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DIFFERENTIAL PROPERTIES OF THE REDUCED MITTAG-LEFFLER

POLYNOMIALS

by Predrag Rajković1, Sladjana Marinković2, Miomir Stanković3 and Marko Petković4

This paper deals with the Mittag-Leffler polynomials (MLP) by extracting their

essence which consists of real polynomials with fine properties. They are orthogonal on

the real line instead of the imaginary axes for MLP. Beside recurrence relations and

zeros, we will point to the closed form of its Fourier transform. The most important

contribution consists of the new differential properties, especially the finite and infinite

differential equation.
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1. Introduction

The Mittag–Leffler polynomials {gn(x)} are coefficients in the expansion(1 + t

1− t

)x
=

∞∑
n=0

gn(x)t
n (|t| < 1).

They were introduced by Mittag-Leffler in a study of the integral representations. Their

main properties were discovered by H. Bateman (see [1] and [2]). He noticed that they

occur as coefficients in the closed-form expressions for a several families of integrals. Also,

they were used in deriving some expansions for the Euler Gamma function and the Riemann

Zeta function [12]. Truncated Exponential-Based Mittag-Leffler Polynomials were examined

in [14]. They were noticed in the solutions of heat diffusion equation of Fokker-Plank type

in [5]. They are connected with the Sheffer polynomials in [6] and Riordan arrays in [10].

Their generalizations were considered in [13] and [11].

The article is organized as follows. In Section 2 we present the preliminaries for the

Mittag-Leffler polynomials. Since the imaginary unit is present in the orthogonality relation,

we have noticed that we can reduce them to the real polynomials whose examination is more

obvious and much easier. They are the subject in Section 3. In the next section, we find

the closed form of their Fourier transform. The main contributions of the paper are the
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differential properties exposed Section 5. Finally, the paper is concluded in Section 6 with

observation on the quasi-monomial property of the reduced Mittag-Leffler polynomials.

2. Preliminaries

The Mittag–Leffler polynomials {gn(x)} can be represented over hypergeometric func-

tion like

gn(x) = 2x 2F1

(1− n, 1− x

2

∣∣∣ 2) (n ∈ N).

They can be viewed as a special case of the Meixner-Pollaczek polynomials

P (λ)
n (x;ϕ) =

(2λ)n
n!

einϕ 2F1

(−n, λ+ ix

2λ

∣∣∣ 1− e−2iϕ
)

(n ∈ N; i2 = −1) (2.1)

for λ = 1 and ϕ = π/2:

gn(x) = 2
e−inπ/2

n
xP

(1)
n−1(ix;π/2) (n ∈ N). (2.2)

Also, they can be considered as a special case of Meixner polynomials

Mn(x;β, c) = 2F1

(−n, −x

β

∣∣∣ 1− 1

c

)
(n ∈ N)

for β = 2 and c = −1 (see [8]). Namely, their relation is given by

gn(x) = 2xMn−1(x− 1, 2,−1).

The lack of this connection is the fact that orthogonality of the Meixner polynomials is

assured only with the constraint 0 < c < 1.

Finally, the Mittag–Leffler polynomials gn(x) are connected with Pidduck polynomials

by the expression

Pn(x) =
1

2

(
eD + 1

)
gn(x),

where the series for the exponential function is used and D is understood as differentiation.

The Mittag–Leffler polynomials {gn(x)} satisfy recurrence relation

(n+ 1)gn+1(x)− 2xgn(x) + (n− 1)gn−1(x) = 0,

with initial values

g0(x) = 1, g1(x) = 2x.

They also satisfy difference relation

xgn(x+ 1)− 2ngn(x)− xgn(x− 1) = 0.

The Mittag–Leffler polynomials {gn(x)} satisfy recurrence-difference relation

gn(x+ 1)− gn−1(x+ 1) = gn(x) + gn−1(x).

The orthogonality relation is given by∫ +∞

−∞
gn(−ix)gm(ix)

1

x sinh(πx)
dx =

2

n
δmn (n,m ∈ N). (2.3)

Notice that the corresponding monic sequence is

ĝn(x) =
(n)!

