 2-uniformly

smooth and uniformly convex Banach spaces. Strong convergence result of the sequence

generated by our algorithm is given under appropriate conditions imposed on the parameters.

2. Definitions and preliminaries

Throughout this paper, let E be a real Banach space and let C be a nonempty, closed

and convex subset of E. Let T : C → C be a self-mapping. We always denote by F (T ) the

set of fixed points of T , that is F (T ) := {x ∈ C : x = Tx}. Let J : E → 2E
∗

be the duality

mapping defined by

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 , ‖x∗‖ = ‖x‖

}
, ∀x ∈ E.

If E is a real Hilbert space, it is easy to see that J = I, where I is the identity mapping

on E. In addition, when E is smooth, we know from [21] that J is single-valued, which we

shall denoted by j. Next we state some basic concepts and facts appeared in this paper.
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A mapping f : C → C is said to be a strict contraction, if there exists a constant

δ ∈ (0, 1) such that

‖f(x)− f(y)‖ ≤ δ ‖x− y‖ , ∀ x, y ∈ C. (1)

A mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ ,∀ x, y ∈ C. (2)

A mapping A : C → E is said to be accretive if there exists j(x− y) ∈ J(x− y) such

that

〈Ax−Ay, j(x− y)〉 ≥ 0,∀ x, y ∈ C. (3)

A mapping A : C → E is said to be α-inverse strongly accretive if there exists

j(x− y) ∈ J(x− y) and α > 0 such that

〈Ax−Ay, j(x− y)〉 ≥ α ‖Ax−Ay‖2 ,∀ x, y ∈ C. (4)

Let ρE : [0,∞)→ [0,∞) be the modulus of smoothness of E defined by

ρE(t) := sup

{
1

2
(‖x+ y‖+ ‖x− y‖)− 1 : x ∈ S(E), ‖y‖ ≤ t

}
.

A Banach space E is called to be uniformly smooth if
ρE(t)

t
→ 0 as t → 0. Furthermore,

Banach space E is said to be q-uniformly smooth, if there exists a fixed constant c > 0 such

that ρE(t) ≤ ctq. It is well known that if E is q-uniformly smooth, then q ≤ 2 and E is

uniformly smooth.

A Banach space E is called to be strictly convex, if x and y are not colinear, then:

‖x+ y‖ < ‖x‖+ ‖y‖. Let δE(ε) be the modulus of convexity of E defined by

δE(ε) := inf

{
1− 1

2
‖x+ y‖ : ‖x‖ , ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
,

for all ε ∈ [0, 2]. A Banach space E is said to be uniformly convex if δE(0) = 0, and δE(ε) > 0

for all 0 < ε ≤ 2. It is known that Lp is uniformly smooth and uniformly convex Banach

space, where p > 1. Precisely, Lp is min {p, 2}-uniformly smooth and max {p, 2}-uniformly

convex for every p > 1.

Let C be a nonempty, closed and convex subset of a real Hilbert space H and let

A : C → H be a nonlinear mapping. The classical variational inequality is to find an x∗ ∈ C
such that

〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C. (5)

We use V I(A,C) to denote the set of solutions to (5).

Moreover, Ceng et al. [4] introduced the following problem of finding (x∗, y∗) ∈ C×C
such that {

〈λAy∗ + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C,
〈µBx∗ + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ C, (6)

which is called a general system of variational inequalities, where A,B : C → H are two

nonlinear mappings, λ > 0 and µ > 0 are two fixed constants. We can see easily that problem

(6) contains the classical variational inequality (5) as a special case. At the same time, they

introduced a modified Halpern iterative algorithm for finding a common element in the set

of solutions to problem (6) and the set of fixed points of a nonexpansive mapping. Strong

convergence theorems were obtained under some suitable conditions on the parameters.
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On the other hand, let C be a nonempty, closed and convex subset of a real Banach

space E and A,B : C → E be two operators. In Banach spaces, Yao et al. [7] studied the

following problem of finding (x∗, y∗) ∈ C × C such that{
〈Ay∗ + x∗ − y∗, j(x− x∗)〉 ≥ 0, ∀x ∈ C,
〈Bx∗ + y∗ − x∗, j(x− y∗)〉 ≥ 0, ∀x ∈ C, (7)

where A,B : C → E be two nonlinear operators. Precisely, Yao et al. [7] studied the

following iterative algorithm:
u, x0 ∈ C,
yn = QC(xn −Bxn),

xn+1 = αnu+ βnxn + γnQC(yn −Ayn), n ≥ 0,

(8)

and obtained strong convergence results under some suitable conditions on the parameters.

