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DIFFERENTIAL PROPERTIES OF THE REDUCED MITTAG-LEFFLER
POLYNOMIALS

by Predrag Rajkovié!, Sladjana Marinkovié2, Miomir Stankovié® and Marko Petkovié*

This paper deals with the Mittag-Leffler polynomials (MLP) by extracting their
essence which consists of real polynomials with fine properties. They are orthogonal on
the real line instead of the imaginary azxes for MLP. Beside recurrence relations and
zeros, we will point to the closed form of its Fourier transform. The most important
contribution consists of the new differential properties, especially the finite and infinite

differential equation.
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1. Introduction

The Mittag—Leffler polynomials {g,(x)} are coefficients in the expansion

(1 H)x = ign(x)t" (It] < 1).
n=0

1-t¢

They were introduced by Mittag-Leffler in a study of the integral representations. Their
main properties were discovered by H. Bateman (see [1] and [2]). He noticed that they
occur as coefficients in the closed-form expressions for a several families of integrals. Also,
they were used in deriving some expansions for the Euler Gamma function and the Riemann
Zeta function [12]. Truncated Exponential-Based Mittag-Leffler Polynomials were examined
n [14]. They were noticed in the solutions of heat diffusion equation of Fokker-Plank type
in [5]. They are connected with the Sheffer polynomials in [6] and Riordan arrays in [10].
Their generalizations were considered in [13] and [11].

The article is organized as follows. In Section 2 we present the preliminaries for the
Mittag-Leffler polynomials. Since the imaginary unit is present in the orthogonality relation,
we have noticed that we can reduce them to the real polynomials whose examination is more
obvious and much easier. They are the subject in Section 3. In the next section, we find
the closed form of their Fourier transform. The main contributions of the paper are the
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differential properties exposed Section 5. Finally, the paper is concluded in Section 6 with
observation on the quasi-monomial property of the reduced Mittag-Leffler polynomials.

2. Preliminaries

The Mittag—Leffler polynomials {g,(z)} can be represented over hypergeometric func-

tion like ) .
—n, 1—x
gnl@) =20:R (") 2)  (men).
They can be viewed as a special case of the Meixner-Pollaczek polynomials
2 ; — i ;
PO (g ) = P gino 2F1< m Atie ‘ 1- e_21¢> (neN; i =—1) (2.1)
n! 2\
for A\=1and ¢ = /2
e—in‘n’/2 a .
gn(x) =2 xP,” (iz;7/2) (n eN). (2.2)

Also, they can be considered as a special case of Meixner polynomials

M, (2; 8,¢) = zFl(*”’B*x | 1—%) (n € N)

for 8 =2 and ¢ = —1 (see [8]). Namely, their relation is given by
gn(x) = 2aM, 1 (z —1,2,-1).

The lack of this connection is the fact that orthogonality of the Meixner polynomials is
assured only with the constraint 0 < ¢ < 1.

Finally, the Mittag—Leffler polynomials g, (x) are connected with Pidduck polynomials
by the expression

P, (x) = % (e” +1) gu(x),

where the series for the exponential function is used and D is understood as differentiation.
The Mittag—Leffler polynomials {g, (x)} satisfy recurrence relation

(n +1)gnt1(z) — 2xgn(z) + (n — 1)gn-1(z) =0,
with initial values
go(z) =1, gi(x)= 2.
They also satisfy difference relation
2gn(x + 1) — 2ng,(z) — zg,(x — 1) = 0.
The Mittag—Leffler polynomials {g, ()} satisfy recurrence-difference relation
gn(x+1) = gn-1(z +1) = gn () + gn—1(2).
The orthogonality relation is given by
+eo 1 2
/_OO gn(—ix)gm(ix)m dz = - Omn (n,m € N). (2.3)
Notice that the corresponding monic sequence is

9u@) =L (@) (ne Do)
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Let us remind that the central difference operator is
6f(z) = f(z+1/2) = f(z—1/2).

