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DYNAMICAL SYSTEM TECHNIQUE FOR SOLVING QUASI

VARIATIONAL INEQUALITIES

Muhammad Aslam Noor1, Khalida Inayat Noor2

In this paper, we introduce and consider second order dynamical system associated

with quasi variational inequalities. Using the forward finite difference schemes, we suggest

some iterative methods for solving the quasi variational inequalities. These new methods can

be viewed as refinement of the extragradient methods of Korpelevich and Noor. Convergence

analysis is investigated under certain mild conditions. Since the quasi variational inequalities

include variational inequalities and complementarity problems as special cases, our results

continue to hold for these problems. It is an interesting problem to compare these methods

with other technique for solving quasi variational inequalities for further research activities.
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1. Introduction

Variational inequality theory, which was introduced by Stampacchia [45] in potential

theory, provides us with a simple, natural, unified, novel and general framework to study

an extensive range of unilateral, obstacle, free, moving and equilibrium problems arising in

fluid flow through porous media, elasticity, circuit analysis, transportation, oceanography,

operations research, finance, economics, and optimization. It is worth mentioning that the

variational inequalities can be viewed as a significant and novel generalization of the varia-

tional principles. It is very simple fact that the minimum of a differentiable convex functions

on the convex sets can be characterized by an inequality, which is called the variational in-

equality. It is amazing that variational inequalities have influenced various areas of pure

and applied sciences and are still continue to influence the recent research, see [5, 6, 7, 8, 13,

17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46]. If the

convex set in the variational inequalities depends upon the solution explicitly or implicity,

then the variational inequality is called quasi variational inequality. Benssousan and Lions

[5] studied the quasi variational inequalities in the impulse control theory. Quasi-variational

inequalities are being used as a mathematical programming tool in modeling various equilib-

ria in economics, operations research, optimization, and regional and transportation science,

see [5, 7, 14, 15, 16, 18, 27, 28, 32, 33, 36, 44].

One of the most difficult and important problems in variational inequalities is the devel-

opment of efficient numerical methods. Several numerical methods have been developed

for solving the variational inequalities and their variant forms. These methods have been

extended and modified in numerous ways. Noor [25] proved that the quasi variational in-

equalities are equivalent to the fixed point problem. This alternative formulation has been
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used to consider the existence of a solution, iterative schemes, sensitivity analysis, merit

functions and other aspects of the quasi variational inequalities. Noor [12] used this equiv-

alent form to suggest an iterative projection method for solving a class of quasi variational

inequalities. Antipin et al. [3] proposed gradient projection and extra gradient methods for

finding the solution of quasi variational inequality when the involved operator is strongly

monotone and Lipschitz continuous. Mijajlovic et al. [22] introduced a more general gradient

projection method with strong convergence for solving the quasi variational inequality in a

real Hilbert spaces. It is very important to develop some efficient iterative methods for solv-

ing the quasi variational inequalities. Alvarez [1] and Alvarez et al. [2] used the inertial type

projection methods for solving variational inequalities. Noor [33] suggested and investigated

inertial type projection methods for solving general variational inequalities. These inertial

type methods have been modified in various directions for solving variational inequalities

and related optimization problems. Jabeen et al. [14, 15, 16] and Noor et al [39] analyzed

some inertial projection methods for some classes of general quasi variational inequalities.

Convergence analysis of these inertial type methods has been considered under some mild

conditions.

Dupuis and Nagurney [10] introduced and studied the projected dynamical systems associ-

ated with variational inequalities using the equivalent fixed point formulation. The novel

feature of the projected dynamical system is that the its set of stationary points corresponds

to the set of the corresponding set of the solutions of the variational inequality problem.

Thus the equilibrium and nonlinear programming problems, which can be formulated in the

setting of the variational inequalities, can now be studied in the more general framework of

the dynamical systems. It has been shown [4, 10, 11, 12, 14, 18, 30, 31, 32, 33, 38, 39, 47, 48]

that these dynamical systems are useful in developing efficient and powerful numerical tech-

niques for solving variational inequalities.