In this paper, we introduce the new problem of finding (x∗, y∗) ∈ C × C such that{
〈x∗ − (I − λA)(ax∗ + (1− a)y∗), j(x− x∗)〉 ≥ 0, ∀x ∈ C,
〈y∗ − (I − µB)x∗, j(x− y∗)〉 ≥ 0, ∀x ∈ C, (9)

which is called the system of more general variational inequalities in a real Banach space.

If λ = µ = 1 and a = 0, the problem (9) becomes problem (8). If a = 0, then (9) becomes{
〈λAy∗ + x∗ − y∗, j(x− x∗)〉 ≥ 0, ∀x ∈ C,
〈µBx∗ + y∗ − x∗, j(x− y∗)〉 ≥ 0, ∀x ∈ C. (10)

Therefore (9) contains (8) or (10) as a special case.

Let C and D be nonempty subsets of a Banach space E such that C is nonempty,

closed and convex and D ⊂ C. A mapping P : C → D is called to be sunny (see [9, 10]) if

P (x+ t(x− P (x))) = P (x), ∀ x ∈ C and t ≥ 0, whenever x+ t(x− P (x)) ∈ C. A mapping

P : C → D is called a retraction if Px = x, ∀ x ∈ D. Moreover, P is said to be a sunny

nonexpansive retraction from C onto D if P is a retraction from C onto D, which is also

sunny and nonexpansive. A subset D of C is called a sunny nonexpansive retract of C if

there exists a sunny nonexpansive retraction P from C onto D (see [11] for more details).

Proposition 2.1 ([9]). Let C be a closed and convex subset of a smooth Banach space E.

Let D be a nonempty subset of C. Let P : C → D be a retraction and let J be the normalized

duality mapping on E. Then the following are equivalent:

(a) P is sunny and nonexpansive;

(b) ‖Px− Py‖2 ≤ 〈x− y, J(Px− Py)〉 , ∀x, y ∈ C;

(c) 〈x− Px, J(y − Px)〉 ≤ 0, ∀x ∈ C, y ∈ D.

Proposition 2.2 (Theorem 4.1,[12]). Let D be a closed and convex subset of a reflexive

Banach space E with a uniformly Gâteaux differentiable norm. If C is a nonexpansive

retract of D, then it is a sunny nonexpansive retract of D.

For proving our main results, we need the following lemmas.

Lemma 2.1 ([13]). Assume that {an} is a sequence of nonnegative real numbers satisfying

the following relation:

an+1 ≤ (1− αn)an + αnσn + δn, n ≥ 0,

where

(i) {αn} is a sequence in [0, 1] and
∑∞
n=1 αn =∞;

(ii) lim supn→∞ σn ≤ 0;
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(iii)
∑∞
n=1 δn <∞.

Then limn→∞ an = 0.

Lemma 2.2 ([14]). Let E be a real smooth and uniformly convex Banach space and let

r > 0. Then there exists a strictly increasing, continuous and convex function g : [0, 2r] →
R such that g(0) = 0 and g(‖x− y‖) ≤ ‖x‖2 − 2 〈x, jy〉 + ‖y‖2, for all x, y ∈ Br,where

Br = {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.3 ([15],Lemma 2.1). Let C be a closed convex subset of a strictly convex Banach

space X. Let T1 and T2 be two nonexpansive mappings from C into itself with F (T1) ∩
F (T2) 6= ∅. Define a mapping S by

Sx = λT1x+ (1− λ)T2x, ∀x ∈ C,

where λ is a constant in (0, 1). Then S is nonexpansive and F (S) = F (T1) ∩ F (T2).

Lemma 2.4 ([16]). Let C be a nonempty closed convex subset of a real 2-uniformly smooth

Banach space E. Let the mapping A : C → E be a α-inverse-strongly accretive. Then the

following inequality holds:

‖(I − λA)x− (I − λA)y‖2 ≤ ‖x− y‖2 − 2λ(α−K2λ) ‖Ax−Ay‖2 .

In particular, if 0 < λ ≤ α
K2 , then I − λA is nonexpansive, where K is the 2-uniformly

smoothness constant of E (i.e., K is a positive constant (see [20]) satisfying:

‖x+ y‖2 ≤ ‖x‖2 + 2 〈y, j(x)〉+ 2 ‖Ky‖2 , x, y ∈ E.

Lemma 2.5 ([17]). Let C be a nonempty, bounded and closed convex subset of a uniformly

convex Banach space E and let T be nonexpansive mapping of C into itself. If {xn} is a

sequence of C such that xn ⇀ x and xn − Txn → 0, then x is a fixed point of T .