Theorem 2.1. The Mittag—Leffler polynomials {g,(x)} satisfy the Rodrigues formula

2
gn(@) = nlw(z, 1)

n+1—x r n—|—1+x
2 2 '

Proof. Tt is based on the connection (2.2) and the Rodrigues formula for the Meixner-

0" w(x,n),

where

w(z,n) :r(

Pollaczek polynomials in [8], pp. 37.00

3. The reduced Mittag—Leffler polynomials

In spite of the fact that the Mittag-Leffler polynomials are real, in some relations,
as in (2.1), and especially in their orthogonality relation (2.3), they are considered as the
complex functions. That is why we believe that is better to extract the following sequence.

Let us consider the reduced Mittag-Leffler polynomials defined in [13] by

_ Gn1(iz)
The successive members of sequence {¢y(z)}nen, satisfy the three-term recurrence
relation
(n+2)pn+1(z) = 2z¢,(x) —n pn-1(z) (n€N)
wolz) = 2, v1(z) = 2z.

The generating function of sequence {¢, () }nen, is given by

exp(2rarctant) — 1 n
S(t,z) = = = enla)t™.
n=0

Notice that
on(—2) = (=1)" pn(z)  (n€N).

The sequence of polynomials {¢, () }nen, satisfies the following orthogonality relation:

/*m (@) om(@) A= —2 Gy (nym € No)
- Pn\T)Pm T Sil’lh(’]’(’(E) r = n+1 mn n,m 0):

Notice that

/+OO il dz = (1= ()mE™ -1) n!{(n+1) (n € N),

oo sinhz 2n
where ((n) is the Riemann zeta function.

The reduced Mittag-Leffler polynomials {¢, (x)},cn, are real polynomials and, be-
cause of their orthogonality on R, they have all real zeros.

The monic sequence

o) =V o) me) (1)
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satisfies three term recurrence relation

MED ba) (e, (32

Go(xr) = 1, $1(7) = .

Pni1(z) = wPp(x) —

Remark 3.1. Notice that ¢, (x) is the Meixner-Pollaczeck polynomial for A = 1 and ¢ =
/2, ie.

Pule) = % PO (aim/2)  (neNo).
Hence the following difference relation is valid
(x +1)¢n(z+1) — 2(n+ 1)ign(z) — (x — 1)Pp(z —1) = 0.
Example 3.1. The first members of the sequence {@,(z)}nen, are:

Go(z) =1, ¢1(z)=m, @¢ofz)=2"—

1
5) 953(37):1.3_2377

3 . 23
Q4(x) = 2t — 5 + 3 @s(x) = 25 — 1023 + 5T

The largest zeros are:

2P ~0.707, 2P ~ 1414, 2 ~2163, 2~ 2.945.

Using conclusions from the paper [7], we can easily prove that the zeros {x,g")} of the
polynomial ¢, (x) are bordered in the next manner:

2 </(n—Dn  (k=1,2,...,n).
Theorem 3.1. The sequence {@n(x)tnen, satisfies the Turan’s inequality

@n—l(x) @n(m)

T (on(z),2) = — On(x)  Ppii(w)

>0 (Vz € R; Vn € N).

Proof. We will prove by the mathematical induction as in the paper [9]. Obviously,
T (Po(z),z) =1 > 0. Suppose that T (n(x),z) > 0.

Let be ¢, = n(n + 1)/4. Consider the expression

T(¢n+1(l‘)7 x) - (@n(x)v x)
= 95,21_’_1(@ — P () Ppyo(x) —cp (@i(:c) - Sﬁn—l(x)@n—kl(x))
= @?ﬂrl(x) - @n(x) ($¢n+1($) - Cn+1§5n(x)) - Cn‘;’nfl(x)@wrl(m) - Cn@i(x)
Applying the recurrence relation (3.2), the last expression reduces to

n+1 4

T (Pni1(2),2) = enT (Pn(2),2) = (ent1 = ) P(7) = ——¢n(2) 2 0.