2n
gn(x) (n ∈ N0).
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Let us remind that the central difference operator is

δf(z) = f(z + 1/2)− f(z − 1/2).

Theorem 2.1. The Mittag–Leffler polynomials {gn(x)} satisfy the Rodrigues formula

gn(x) =
2

n!

x

w(x, 1)
δnw(x, n),

where

w(x, n) = Γ

(
n+ 1

2
− x

)
Γ

(
n+ 1

2
+ x

)
.

Proof. It is based on the connection (2.2) and the Rodrigues formula for the Meixner-

Pollaczek polynomials in [8], pp. 37.□

3. The reduced Mittag–Leffler polynomials

In spite of the fact that the Mittag-Leffler polynomials are real, in some relations,

as in (2.1), and especially in their orthogonality relation (2.3), they are considered as the

complex functions. That is why we believe that is better to extract the following sequence.

Let us consider the reduced Mittag-Leffler polynomials defined in [13] by

φn(x) =
gn+1(ix)

in+1 x
(n ∈ N0).

The successive members of sequence {φn(x)}n∈N0
satisfy the three–term recurrence

relation

(n+ 2)φn+1(x) = 2xφn(x)− n φn−1(x) (n ∈ N)

φ0(x) = 2, φ1(x) = 2x.

The generating function of sequence {φn(x)}n∈N0
is given by

G(t, x) =
exp(2x arctan t)− 1

tx
=

∞∑
n=0

φn(x)t
n.

Notice that

φn(−x) = (−1)n φn(x) (n ∈ N).

The sequence of polynomials {φn(x)}n∈N0 satisfies the following orthogonality relation:∫ +∞

−∞
φn(x)φm(x)

x

sinh(πx)
dx =

2

n+ 1
δmn (n,m ∈ N0).

Notice that ∫ +∞

−∞

xn

sinhx
dx =

(1− (−1)n)(2n+1 − 1)

2n
n! ζ(n+ 1) (n ∈ N),

where ζ(n) is the Riemann zeta function.

The reduced Mittag-Leffler polynomials {φn(x)}n∈N0
are real polynomials and, be-

cause of their orthogonality on R, they have all real zeros.

The monic sequence

φ̂n(x) =
(n+ 1)!

2n+1
φn(x) (n ∈ N0), (3.1)
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satisfies three term recurrence relation

φ̂n+1(x) = xφ̂n(x)−
n(n+ 1)

4
φ̂n−1(x) (n ∈ N), (3.2)

φ̂0(x) = 1, φ̂1(x) = x.

Remark 3.1. Notice that φn(x) is the Meixner-Pollaczeck polynomial for λ = 1 and ϕ =

π/2, i.e.

φ̂n(x) =
n!

2n
P (1)
n (x;π/2) (n ∈ N0).

Hence the following difference relation is valid

(x+ i)φ̂n(x+ i)− 2(n+ 1)iφ̂n(x)− (x− i)φ̂n(x− i) = 0.

Example 3.1. The first members of the sequence {φ̂n(x)}n∈N0
are:

φ̂0(x) = 1, φ̂1(x) = x, φ̂2(x) = x2 − 1

2
, φ̂3(x) = x3 − 2x,

φ̂4(x) = x4 − 5x2 +
3

2
, φ̂5(x) = x5 − 10x3 +

23

2
x.

The largest zeros are:

x
(2)
2 ≈ 0.707, x

(3)
3 ≈ 1.414, x

(4)
4 ≈ 2.163, x

(5)
5 ≈ 2.945.

Using conclusions from the paper [7], we can easily prove that the zeros {x(n)
k } of the

polynomial φ̂n(x) are bordered in the next manner:

|x(n)
k | <

√
(n− 1)n (k = 1, 2, . . . , n).

Theorem 3.1. The sequence {φ̂n(x)}n∈N0
satisfies the Turan’s inequality

T (φ̂n(x), x) = −

∣∣∣∣∣φ̂n−1(x) φ̂n(x)

φ̂n(x) φ̂n+1(x)

∣∣∣∣∣ ≥ 0 (∀x ∈ R; ∀n ∈ N).