Lemma 2.6 ([18]). Let {xn} and {zn} be bounded sequences in a Banach space E and let

{βn} be a sequence in [0, 1] such that 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose

xn+1 = βnxn + (1− βn)zn, n ≥ 0 and

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖zn − xn‖ = 0.

Lemma 2.7 ([13]). Let E be a uniformly smooth Banach space, C be a closed convex subset

of E, T : C → C be a nonexpansive mapping with F (T ) 6= ∅ and let f ∈ ΠC . Then the

sequence {xt} define by

xt = tf(xt) + (1− t)Txt
converges strongly to a point in F (T ). If we define a mapping Q : ΠC → F (T ) by

Q(f) := lim
t→0

xt, ∀f ∈ ΠC .

Then Q(f) solves the following variational inequality:

〈(I − f)Q(f), j(Q(f)− p)〉 ≤ 0, ∀f ∈ ΠC , p ∈ F (T ).

Lemma 2.8 ([19]). Let C be a nonempty closed convex subset of a real Banach space E

which has uniformly Gâteaux differentiable norm, and T : C → C be a nonexpansive mapping

with a nonempty fixed point set F (T ). Assume that {zt} strongly converges to a fixed point

z of T as t → 0, where {zt} is defined by Lemma 2.9. Suppose {xn} ⊂ C is bounded and

limn→∞ ‖xn − Txn‖ = 0. Then

lim sup
n→∞

〈f(z)− z, J(xn+1 − z)〉 ≤ 0.
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Similar to the proof of Lemma 2.9 and Lemma 2.10 of [16], we can obtain the following

lemmas.

Lemma 2.9. Let C be a nonempty, closed and convex subset of a real 2-uniformly smooth

Banach space E. Assume that C is a sunny nonexpansive retract of E. Let PC be the sunny

nonexpansive retraction from E onto C. Let the mapping A : C → E be α-inverse-strongly

accretive and let B : C → E be β-inverse-strongly accretive. Let G : C → C be a mapping

defined by

G(x) = PC(I − λA)[aI + (1− a)PC(I − µB)]x, ∀x ∈ C.

If 0 < λ ≤ α
K2 and 0 < µ ≤ β

K2 , then G : C → C is nonexpansive, where K is the

2-uniformly smoothness constant of E.

Lemma 2.10. Let C be a nonempty, closed and convex subset of a real 2-uniformly smooth

Banach space E. Assume that C is a sunny nonexpansive retract of E. Let PC be the sunny

nonexpansive retraction from E onto C. Let A,B : C → E be two nonlinear mappings. For

given x∗, y∗ ∈ C, (x∗, y∗) is a solution of problem (9) if and only if x∗ = PC(I − λA)(ax∗+

(1−a)y∗), where y∗ = PC(x∗−µBx∗), that is x∗ = Gx∗, where G is defined by Lemma 2.9.

3. Main results

Theorem 3.1. Let C be a nonempty, closed and convex subset of a 2-uniformly smooth and

uniformly convex Banach space E. Let PC be the sunny nonexpansive retraction from E to

C. Let the mappings A,B : C → E be α-inverse-strongly accretive and β-inverse-strongly

accretive, respectively. Let T : C → C be a nonexpansive mapping with F (T ) ∩ F (G) 6= ∅,
where G : C → C is a mapping defined by Lemma 2.9. Let f : C → C be a strict contraction

with coefficient δ ∈ [0, 1). Pick any x1 ∈ C. Let {xn} be a sequence generated by
zn = PC(xn − µBxn),

yn = PC(I − λA)(axn + (1− a)zn),

xn+1 = αnf(xn) + βnxn + γnTyn,

(11)

where 0 ≤ a < 1, 0 < λ < α
K2 and 0 < µ < β

K2 , where K is the 2-uniformly smooth

constant appeared in [20]. Suppose that {αn}, {βn} and {γn} are three real sequences in

[0, 1] satisfying the following conditions:

(i) αn + βn + γn = 1;

(ii) limn→∞ αn = 0,
∑∞
n=1 αn =∞;

(iii) 0 < lim inf βn ≤ lim supβn < 1 .

Then {xn} converges strongly to q ∈ F (T )∩F (G), which is also the solution of the variational

inequality:

〈f(q)− q, j(p− q)〉 ≤ 0, ∀ p ∈ F (T ) ∩ F (G).

Proof. Firstly, we can show that {xn} is bounded and limn→∞ ‖xn+1 − xn‖ = 0 by using

similar methods used in [7]. We omit the details.