We conclude that T (¢n41(2),z) > T (Pn(z),z) > 0. O
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4. Fourier transform

Let us remind that the Fourier transform is defined by

SUO1= o= [ £ et = Fo) (4.1)

The Fourier transform of the first members of the sequence {@,,(t)w(t)}nen,, where w(t) =

t .
sinh(7t)? are:

1 1 2 sinh?(s/2) \/5 sinh?(s/2)
b = - = _— b = 2 1 _—
§leou] V2m 1+ coshs \/; sinh?s §lerw] s sinh® s

Theorem 4.1. The Fourier transform of the sequence {Hn(t)w(t)}nen,, where w(t) =

t .
sinh(7t)’ ts:

2 sinh2"+2(s/2)

D,(8) =F[pnw] =1"(n+ 1)!\/; ST, (n € Np). (4.2)

Proof. We will apply the mathematical induction. It is obviously true for n = 0 and
n = 1. Suppose that it is valid for every k < n. We will multiply the recurrence relation
(8.2) with w(t) and apply the Fourier transform on it:

§ e (®)] = § ea@u(®)] - " §ia, @w). (43)
The Fourier transform (4.1) has the property
Flmg(0] (5) = ()" T Flo0] () (meN)
It able us to write
d

F[tonB)w(t)] = (=1) =8 [pn(B)w()] () = —1 & (s).
Hence the relation (4.3) obtains the form

n(n+1)

Do (s) = —1 B, (s) -

@nfl(s).
Deriving (4.2), we find

sinh?"2(s/2)
h"ts

2
D (s) =i"(n+ 1)1/ = (n — 2sinh?(s/2)) —
™ sin
Finally, using the assumed expression for ®,,_1(s), we see that ®,1(s) satisfies the relation
(4.2), wherefrom the statement follows. [J

Remark 4.1. Having in mind relations between hyperbolic functions, the relation (4.2) can

be rewritten in the form
i"(n+1)!

D, (s) =F[pnw] = o o tanh” (s/2) (1 — tanhQ(s/Z)) (n € Np).
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5. Differential properties

The exponential generating function of sequence {@, () }nen, is (see [13])

g(tvx) =

4exp(2z arctan(t/2)) _ i . (x)ﬁ

2
t+4 n=0

Theorem 5.1. The exponential generating function g(t,x) has the property
A 9% d 4 ?
50,0 53(t.0) = (5250.2))

Proof. This follows directly from relations

2

0 4 t .
—G§(t,z) = 2arctan 3 §(t,z) 52

. 7 2t &
o §(t,x) = 4arctan 5 §(t,z) . O

Corollary 5.1. The sequence {¢n(2)tnen, Satisfies the recurrence-differential equation

D) @n—k(w) — P (2)@, ()
Z : kl(n — k:k)! :

=0 (neN).
k=0

Theorem 5.2. Any polynomial p,(x) satisfies n'™ order differential equation of the form

En (ar + 13 (ﬁ(k)(x) — g _
b kL) i ngn(z) =0, (5.2)
k=1

where ay, = cos %” and By, = sin %’T

Proof. The sequence {n(z)}nen, is a Sheffer sequence since its generating function
has the form

§(t,z) =

where f(t) = 2arctan £. It is the compositional inverse of f(t) = 2tan%. Also, here is

g (f(t)) =1+ %. Hence g(t) = cos?® §.
According to [15], {@n(z)}neNU satisfies the differential equation of the form (5.2),

where
g (L0 o (S0 g0\
Ar®) = T ) gty =
Hence
—(sn® | gy T _ DB~ cos
Bk = (sint) =sin — | ar = (1 — cost) cos — .00
t=0 2 =0
Example 5.1. The polynomial
A 4 2 3
Pa(x) = 2* — ba® + 2
satisfies the following differential equation:
1. . 1, . .
21940(@) — $aP (@) — $@4(@) + 28 (2) — 4pa(x) = 0. (5.3)

24 6 2
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Theorem 5.3. Any polynomial o, () satisfies differential equation of the form

(cosD + zsin D — (n + 1)I) g (x) = 0 (D - i) .

The polynomial ¢, (x) is the eigenfunction of the operator
F=cosD+axsinD — 1T
with the eigenvalue n.