Motivated and inspired by ongoing research in these fascinations areas, we consider

a second order dynamical system associated with quasi variational inequalities. Using the

finite difference schemes, we suggest and analyzed some new iterative methods for solving

quasi variational inequalities. Some special cases are also pointed as potential applications of

the obtained results. We have only considered theoretical aspects of the suggested methods.

It is an interesting problem to implement these methods and to illustrate the efficiency.

Comparison with other methods need further research efforts. The ideas and techniques of

this paper may be extended for other classes of quasi variational inequalities and related

optimization problems.

2. Basic definitions and results

Let K be a set in a real Hilbert space H with norm ‖ · ‖ and inner product 〈·, ·〉.
Let T : H −→ H be nonlinear operator. Let K : H −→ H be a set-valued mapping which, for

any element µ ∈ H, associates a convex-valued and closed set K(µ) ⊂ H.

We consider the problem of finding µ ∈ K(µ), such that〈
Tµ, ν − µ

〉
≥ 0, ∀ ν ∈ K(µ), (1)

which is called the quasi variational inequality, introduced by Bensoussan and Lions [5]. For

more details, see [5, 7, 14, 15, 16, 18, 27, 28, 32, 33, 36, 44] and the references therein.
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2.1. Applications

To convey an idea of the applications of the quasi variational inequalities, we consider

the second-order implicit obstacle boundary value problem, which have been discussed in

Noor et al. [37]. For the sake of completeness and to convey the main ideas, we include all

the details.

We consider the problem of finding µ such that

−µ′′(x) ≥ f(x) on Ω = [a, b]

µ(x) ≥M(µ) on Ω = [a, b]

[−u′′(x)− f(x)][µ−M(µ)] = 0 on Ω = [a, b]

µ(a) = 0, µ(b) = 0.

 (2)

where f(x) is a continuous function and M(µ) is the cost (obstacle) function. The prototype

encountered is

M(µ) = k + inf
i
{µi}. (3)

In (3), k represents the switching cost. It is positive when the unit is turned on and equal to

zero when the unit is turned off. Note that the operator M provides the coupling between

the unknowns µ = (µ1, µ2, . . . , µi). We study the problem (2) in the framework of general

quasi variational inequality approach. To do so, we first define the set K as

K(µ) = {ν : ν ∈ H1
0 (Ω) : ν ≥ M(µ), on Ω},

which is a closed convex-valued set in H1
0 (Ω), where H1

0 (Ω) is a Sobolev (Hilbert) space, see

[5, 13, 19]. One can easily show that the energy functional associated with the problem (2)

is

I[ν] = −
∫ b

a

(
dν

dx

)
νdx− 2

∫ b

a

f(x)νdx, ∀ν ∈ K(u)

=

∫ b

a

(
dν

dx

)2

dx− 2

∫ b

a

f(x)νdx

= 〈Tν, ν〉 − 2〈f, ν〉 (4)

where

〈Tµ, ν〉 = −
∫ b

a

(
d2µ

dx2
)νdx =

∫ b

a

dµ

dx

dν

dx
dx (5)

〈f, ν〉 =

∫ b

a

f(x)νdx.

It is clear that the operator T defined by (5) is linear, symmetric and positive. Using the

technique of Noor [29, 33] and Noor et al.[39, 40], one can show that the minimum of the

functional I[v] defined by (4) associated with the problem (2) on the closed convex-valued

set K(u) can be characterized by the inequality of type

〈Tµ, ν − µ〉 ≥ 〈f, ν − µ〉, ∀ν ∈ K(u), (6)

which is exactly the quasi variational inequality (1).
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Special cases

We now discuss some special cases of general quasi variational inequalities (1)

(1) If K(µ) = K, then problem (1) is equivalent to finding µ ∈ H : g(µ) ∈ K such that〈
Tµ, ν − µ

〉
≥ 0, ∀ ν ∈ K, (7)

which is called the variational inequality, introduced and studied by Stampacchia

[45]. It has been shown a wide class of obstacle boundary value and initial value

problems can be studied in the general framework of variational inequalities (6). For

the applications, numerical methods, sensitivity analysis, dynamical system, merit

functions and other aspects of variational inequalities, see[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 25, 26, 36, 37, 38, 44, 45] and the references

therein.