Proof. We will prove by the mathematical induction as in the paper [9]. Obviously,

T (φ̂0(x), x) = 1 ≥ 0. Suppose that T (φ̂n(x), x) ≥ 0.

Let be cn = n(n+ 1)/4. Consider the expression

T (φ̂n+1(x), x)− cnT (φ̂n(x), x)

= φ̂2
n+1(x)− φ̂n(x)φ̂n+2(x)− cn

(
φ̂2
n(x)− φ̂n−1(x)φ̂n+1(x)

)
= φ̂2

n+1(x)− φ̂n(x) (xφ̂n+1(x)− cn+1φ̂n(x))− cnφ̂n−1(x)φ̂n+1(x)− cnφ̂
2
n(x).

Applying the recurrence relation (3.2), the last expression reduces to

T (φ̂n+1(x), x)− cnT (φ̂n(x), x) = (cn+1 − cn) φ̂
2
n(x) =

n+ 1

2
φ̂2
n(x) ≥ 0.

We conclude that T (φ̂n+1(x), x) ≥ cnT (φ̂n(x), x) ≥ 0. □
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4. Fourier transform

Let us remind that the Fourier transform is defined by

F [f(t)] =
1√
2π

∫
R
f(t) eist dt = F (s). (4.1)

The Fourier transform of the first members of the sequence {φ̂n(t)w(t)}n∈N0
, where w(t) =

t
sinh(πt) , are:

F [φ̂0w] =
1√
2π

1

1 + cosh s
=

√
2

π

sinh2(s/2)

sinh2 s
, F [φ̂1w] = 2 i

√
2

π

sinh4(s/2)

sinh3 s
.

Theorem 4.1. The Fourier transform of the sequence {φ̂n(t)w(t)}n∈N0
, where w(t) =

t
sinh(πt) , is:

Φn(s) = F [φ̂nw] = in(n+ 1)!

√
2

π

sinh2n+2(s/2)

sinhn+2 s
(n ∈ N0). (4.2)

Proof. We will apply the mathematical induction. It is obviously true for n = 0 and

n = 1. Suppose that it is valid for every k ≤ n. We will multiply the recurrence relation

(3.2) with w(t) and apply the Fourier transform on it:

F [φ̂n+1(t)w(t)] = F [tφ̂n(t)w(t)]−
n(n+ 1)

4
F [φ̂n−1(t)w(t)] . (4.3)

The Fourier transform (4.1) has the property

F [tmg(t)] (s) = (−i)m
dm

dsm
F [g(t)] (s) (m ∈ N).

It able us to write

F [tφn(t)w(t)] = (−i)
d

ds
F [φn(t)w(t)] (s) = −i Φ′

n(s).

Hence the relation (4.3) obtains the form

Φn+1(s) = −i Φ̂′
n(s)−

n(n+ 1)

4
Φn−1(s).

Deriving (4.2), we find

Φ′
n(s) = in(n+ 1)!

√
2

π

(
n− 2 sinh2(s/2)

) sinh2n+2(s/2)

sinhn+3 s
.

Finally, using the assumed expression for Φn−1(s), we see that Φn+1(s) satisfies the relation

(4.2), wherefrom the statement follows. □

Remark 4.1. Having in mind relations between hyperbolic functions, the relation (4.2) can

be rewritten in the form

Φn(s) = F [φ̂nw] =
in(n+ 1)!

2n
√
2π

tanhn(s/2)
(
1− tanh2(s/2)

)
(n ∈ N0).
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5. Differential properties

The exponential generating function of sequence {φ̂n(x)}n∈N0 is (see [13])

Ĝ(t, x) =
4 exp

(
2x arctan(t/2)

)
t2 + 4

=

∞∑
n=0

φ̂n(x)
tn

n!
. (5.1)

Theorem 5.1. The exponential generating function Ĝ(t, x) has the property

Ĝ(t, x)
∂2

∂x2
Ĝ(t, x) =

(
∂

∂x
Ĝ(t, x)

)2

.