Next, we show that limn→∞ ‖xn − Txn‖ = 0 and limn→∞ ‖xn − yn‖ = 0. By Lemma

2.10, we have

‖zn − y∗‖2 = ‖PC(xn − µBxn)− PC(x∗ − µBx∗)‖2

≤ ‖xn − x∗ − µ(Bxn −Bx∗)‖2

≤ ‖xn − x∗‖2 − 2µ(β −K2µ) ‖Bxn −Bx∗‖2 . (12)
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and

‖yn − x∗‖2

= ‖PC(I − λA)(axn + (1− a)zn)− PC(I − λA)(ax∗ + (1− a)y∗)‖2

≤ ‖(axn + (1− a)zn)− (ax∗ + (1− a)y∗)

− λ(A(axn + (1− a)zn)−A(ax∗ + (1− a)y∗))‖2

≤ ‖a(xn − x∗) + (1− a)(zn − y∗)‖2

− 2λ(α−K2λ)‖A(axn + (1− a)zn)−A(ax∗ + (1− a)y∗)‖2

≤ a ‖xn − x∗‖2 + (1− a) ‖zn − y∗‖2

− 2λ(α−K2λ) ‖A(axn + (1− a)zn)−A(ax∗ + (1− a)y∗)‖2 . (13)

Substituting (12) into (13), we get

‖yn − x∗‖2 ≤ ‖xn − x∗‖2 − 2µ(1− a)(β −K2µ) ‖Bxn −Bx∗‖2

− 2λ(α−K2λ) ‖A(axn + (1− a)zn)−A(ax∗ + (1− a)y∗‖2 . (14)

It follows from (11) that

‖xn+1 − x∗‖2 = ‖αn(f(xn)− x∗) + βn(xn − x∗) + γn(Tyn − x∗)‖2

≤ αn ‖f(xn)− x∗‖2 + βn ‖xn − x∗‖2 + γn ‖Tyn − x∗‖2

≤ αnM1 + βn ‖xn − x∗‖2 + γn ‖yn − x∗‖2 , (15)

where

M1 = sup
n≥1
{‖f(xn)− x∗‖2}.

Combining (14) and (15), we have

‖xn+1 − x∗‖2

≤ αnM1 + βn ‖xn − x∗‖2 + γn[‖xn − x∗‖2 − 2µ(1− a)(β −K2µ) ‖Bxn −Bx∗‖2

− 2λ(α−K2λ) ‖A(axn + (1− a)zn)−A(ax∗ + (1− a)y∗‖2]

= αnM1 + (1− αn) ‖xn − x∗‖2 − 2γnµ(1− a)(β −K2µ) ‖Bxn −Bx∗‖2

− 2γnλ(α−K2λ) ‖A(axn + (1− a)zn)−A(ax∗ + (1− a)y∗‖2

≤ αnM1 + ‖xn − x∗‖2 − 2γnµ(1− a)(β −K2µ) ‖Bxn −Bx∗‖2

− 2γnλ(α−K2λ) ‖A(axn + (1− a)zn)−A(ax∗ + (1− a)y∗‖2

which implies

2γnµ(1− a)(β −K2µ) ‖Bxn −Bx∗‖2

+ 2γnλ(α−K2λ) ‖A(axn + (1− a)zn)−A(ax∗ + (1− a)y∗‖2

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + αnM1

≤ ‖xn − xn+1‖ (‖xn − x∗‖+ ‖xn+1 − x∗‖) + αnM1. (16)

Since 0 < λ < α
K2 , 0 < µ < β

K2 , limn→∞ αn = 0, condition (iii), it follows that

lim
n→∞

‖Bxn −Bx∗‖ = 0, lim
n→∞

‖A(axn + (1− a)zn)−A(ax∗ + (1− a)y∗‖ = 0. (17)
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Let r1 = supn≥0 {‖zn − y∗‖ , ‖xn − x∗‖}. From Proposition 2.1 and Lemma 2.2, we

have

‖zn − y∗‖2

= ‖PC(xn − µBxn)− PC(x∗ − µBx∗)‖2

≤ 〈xn − µBxn − (x∗ − µBx∗), j(zn − y∗)〉
= 〈xn − x∗, j(zn − y∗)〉+ µ 〈Bx∗ −Bxn, j(zn − y∗)〉

≤ 1

2
(‖xn − x∗‖2 + ‖zn − y∗‖2 − g1(‖xn − zn − (x∗ − y∗)‖)

+ µ 〈Bx∗ −Bxn, j(zn − y∗)〉 ,

where g1 : [0,∞)→ [0,∞) is a continuous, strictly increasing and convex function such that

g1(0) = 0. Consequently, we have

‖zn − y∗‖2

≤ ‖xn − x∗‖2 − g1(‖xn − zn − (x∗ − y∗)‖) + 2µ 〈Bx∗ −Bxn, j(zn − y∗)〉

≤ ‖xn − x∗‖2 − g1(‖xn − zn − (x∗ − y∗)‖) + 2µ ‖Bxn −Bx∗‖ ‖zn − y∗‖ . (18)

Let

r2 = sup
n≥0
{‖xn − x∗‖ , ‖yn − x∗‖} , r3 = sup

n≥0
{‖zn − y∗‖ , ‖yn − x∗‖} .