Proof. Let I be the identity operator. Since

k :k _N\k k k _ (_n\k
ak:cosgz#, 5k:sin§:¥,

we can write (5.2) in the form

n lk _ik ik_ _ik k
(Z( +é g 2(1 )>llz!—nl>¢an(x)20. (5.4)

k=1

Since D™, (x) = 0 for every m > n, we can write

n i k .
Zl Z%cﬁn(x) = (e‘D —I) On(x).

k=1 k=1
Hence the formula (5.4) becomes
I ip —iD T iD —iD P
5(6 +e —2[)4-?(6 —e ) —nl) g,(x)=0.
i

The statement follows from the Euler identity for the complex functions. [

Example 5.2. Since

D2k+1

D2k k:
cos D = Z Pk sin D = kzo 2k—|—1)

the polynomial ¢4(z) satisfies

(1242 (0 2) ) o -0

what is the same as (5.3).

Theorem 5.4. The sequences {¢n () tnen, and {on()}nen, have the following differential
properties:

[n/2]
N B n+1Y (2k)!
@) = L 0430 E o) 55)

[n/2] (_1)k
on(@) =23 o S #n2k(@). (5.6)

Proof. By differentiation the generating function (5.1) over x, we get

.. t"  dexp(2x arctan(t/2))
Z@%(z)ﬁ = 21 2arctan(t/2).

n=0




36 Predrag Rajkovié¢, Sladjana Marinkovié¢, Miomir Stankovi¢ and Marko Petkovié

Knowing that ¢f(t) = 0 and using the expansion

t o= (DR e £
2arctan - =y ¢ ‘7’ 1),
aretan kz:()4k(2k+1) (2 < )

we have
S s = (L ewh) (2 rary™
n=1 2 n=0 " -0 4k (2k 4 1) .
Hence
‘/A’;H-l(x) g+l Z Dn () (*l)k gn+2k+l
| | k !
n=0 (n + 1) n=0 k=0 nl 4 (Qk + 1)
ie.,
oo [n/2] . k
QDn+1 Son 2’@ _1) n
=t t.
i =y Y Sen LU
n=0 n=0 k=0

Comparing the coefficients by " (n € N), we find

Gpa(w) Pnak(z) (—1)*
(n+ 1! & (n—2k)! 452k + 1)

[n/2]

By rearrangement of summands, we have formula (5.5).
Formula (5.6) can be obtained by (5.7) and (3.1). O

6. Quasi-monomiality

According to [4] and [3], the exponential generating function §(¢,z) is of the Boas-

Buck type if
§(t,z) = A(t) B(zC(1)),
where
M0)#£0 (VkeN), A0)C'(0)#£0, C(0)=0.
Considering the exponential generating function of the reduced Mittag-Leffler polynomials
{¢n(x)}, we can denote with
4

A@@) = m7

t
By(t) =e€', Cy(t) = 2arctan 7

Here, it is

t
-1 _

Theorem 6.1. The sequence ¢, (x) is quasi-monomial under the lowering operator L, =
2tan (D, /2), i.e

Lofn(z) =n @p_1(x) (n € N).
Proof. We start with the Taylor series

By,
(k)

o0
tanz = 29%_13:%*1, where 1 = (—1)F 714k (4F — 1)
k=1

Here, B,, is the n-the Bernoulli number. Since

t\2k—1
)

R t
ng—lg(t7 x) = exp <2x arctan 5) (2 arctan B

)

4
t2+4
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we have
R ) D 2k—1 )
LIS(t,x) = 2292]@,1 (;) S(t,x)
k=1
8 £ 2k—1
= Eia exp (2:10 arctan — ) ; Oor_1 (arctan 2) ,
wherefrom
L,.5(t,x) =t §(t, ).
Since
£,5(t,x) Zson Zﬁz@n ;
and

o0
15t =1 (S eula) zwnl e
n=0 n=1 n
we have the statement proven. [J

7. Conclusions

In this paper, we made some observations on the Mittag-Leffler polynomials. It is
shown that it is much easier to discuss their reduced version since it is real polynomial
sequence orthogonal on the real line and with fine differential and other properties.
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