Proof. This follows directly from relations

∂

∂x
Ĝ(t, x) = 2 arctan

t

2
· Ĝ(t, x) , ∂2

∂x2
Ĝ(t, x) = 4 arctan2

t

2
· Ĝ(t, x) . □

Corollary 5.1. The sequence {φ̂n(x)}n∈N0
satisfies the recurrence-differential equation

n∑
k=0

φ̂′′
k(x)φ̂n−k(x)− φ̂′

k(x)φ̂
′
n−k(x)

k!(n− k)!
= 0 (n ∈ N).

Theorem 5.2. Any polynomial φ̂n(x) satisfies nth order differential equation of the form

n∑
k=1

(αk + βkx)
φ̂
(k)
n (x)

k!
− nφ̂n(x) = 0, (5.2)

where αk = cos kπ
2 and βk = sin kπ

2 .

Proof. The sequence {φ̂n(x)}n∈N0 is a Sheffer sequence since its generating function

has the form

Ĝ(t, x) =
1

g
(
f̂(t)

)exf̂(t),
where f̂(t) = 2 arctan t

2 . It is the compositional inverse of f(t) = 2 tan t
2 . Also, here is

g
(
f̂(t)

)
= 1 + t2

4 . Hence g(t) = cos2 t
2 .

According to [15], {φ̂n(x)}n∈N0
satisfies the differential equation of the form (5.2),

where

βk =

(
f(t)

f ′(t)

)(k) ∣∣∣
t=0

, αk =

(
− f(t)

f ′(t)
· g

′(t)

g(t)

)(k) ∣∣∣
t=0

.

Hence

βk = (sin t)
(k)
∣∣∣
t=0

= sin
kπ

2
, αk = (1− cos t)

(k)
∣∣∣
t=0

= cos
kπ

2
.□

Example 5.1. The polynomial

φ̂4(x) = x4 − 5x2 +
3

2
,

satisfies the following differential equation:

1

24
φ̂
(4)
4 (x)− 1

6
xφ̂

(3)
4 (x)− 1

2
φ̂′′
4(x) + xφ̂′

4(x)− 4φ̂4(x) = 0. (5.3)
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Theorem 5.3. Any polynomial φ̂n(x) satisfies differential equation of the form

(cosD + x sinD − (n+ 1)I) φ̂n(x) = 0

(
D =

d

dx

)
.

The polynomial φ̂n(x) is the eigenfunction of the operator

F = cosD + x sinD − I

with the eigenvalue n.

Proof. Let I be the identity operator. Since

αk = cos
kπ

2
=

ik + (−i)k

2
, βk = sin

kπ

2
=

ik − (−i)k

2i
,

we can write (5.2) in the form(
n∑

k=1

(
ik + (−i)k

2
+ x

ik − (−i)k

2i

)
Dk

k!
− nI

)
φ̂n(x) = 0. (5.4)

Since Dmφ̂n(x) ≡ 0 for every m > n, we can write

n∑
k=1

ik
Dk

k!
φ̂n(x) =

∞∑
k=1

(iD)k

k!
φ̂n(x) =

(
eiD − I

)
φ̂n(x).

Hence the formula (5.4) becomes(
1

2

(
eiD + e−iD − 2I

)
+

x

2i

(
eiD − e−iD

)
− nI

)
φ̂n(x) = 0.

The statement follows from the Euler identity for the complex functions. □

Example 5.2. Since

cosD =

∞∑
k=0

(−1)k
D2k

(2k)!
, sinD =

∞∑
k=0

(−1)k
D2k+1

(2k + 1)!
,

the polynomial φ̂4(x) satisfies((
I − D2

2
+

D4

4!

)
+ x

(
D − D3

3!

)
− 4I

)
φ̂4(x) = 0,

what is the same as (5.3).

Theorem 5.4. The sequences {φ̂n(x)}n∈N0 and {φn(x)}n∈N0 have the following differential

properties:

φ̂′
n+1(x) =

[n/2]∑
k=0

(−1)k
(
n+ 1

2k + 1

)
(2k)!