Again by Proposition 2.1 and Lemma 2.2, we obtain

‖yn − x∗‖2

= ‖PC(I − λA)(axn + (1− a)zn)− PC(I − λA)(ax∗ + (1− a)y∗)‖2

≤
〈
a(xn − x∗) + (1− a)(zn − y∗) + λA(ax∗ + (1− a)y∗)

− λA(axn + (1− a)zn), j(yn − x∗)
〉

= a 〈xn − x∗, j(yn − x∗)〉+ (1− a) 〈zn − y∗, j(yn − x∗)〉
+ λ 〈A(ax∗ + (1− a)y∗)−A(axn + (1− a)zn), j(yn − x∗)〉

≤ a

2
(‖xn − x∗‖2 + ‖yn − x∗‖2 − g2(‖xn − yn‖)

+
1− a

2
(‖zn − y∗‖2 + ‖yn − x∗‖2 − g3(‖zn − yn + (x∗ − y∗)‖)

+ λ ‖A(ax∗ + (1− a)y∗)−A(axn + (1− a)zn)‖ ‖yn − x∗‖ ,

where g2, g3 : [0,∞) → [0,∞) is a continuous, strictly increasing and convex function such

that g2(0) = 0 and g3(0) = 0. It follows that

‖yn − x∗‖2

≤ a ‖xn − x∗‖2 + (1− a) ‖zn − y∗‖2 − ag2(‖xn − yn‖)
− (1− a)g3(‖zn − yn + (x∗ − y∗)‖)
+ 2λ ‖A(ax∗ + (1− a)y∗)−A(axn + (1− a)zn)‖ ‖yn − x∗‖

≤ a ‖xn − x∗‖2 + (1− a) ‖zn − y∗‖2 − (1− a)g3(‖zn − yn + (x∗ − y∗)‖)
+ 2λ ‖A(ax∗ + (1− a)y∗)−A(axn + (1− a)zn)‖ ‖yn − x∗‖ . (19)
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Substituting (18) into (19), we obtain

‖yn − x∗‖2

≤ a ‖xn − x∗‖2 + (1− a)[‖xn − x∗‖2 − g1(‖xn − zn − (x∗ − y∗)‖)
+ 2µ ‖Bxn −Bx∗‖ ‖zn − y∗‖]− (1− a)g3(‖zn − yn + (x∗ − y∗)‖)
+ 2λ ‖A(ax∗ + (1− a)y∗)−A(axn + (1− a)zn)‖ ‖yn − x∗‖

= ‖xn − x∗‖2 − (1− a)g1(‖xn − zn − (x∗ − y∗)‖)
− (1− a)g3(‖zn − yn + (x∗ − y∗)‖) + 2µ(1− a) ‖Bxn −Bx∗‖ ‖zn − y∗‖
+ 2λ ‖A(ax∗ + (1− a)y∗)−A(axn + (1− a)zn)‖ ‖yn − x∗‖ . (20)

Substituting (20) into (15), we get

‖xn+1 − x∗‖2

≤ βn ‖xn − x∗‖2 + γn ‖xn − x∗‖2 − (1− a)γng1(‖xn − zn − (x∗ − y∗)‖)
− (1− a)γng3(‖zn − yn + (x∗ − y∗)‖)
+ 2µ(1− a)γn ‖Bxn −Bx∗‖ ‖zn − y∗‖
+ 2λγn ‖A(ax∗ + (1− a)y∗)−A(axn + (1− a)zn)‖ ‖yn − x∗‖+ αnM1

= (1− αn) ‖xn − x∗‖2 − (1− a)γng1(‖xn − zn − (x∗ − y∗)‖)
− (1− a)γng3(‖zn − yn + (x∗ − y∗)‖) + 2µ(1− a)γn ‖Bxn −Bx∗‖ ‖zn − y∗‖
+ 2λγn ‖A(ax∗ + (1− a)y∗)−A(axn + (1− a)zn)‖ ‖yn − x∗‖+ αnM1