(2) If K∗(µ) = {µ ∈ H : 〈µ, ν〉 ≥ 0,∀ν ∈ K(µ)} is a polar (dual) cone of a convex-valued

cone K(µ) in H, then problem (7) is equivalent to finding µ ∈ H such that

µ ∈ K(µ), Tµ ∈ K∗(µ) and 〈Tµ, µ〉 = 0, (8)

which is known as the quasi complementarity problem. For K(µ) = m(µ) + K, where

m is a point-to-point mapping, the problem(8) is called the implicit complementarity

problem, see Noor [28]. The complementarity problems and their variant forms have

been studied extensively in recent years, see [8, 17, 21, 23, 28, 33, 36, 39, 40] and the

references therein

For a different and appropriate choice of the operators and spaces, one can obtain

several known and new classes of variational inequalities and related problems. This clearly

shows that the problem (1) considered in this paper is more general and unifying one.

We need the following well-known definitions and results in obtaining our results.

Definition 2.1. Let T : H −→ H be a given mapping.

i. The mapping T is called strongly monotone, if there exists a constant α ≥ 0 such that〈
Tµ− Tν , µ− ν

〉
≥ α ‖µ− ν‖2, ∀ µ, ν ∈ H.

ii. The mapping T is called monotone, if〈
Tµ− Tν , µ− ν

〉
≥ 0, µ, ν ∈ H.

iii. The mapping T is called η−Lipschitz continuous, if there exists a constant η > 0 such

that

‖ Tµ− Tν ‖ ≤ η ‖µ− ν‖, ∀ µ, ν ∈ H.

The following projection result plays an indispensable role in achieving our results.

Lemma 2.1. [12, 14] For a given ω ∈ H, find µ ∈ K (µ) , such that〈
µ− ω, ν − µ

〉
≥ 0, ∀ ν ∈ K (µ) ,

if and only if

µ = ΠK(µ) [ω] ,

where ΠK(µ) is the implicit projection of H onto the closed convex-valued set K (µ) in H.

The implicit projection operator ΠK(µ) is nonexpansive and has the following characteriza-

tion.
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Assumption 2.1. [14] The implicit projection operator ΠK(µ), satisfies the condition

‖ ΠK(µ) [ω]−ΠK(ν) [ω] ‖ ≤ υ ‖ µ− ν ‖ ∀ µ, ν , ω ∈ H, (9)

where υ > 0, is a constant.

In many important applications, the convex-valued set K(µ) is of the form

K(µ) = m(µ) + K, (10)

where m is a point-to-point mapping and K is a closed convex set. The convex-valued set

K(µ) = m(µ) + K defined by (10) is called the moving set-valued convex set.

In this case,

PK(µ)w = Pm(µ)+K(w) = m(µ) + PK [w −m(µ)], ∀µ,w ∈ H.

If m is a Lipschitz continuous with constant β, then

‖PK(µ)w − PK(ν)w‖ = ‖m(µ)−m(ν) + PK [w −m(µ)]− PK [w −m(ν)]‖
≤ ‖m(µ)−m(ν)‖+ ‖PK [w −m(µ)]− PK [w −m(ν)]‖
≤ 2‖m(µ)−m(ν)‖ ≤ 2β.

This show that the Assumption 2.1 holds.

3. Main Results

In this section, we suggest some new inertial-type approximation schemes for solving

the quasi variational inequality (1) using the dynamical systems techniques. One can easily

show that the quasi variational inequality (1) is equivalent to fixed point problem by using

Lemma 2.1.

Lemma 3.1. The function µ ∈ H : µ ∈ K(µ) is solution of quasi variational inequality (1),

if and only if, µ ∈ H : g(µ) ∈ K(µ) satisfies the relation

µ = ΠK(µ) [µ− ρTµ] , (11)

where ρ > 0 is a constant and ΠK(µ) is the projection of H onto the convex-valued set K(µ).

Lemma 3.1 implies that the problem (1) is equivalent to a fixed point problem (11).

This alternate form is very useful from both numerical and theoretical point of views.