22k
φ̂n−2k(x), (5.5)

φ′
n(x) = 2

[n/2]∑
k=0

(−1)k

2k + 1
φn−2k(x). (5.6)

Proof. By differentiation the generating function (5.1) over x, we get

∞∑
n=0

φ̂′
n(x)

tn

n!
=

4 exp
(
2x arctan(t/2)

)
t2 + 4

2 arctan(t/2).
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Knowing that φ̂′
0(t) = 0 and using the expansion

2 arctan
t

2
=

∞∑
k=0

(−1)k

4k(2k + 1)
t2k+1

(∣∣∣ t2
2

∣∣∣ < 1

)
,

we have
∞∑

n=1

φ̂′
n(x)

tn

n!
=

( ∞∑
n=0

φ̂n(x)
tn

n!

)( ∞∑
k=0

(−1)k

4k(2k + 1)
t2k+1

)
.

Hence
∞∑

n=0

φ̂′
n+1(x)

(n+ 1)!
tn+1 =

∞∑
n=0

∞∑
k=0

φ̂n(x)

n!

(−1)k

4k(2k + 1)
tn+2k+1,

i.e.,

t

∞∑
n=0

φ̂′
n+1(x)

(n+ 1)!
tn = t

∞∑
n=0

[n/2]∑
k=0

φ̂n−2k(x)

(n− 2k)!

(−1)k

4k(2k + 1)
tn.

Comparing the coefficients by tn (n ∈ N), we find

φ̂′
n+1(x)

(n+ 1)!
=

[n/2]∑
k=0

φ̂n−2k(x)

(n− 2k)!

(−1)k

4k(2k + 1)
. (5.7)

By rearrangement of summands, we have formula (5.5).

Formula (5.6) can be obtained by (5.7) and (3.1). □

6. Quasi-monomiality

According to [4] and [3], the exponential generating function G(t, x) is of the Boas-

Buck type if

G(t, x) = A(t)B(xC(t)),

where

B(k)(0) ̸= 0 (∀k ∈ N), A(0)C ′(0) ̸= 0, C(0) = 0.

Considering the exponential generating function of the reduced Mittag-Leffler polynomials

{φ̂n(x)}, we can denote with

Aφ̂(t) =
4

4 + t2
, Bφ̂(t) = et, Cφ̂(t) = 2 arctan

t

2
.

Here, it is

C−1
φ̂ (t) = 2 tan

t

2
.

Theorem 6.1. The sequence φ̂n(x) is quasi-monomial under the lowering operator Lx =

2 tan (Dx/2), i.e.

Lxφ̂n(x) = n φ̂n−1(x) (n ∈ N).

Proof. We start with the Taylor series

tanx =

∞∑
k=1

θ2k−1x
2k−1, where θ2k−1 = (−1)k−14k(4k − 1)

B2k

(2k)!
.

Here, Bn is the n-the Bernoulli number. Since

D2k−1
x Ĝ(t, x) =

4

t2 + 4
exp
(
2x arctan

t

2

) (
2 arctan

t

2

)2k−1
,
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we have

LxĜ(t, x) = 2

∞∑
k=1

θ2k−1

(
Dx

2

)2k−1

Ĝ(t, x)

=
8

t2 + 4
exp
(
2x arctan

t

2

) ∞∑
k=1

θ2k−1

(
arctan

t

2

)2k−1

,

wherefrom

LxĜ(t, x) = t Ĝ(t, x).

Since

LxĜ(t, x) = Lx

( ∞∑
n=0

φ̂n(x)
tn

n!

)
=

∞∑
n=0

Lxφ̂n(x)
tn

n!
,

and

t Ĝ(t, x) = t

( ∞∑
n=0

φ̂n(x)
tn

n!

)
=

∞∑
n=1

n φ̂n−1(x)
tn

n!
,

we have the statement proven. □

7. Conclusions

In this paper, we made some observations on the Mittag-Leffler polynomials. It is

shown that it is much easier to discuss their reduced version since it is real polynomial

sequence orthogonal on the real line and with fine differential and other properties.
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