≤ ‖xn − x∗‖2 − (1− a)γng1(‖xn − zn − (x∗ − y∗)‖)
− (1− a)γng3(‖zn − yn + (x∗ − y∗)‖) + 2µ(1− a)γn ‖Bxn −Bx∗‖ ‖zn − y∗‖
+ 2λγn ‖A(ax∗ + (1− a)y∗)−A(axn + (1− a)zn)‖ ‖yn − x∗‖+ αnM1,

which implies that

(1− a)γng1(‖xn − zn − (x∗ − y∗)‖)− (1− a)γng3(‖zn − yn + (x∗ − y∗)‖)

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + 2µ(1− a)γn ‖Bxn −Bx∗‖ ‖zn − y∗‖
+ 2λγn ‖A(ax∗ + (1− a)y∗)−A(axn + (1− a)zn)‖ ‖yn − x∗‖+ αnM1

≤ ‖xn − xn+1‖ (‖xn − x∗‖+ ‖xn+1 − x∗‖)
+ 2µ(1− a)γn ‖Bxn −Bx∗‖ ‖zn − y∗‖
+ 2λγn ‖A(ax∗ + (1− a)y∗)−A(axn + (1− a)zn)‖ ‖yn − x∗‖+ αnM1. (21)

Since limn→∞ αn = 0, 0 ≤ a < 1, condition (iii) and (17), we get

lim
n→∞

g1(‖xn − zn − (x∗ − y∗)‖) = 0, lim
n→∞

g3(‖zn − yn + (x∗ − y∗)‖) = 0.

By virtue of the properties of g1 and g3, we obtain

lim
n→∞

‖xn − zn − (x∗ − y∗)‖ = 0, lim
n→∞

‖zn − yn + (x∗ − y∗)‖ = 0. (22)

This implies that

‖xn − yn‖ ≤ ‖xn − zn − (x∗ − y∗)‖+ ‖zn − yn + (x∗ − y∗)‖
→ 0 as n→∞. (23)
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On the other hand, we observe

‖xn+1 − xn‖ = ‖αn(f(xn)− xn) + γn(Tyn − xn)‖
≥ γn ‖Tyn − xn‖ − αn ‖f(xn)− xn‖ ,

which implies

‖Tyn − xn‖ ≤
1

γn
[αn ‖f(xn)− xn‖+ ‖xn+1 − xn‖]. (24)

Since limn→∞ αn = 0, condition (iii) and (16), we obtain

lim
n→∞

‖Tyn − xn‖ = 0. (25)

From (23) and (25), we have

‖xn − Txn‖ ≤ ‖xn − Tyn‖+ ‖Tyn − Txn‖
≤ ‖xn − Tyn‖+ ‖yn − xn‖
→ 0 as n→∞. (26)

Define a mapping U : C → C as Ux = ρTx + (1 − ρ)Gx, where G is defined by

Lemma 2.9 and ρ ∈ (0, 1) is a constant. It follows from Lemma 2.3 that U is nonexpansive

and F (U) = F (T ) ∩ F (G). We define xt = tf(xt) + (1− t)Uxt, it follows from Lemma 2.7

that {xt} converges strongly to q ∈ F (U) = F (T ) ∩ F (G). From (23) and (26), we have

‖xn − Uxn‖ = ‖ρ(xn − Txn) + (1− ρ)(xn −Gxn)‖
= ‖ρ(xn − Txn) + (1− ρ)(xn − yn)‖
≤ ρ ‖xn − Txn‖+ (1− ρ) ‖xn − yn‖
→ 0 as n→∞. (27)

By Lemma 2.8, we have

lim sup
n→∞

〈f(q)− q, j(xn+1 − q)〉 ≤ 0. (28)

Finally, we prove that xn → q as n→∞. Indeed, we have

‖xn+1 − q‖2

= 〈αn(f(xn)− q) + βn(xn − q) + γn(Tyn − q), j(xn+1 − q)〉
= αn 〈f(xn)− f(q), j(xn+1 − q)〉+ βn 〈xn − q, j(xn+1 − q)〉

+ γn 〈Tyn − q, j(xn+1 − q)〉+ αn 〈f(q)− q, j(xn+1 − q)〉
≤ αnδ ‖xn − q‖ ‖xn+1 − q‖+ βn ‖xn − q‖ ‖xn+1 − q‖+ γn ‖yn − q‖ ‖xn+1 − q‖

+ αn 〈f(q)− q, j(xn+1 − q)〉
≤ αnδ ‖xn − q‖ ‖xn+1 − q‖+ βn ‖xn − q‖ ‖xn+1 − q‖+ γn ‖xn − q‖ ‖xn+1 − q‖