In this section, we use the fixed point formulation to suggest and consider a new

second order projection dynamical system associated with quasi variational inequalities (1).

We use this dynamical system to suggest and investigate some inertial proximal methods for

solving the quasi variational inequalities (1). These inertial implicit methods are constructed

using the central finite difference schemes and its variant forms.

To be more precise, we consider the problem of finding µ ∈ H such that

γµ̈+ µ̇+ µ = ΠK(µ)[µ− ρT(µ)], µ(t0) = α, µ̇(t0) = β, (12)

where γ ≥ 0, η ≥ 0 and ρ > 0 are constants. Problem (12) is called second order dynami-

cal system.

If γ = 0, then dynamical system (12) reduces to

µ̇+ µ = ΠK(µ)[µ− ρT(µ)], µ(t0) = α, (13)
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where ρ > 0 is a constant. Problem (13) is called dynamical system associated with quasi

variational inequalities.

We discretize the second-order dynamical systems (12) using central finite difference

and backward difference schemes to have

γ
µn+1 − 2µn + µn−1

h2
+ η

µn − µn−1
h

+ µn = ΠK(µn)[µn − ρT(µn+1)], (14)

where h is the step size.

If γ = 1, h = 1, then, from equation( 14) we have

Algorithm 3.1. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = ΠK(µn)[µn − ρT(µn+1)], n = 0, 1, 2, . . . .

which is the the extragradient method of Kopervelich [20] for solving the quasi vari-

ational inequalities.

Algorithm 3.1 is an implicit method. To implement the implicit method, we use the

predictor-corrector technique to suggest the two-step inertial method.

Algorithm 3.2. For given µ0, µ1 ∈ H, compute µn+1 by the iterative scheme

yn = (1− θn)µn + θnµn−1

µn+1 = ΠK(µn)[µn − ρT(yn)], n = 0, 1, 2, . . .

where θn ∈ [0.1] is a constant.

Similarly, we suggest the following iterative method.

Algorithm 3.3. For given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = ΠK(µn)[µn+1 − ρT(µn+1)], n = 0, 1, 2, . . . .

which is known as the double projection method, introduced and studied by Noor

[29, 33] and can be written as

Algorithm 3.4. For a given µ0, µ1 ∈ H, compute µn+1 by the iterative scheme

yn = (1− θn)µn + θµn−1

µn+1 = ΠK(µn)[yn − ρT(yn)], n = 0, 1, 2, . . . .

which is called the two-step inertial iterative Noor method.

Problem (12)can be rewritten as

γµ̈+ µ̇+ µ = ΠK((1−θn)µ+θnu))[(1− θn)µ+ θnµ− ρT((1− θn)µ+ θnµ)],

µ(t0) = α, µ̇(t0) = β, (15)

where γ > 0, θn ≥ 0 and ρ > 0 are constants.

Discretising the system (15), we have

γ
µn+1 − 2µn + µn−1

h2
+
µn − µn−1

h
+ µn

= ΠK((1−θn)µn+θnµn−1)[(1− θn)µn + θnµn−1 − ρT((1− θn)µn + θnµn−1)]

from which, for γ = 0, h = 1, we have
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Algorithm 3.5. For a given µ0, µ1 ∈ H, compute µn+1 by the iterative scheme

µn+1 = ΠK((1−θn)µ+θnµ))[(1− θn)un + θnµn−1 − ρT((1− θn)µn + θnµn−1)]

or equivalently

Algorithm 3.6. For a given µ0, µ1 ∈ H, compute µn+1 by the iterative scheme

yn = (1− θn)µn + θnµn−1

µn+1 = ΠK(yn)[yn − ρTyn]

which is called the new inertial iterative method for solving the quasi variational in-

equality.

We discretize the second-order dynamical systems (12) using central finite difference

and backward difference schemes to have

γ
µn+1 − 2µn + µn−1

h2
+
µn − µn−1

h
+ µn+1 = ΠK(µn)[µn − ρT(µn+1)],

where h is the step size.

Using this discrete form, we can suggest the following an iterative method for solving the

quasi variational inequalities (1).

Algorithm 3.7. For given µ0, µ1 ∈ H, compute µn+1 by the iterative scheme

µn+1 = ΠK(µn)[µn − ρT(µn+1)− γµn+1 − (2γ − h)µn + (γ − h)µn−1
h2

], n = 0, 1, 2, . . . .

Algorithm 3.7 is called the inertial proximal method for solving the quasi variational

inequalities and related optimization problems. This is a new proposed method.

We can rewrite the Algorithm 3.7 in the equivalent form as follows:

Algorithm 3.8. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

〈ρTµn+1 +
(γ + h2)µn+1 − (2γ − h+ h2)µn + (γ − h)µn−1

h2
, v − νn+1〉 ≥ 0,∀v ∈ K(µ). (16)

We note that, for γ = 0, Algorithm 3.8 reduces to the following iterative method for

solving quasi variational inequalities (1).

Algorithm 3.9. For given µ0, µ1 ∈ H, compute µn+1 by the iterative scheme

µn+1 = ΠK(µn)[µn − ρTµn+1 −
µn − µn−1

h
], n = 0, 1, 2, . . . .

We again discretize the second-order dynamical systems (12) using central difference

scheme and forward difference scheme to suggest the following inertial proximal method for

solving (1).

Algorithm 3.10. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = ΠK(µn)[µn+1 − ρT(µn+1)− (γ + h)µn+1 − (2γ + h)µn + γµn−1
h2

], n = 0, 1, 2, . . . .

Algorithm 3.10 is quite different from other inertial proximal methods for solving the

quasi variational inequalities.

If γ = 0, then Algorithm 3.10 collapses to:

Algorithm 3.11. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = ΠK(µn)[µn+1 − ρT(µn+1)− µn+1 − µn
h

], n = 0, 1, 2, . . . .
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Algorithm 3.10 is an proximal method for solving the quasi variational inequalities.

Such type of proximal methods were suggested by Noor[33] using the fixed point problems.

In brief, by suitable descritization of the second-order dynamical systems (12), one can con-

struct a wide class of explicit and implicit method for solving inequalities.

We now consider the convergence criteria of the Algorithm 3.8 using the technique of

Alvarez and Attouch [2], Noor [33] and Noor et al.[39].

Theorem 3.1. Let µ ∈ H be the solution of quasi variational inequality (1). Let µn+1 be

the approximate solution obtained from (16). If T is monotone, then

(h+h2)‖µ−µn+1‖2 ≤ (γ+h2)‖µ−µn‖2−(γ+h2)‖µn+1−µn‖2+(γ−h)‖µn−1−µn‖2. (17)

Proof. Let µ ∈ H be the solution of quasi variational inequality (1). Then

〈ρT(v), v − µ〉 ≥ 0, ∀v ∈ K(µ), (18)

since T is a monotone operator.

Setting v = µn+1 in (18), we have

〈ρT(µn+1), µn+1 − µ〉 ≥ 0. (19)

Taking v = µ in (16), we have

〈ρT(µn+1) +
(γ + h2)µn+1 − (2γ − h+ h2)µn + (γ − h)µn−1

h2
, µ− µn+1〉 ≥ 0. (20)

From (19) and (20), we obtain

〈(γ + h2)µn+1 − (2γ − h+ h2)µn + (γ − h)µn−1, µ− µn+1〉 ≥ 0.

Thus

0 ≤ (γ + h2)〈µn+1 − µn, µ− µn+1〉+ (γ − h)〈µn−1 − µn, µ− µn+1〉
≤ (γ + h2)‖µ− µn‖2 − (γ + h2)‖µn+1 − µn‖2 − (γ + h2)‖µ− µn+1‖2

+(γ − h)‖µn−1 − µn‖2 + (γ − h)‖µ− µn+1‖2

= (γ + h2)‖µ− µn‖2 − (γ + h2)‖µn+1 − µn‖2 + (γ − h)‖µn−1 − µn‖2

−h(1 + h)‖µ− µn+1‖2, (21)

where we have used the following inequalities

2〈µ, v〉 = ‖µ+ v‖2 − ‖µ‖2 − ‖v‖2, ∀v.µ ∈ H

and

2〈µ, v〉 ≤ ‖µ‖2 − ‖v‖2.
From (21), we have

(h+ h2)‖µ− µn+1‖2 ≤ (γ + h2)‖µ− µn‖2 − (γ + h2)‖µn+1 − µn‖2 + (γ − h)‖µn−1 − µn‖2,

the required (18). �

We also need the following assumption.