+ αn 〈f(q)− q, j(xn+1 − q)〉
= [1− αn(1− δ)] ‖xn − q‖ ‖xn+1 − q‖+ αn 〈f(q)− q, j(xn+1 − q)〉

≤ 1− αn(1− δ)
2

[‖xn − q‖2 + ‖xn+1 − q‖2] + αn 〈f(q)− q, j(xn+1 − q)〉

≤ 1− αn(1− δ)
2

‖xn − q‖2 +
1

2
‖xn+1 − q‖2 + αn 〈f(q)− q, j(xn+1 − q)〉 ,

which implies

‖xn+1 − q‖2 ≤ [1− αn(1− δ)] ‖xn − q‖2 + αn(1− δ)2 〈f(q)− q, j(xn+1 − q)〉
1− δ

. (29)
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Apply Lemma 2.1 to (29), we have xn → q as n→∞. This completes the proof. �

The following results can be easily deduced from Theorem 3.1. We omit the details.

Corollary 3.1. Let C be a nonempty, closed and convex subset of a 2-uniformly smooth

and uniformly convex Banach space E. Let PC be the sunny nonexpansive retraction from E

to C. Let the mappings A,B : C → E be α-inverse-strongly accretive and β-inverse-strongly

accretive, respectively. Let T : C → C be a nonexpansive mapping with F (T ) ∩ F (G) 6= ∅,
where G : C → C is a mapping defined by Lemma 2.9 when a = 0. Let f : C → C be a strict

contraction with coefficient δ ∈ [0, 1). Pick any x1 ∈ C. Let {xn} be a sequence generated

by 
zn = PC(xn − µBxn),

yn = PC(zn − λAzn),

xn+1 = αnf(xn) + βnxn + γnTyn,

(30)

where 0 < λ < α
K2 and 0 < µ < β

K2 , where K is the 2-uniformly smooth constant appeared

in [20]. Suppose that {αn}, {βn} and {γn} are three real sequences in [0, 1] satisfying the

following conditions:

(i) αn + βn + γn = 1;

(ii) limn→∞ αn = 0,
∑∞
n=1 αn =∞;

(iii) 0 < lim inf βn ≤ lim supβn < 1 .

Then {xn} converges strongly to q ∈ F (T )∩F (G), which is also the solution of the variational

inequality:

〈f(q)− q, j(p− q)〉 ≤ 0, ∀ p ∈ F (T ) ∩ F (G).

Corollary 3.2. Let C be a nonempty, closed and convex subset of a 2-uniformly smooth

and uniformly convex Banach space E. Let PC be the sunny nonexpansive retraction from E

to C. Let the mappings A,B : C → E be α-inverse-strongly accretive and β-inverse-strongly

accretive, respectively. Let T : C → C be a nonexpansive mapping with F (T ) ∩ F (G) 6= ∅,
where G : C → C is a mapping defined by Lemma 2.9 when a = 1

2 . Let f : C → C be a strict

contraction with coefficient δ ∈ [0, 1). Pick any x1 ∈ C. Let {xn} be a sequence generated

by 
zn = PC(xn − µBxn),

un = 1
2 (xn + zn),

yn = PC(un − λAun)

xn+1 = αnf(xn) + βnxn + γnTyn,

(31)

where 0 < λ < α
K2 and 0 < µ < β

K2 , where K is the 2-uniformly smooth constant appeared

in [20]. Suppose that {αn}, {βn} and {γn} are three real sequences in [0, 1] satisfying the

following conditions:

(i) αn + βn + γn = 1;

(ii) limn→∞ αn = 0,
∑∞
n=1 αn =∞;

(iii) 0 < lim inf βn ≤ lim supβn < 1 .

Then {xn} converges strongly to q ∈ F (T )∩F (G), which is also the solution of the variational

inequality:

〈f(q)− q, j(p− q)〉 ≤ 0, ∀ p ∈ F (T ) ∩ F (G).

Corollary 3.3. Let C be a nonempty, closed and convex subset of a Hilbert space H. Let

the mappings A,B : C → E be α-inverse-strongly accretive and β-inverse-strongly accretive,

respectively. Let T : C → C be a nonexpansive mapping with F (T ) ∩ F (G) 6= ∅, where
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G : C → C is a mapping defined by Lemma 2.9. Let f : C → C be a strict contraction with

coefficient δ ∈ [0, 1). Pick any x1 ∈ C. Let {xn} be a sequence generated by
zn = PC(xn − µBxn),

yn = PC(I − λA)(axn + (1− a)zn),

xn+1 = αnf(xn) + βnxn + γnTyn,

(32)

where 0 ≤ a < 1, 0 < λ < 2α and 0 < µ < 2β. Suppose that {αn}, {βn} and {γn} are three

real sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn = 1;

(ii) limn→∞ αn = 0,
∑∞
n=1 αn =∞;

(iii) 0 < lim inf βn ≤ lim supβn < 1 .

Then {xn} converges strongly to q ∈ F (T )∩F (G), which is also the solution of the variational

inequality:

〈f(q)− q, p− q〉 ≤ 0, ∀ p ∈ F (T ) ∩ F (G).

4. Applications

Now we give an application to variational inequality problem for strict pseudocon-

tractive mappings.

A mapping T : C → C is said to be λ-strict pseudocontractive if there exists a fixed

constant λ ∈ (0, 1) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − λ ‖(I − T )x− (I − T )y‖2 , (33)

for some j(x− y) ∈ J(x− y) and for every x, y ∈ C. It is easy to see that (33) is equivalent

to the following inequality:

〈(I − T )x− (I − T )y, j(x− y)〉 ≥ λ ‖(I − T )x− (I − T )y‖2 (34)

for some j(x − y) ∈ J(x − y) and for every x, y ∈ C. Therefore I − T is λ-inverse-strongly

accretive.

We can obtain the following results easily by Theorem 3.1.

Theorem 4.1. Let C be a nonempty, closed and convex subset of a 2-uniformly smooth

and uniformly convex Banach space E. Let the mappings A,B : C → C be α-strict pseudo-

contractive and β-strict pseudocontractive, respectively. Let T : C → C be a nonexpansive

mapping with F (T )∩ F (G) 6= ∅, where G : C → C is a mapping defined by Lemma 2.9. Let

f : C → C be a strict contraction with coefficient δ ∈ [0, 1). Pick any x1 ∈ C. Let {xn} be

a sequence generated by 
zn = (1− µ)xn + µBxn,

un = axn + (1− a)zn,

yn = (1− λ)un + λAun,

xn+1 = αnf(xn) + βnxn + γnTyn,

(35)

where 0 ≤ a < 1, 0 < λ < α
K2 and 0 < µ < β

K2 , where K is the 2-uniformly smooth

constant appeared in [20]. Suppose that {αn}, {βn} and {γn} are three real sequences in

[0, 1] satisfying the following conditions:

(i) αn + βn + γn = 1;

(ii) limn→∞ αn = 0,
∑∞
n=1 αn =∞;

(iii) 0 < lim inf βn ≤ lim supβn < 1 .

Then {xn} converges strongly to q ∈ F (T )∩F (G), which is also the solution of the variational

inequality:

〈f(q)− q, j(p− q)〉 ≤ 0, ∀ p ∈ F (T ) ∩ F (G).
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Theorem 4.2. Let C be a nonempty, closed and convex subset of a 2-uniformly smooth

and uniformly convex Banach space E. Let the mappings A,B : C → C be α-strict pseudo-

contractive and β-strict pseudocontractive, respectively. Let T : C → C be a nonexpansive

mapping with F (T )∩F (G) 6= ∅, where G : C → C is a mapping defined by Lemma 2.9 when

a = 0. Let f : C → C be a strict contraction with coefficient δ ∈ [0, 1). Pick any x1 ∈ C.

Let {xn} be a sequence generated by
zn = (1− µ)xn + µBxn,

yn = (1− λ)zn + λAzn,

xn+1 = αnf(xn) + βnxn + γnTyn,

(36)

where 0 < λ < α
K2 and 0 < µ < β

K2 , where K is the 2-uniformly smooth constant appeared

in [20]. Suppose that {αn}, {βn} and {γn} are three real sequences in [0, 1] satisfying the

following conditions:

(i) αn + βn + γn = 1;

(ii) limn→∞ αn = 0,
∑∞
n=1 αn =∞;

(iii) 0 < lim inf βn ≤ lim supβn < 1 .

Then {xn} converges strongly to q ∈ F (T )∩F (G), which is also the solution of the variational

inequality:

〈f(q)− q, j(p− q)〉 ≤ 0, ∀ p ∈ F (T ) ∩ F (G).

5. Conclusions

Variational inequality theory has many applications in pure and applied sciences.

There are some numerical methods for solving variational inequality problems and related

optimization problems in recent years. By using a modified extragradient method, we study

a generalized viscosity algorithm for finding a common element for the set of fixed points of

one nonexpansive mapping and the set of solutions of new variational inequality problems

for two inverse-strongly monotone operators in 2-uniformly smooth and uniformly convex

Banach spaces. Strong convergence theorems are obtained under some suitable conditions

on the parameters.
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