Assumption 3.1. (i).for any sequence µnwith µn → µ, and for any v ∈ K(µ),there exists

a sequence{vn} such that vn ∈ K(µn))and vn → v as n→∞.
(ii). For all sequences {µn} and {vn} with vn ∈ K(µn), then v ∈ K(µ).
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Theorem 3.2. Let µ ∈ K(µ) be a solution of variational inequality (1). Let µn+1 be the

approximate solution obtained from (16). If Assumption 3.1 holds and the operator T is

monotone, then µn+1 converges to µ ∈ K(µ) satisfying (1).

Proof. Let µ ∈ K(µ) be a solution of (1). From (18), it follows that the sequence {‖µ−µi‖}
is non-increasing and consequently,{µn} is bounded. Also from(18), we have

∞∑
i=1

‖µn − µn+1‖2 ≤ ‖µ− µ1‖2 +
γ − h
γ + h2

‖µ0 − µ1‖2,

which implies that

lim
n→∞

‖µn+1 − µn‖2 = 0. (22)

Since sequence {µi}∞i=1 is bounded, so there exists a cluster point µ̂ to which the subsequence

{µik}∞k=i converges. From Assumption 3.1, replacing µn by µni in (3.2) and taking the limit

as nj −→∞, we have

〈T(µ̂), v − µ̂〉 ≥ 0, ∀v ∈ K(µ),

which implies that µ̂ solves (1) and

‖µn+1 − µ‖2 ≤
γ + h2

h+ h2
‖µ− µn‖2 +

γ − h
h+ h2

‖µn − µn−1‖2 ≤ ‖µ− µn‖2.

Using this inequality, one can show that the cluster point µ̂ is unique and

lim
n→∞

µn+1 = µ̂.

�

4. Applications

In this section, we show that the quasi variational inequalities are equivalent to the

general variational inequalities, which were introduced and investigated by Noor [26].

In many applications, the convex-valued set K(u) is of the form (10). Let µ ∈ K(µ) be a

solution of problem (1). Then, from Lemma 3.1, it follows that µ ∈ K(µ) such that

µ = PK(µ)

[
µ− ρTµ

]
= PK(m(µ)+K)

[
µ− ρTµ

]
= m(µ) + PK

[
µ−m(µ)− ρTµ

]
. (23)

This implies that

µ−m(µ) = PK
[
µ−m(µ)− ρTµ

]
.

which is equivalent to finding µ ∈ K such that

〈Tµ, g(v)− g(µ)〉 ≥ 0, ∀v ∈ K, (24)

where g(µ) = µ − m(µ). Conversely, if g(µ) = µ − m(µ), then the general variational in-

equality (24) is equivalent to the quasi variational inequality (1). It is worth mentioning

that general variational inequality (24) was introduced and investigated by Noor [26]. It

has been shown by Noor [33] that odd-order and nonsymmetric obstacle boundary value

problems can be studied in the general variational inequalities. Thus all the results proved

for quasi variational inequalities continue to hold for general variational inequalities of the

type (24) with suitable modifications and adjustment. Despite the recent research activates,

very few numerical results are available. The development of efficient numerical methods

requires further efforts.
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Conclusion: In this paper, we have used a second-order resolvent dynamical systems to

suggest some inertial proximal methods for solving quasi variational inequalities. The con-

vergence analysis of these methods have beeb considered under some weaker conditions.

Our method of convergence criteria is very simple as compared with other techniques. Com-

parison and implementation of these new methods need further research efforts. We have

only discussed the theoretical aspects of the proposed iterative methods. It is an interesting

problem to discuss the implementation and performance of these new methods with other

methods. Similar methods can be suggested for stochastic variational inequalities, which

is another interesting and challenging problem. The ideas and techniques presented in this

paper may be starting point for further developments.
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