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ARTEFACT REMOVAL APPROACH FOR EPILEPTIC EEG
DATA

Diana PIPER?, Rodica STRUNGARU?, Herbert WITTE?

Clinical electroencephalographic (EEG) data are often contaminated by
muscle and eye movement artefacts that can strongly influence the following
analysis. Two existing methods (Independent Component Analysis and Robust
Artefact Removal) used for the rejection of artefacts are applied to EEG data from
epileptic patients. A comparison between the methods and a discussion on the
results are made.
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1. Introduction

In clinical neuroscience the EEG is used for diagnosis and monitoring of
treatment efficacy in several diseases and dysfunctions of the brain. Data from
long-term recordings of EEG become available in monitoring scenarios such as
pre-surgical epilepsy and intensive care monitoring. In neuroscience and cognitive
sciences, the EEG provides the data for many advanced analysis strategies, like
source localization and connectivity analysis. EEG recordings have a low
amplitude and are very sensitive to movement artefacts that can be caused by head
movements (e.g. electrode displacement), eye and eyelid movements and by
muscle activity (face and neck muscles). An analysis of contaminated EEG data
can lead to misinterpretations of the results. Consequently, artefact removal is an
important pre-processing step. Many studies have focused on methods that aim at
the reduction of artefacts' influence on EEG data.

A high number of approaches that focus on artefact removal exist and
most of them are specialized on a type of artefact (ocular, heartbeat, movement).
Methods that use a co-registered reference signal are applicable when recordings
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from the source of the artefact are available. Signals such as EOG (reference
signal for eye movements, i.e. cornea-retinal dipole movement, retinal dipole
movement and eyelid movements), the ECG (for the designation of the heartbeat)
and surface EMG recordings (EMG interferences and movements) can be used as
reference.

Regression-based algorithms are frequently used for ocular and heartbeat
artefacts and can be found in EEG analysis toolboxes. Ocular artefacts are more
difficult to correct than heartbeat ones because of their varying shape (types and
intensity of eye movements) and their random occurrence. In contrast to the quasi
periodic sequence of the ECG-interference. Frequently used EOG removal
algorithms estimate (e.g. least-square regression) the portion (correction
coefficients) of the artefact that is in the EEG and removes it by subtraction [1].

The EMG and its envelope can be used as reference signal to detect
contaminated EEG epochs. Surface EMG and EEG signals strongly overlap in the
higher frequency bands and the corresponding artefact amplitude can be higher
than those of the EEG. Thompson et.al [2] considers that a low pass filtering is
enough when the brain activity of interest is below 15 Hz and also that one can
avoid using the contaminated channels.

Often, a co-registration of a reference signal is not possible or the
available signals are not suitable as a reference signal. In this case, methods such
as blind source separation (BSS) approaches and spatial filtering can be used.

Blind source separation methods used for artefact correction are Canonical
Correlation Analysis (CCA) [3], Principal Component Analysis (PCA) [4],
Independent Component Analysis (ICA) [5, 6].

The Independent Component Analysis (ICA) was successfully used alone
in several studies as artefact removal technique [5 - 9] and also in combination
with the Wavelet Transform (WT) [10 - 12].

In this paper, the classic ICA approach and the Robust Artefact Removal
(RAR) method proposed in [12], which is based on WT and ICA, are applied on
highly contaminated epileptic EEG data for the removal of ocular and muscle
artefacts. The objective of this methodological study is to select the approach that
iS most suitable for our data set. A description of the methods as well as a
comparison of their results is made.

2. Independent component analysis

ICA aims at separating individual signals from mixtures assuming that the
original source signals are statistically independent. This assumption is the crucial
point of the ICA. Two variables are statistically independent if information on the
value of one variable does not give any information on the value of the second
variable, and vice versa. Furthermore, if two random variables are independent,
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they are also uncorrelated, but not vice versa [9]. When applied to EEG data, the
brain sources are linearly separated from the artefact sources, offering the
possibility to reject the artefact components and to reconstruct the data.

The artefact removal procedure starts with the decomposition of the signal
into a set of independent components (ICs). Thereafter, the I1Cs that correspond to
artefacts are identified and set to zero (elimination). The back projection of the
remaining ICs results in a reconstruction of the signal which is largely freed from
artefacts.

One crucial step is the correct identification of the components that
correspond to artefacts. When a reference signal is available, the most common
method is to calculate the correlation between the ICs and the reference; high
correlations indicate artefacts. In the case that a reference signal is not available,
typical artefact signal characteristics, such as time-frequency or/and topographic
(scalp topography) patterns [6], can be used to identify the artefactual
components. A semi-automatic identification of artefact ICs is the correlation of
ICs inverse weights (IC maps) with those of a user-defined template [5].

The usefulness of ICA for artefact removal has been demonstrated by a
high number of applications. It can be noted that ECG and eye artefacts may be
corrected by ICA. Muscle and eye artefacts were successfully treated by using
CCA and ICA [3, 7]. Strong gait-related movement artefacts can be removed by
means of a combined processing strategy consisting of a template-regression
method and ICA. These selected examples already show the broad spectrum of
ICA applications [8].

3. Wavelet transform and ICA

However, the ICA artefact removal has one drawback: those ICs that are
identified as 'artefacts’ may include EEG activity, i.e. their rejection would yield a
loss of meaningful brain activity.

The combination of ICA and WT was proved to overcome this problem
[10 - 13]. The WT is applied to the ICs, (all or selected ones) in order to identify
and reduce, by denoising, only the artefact activity of the independent
components. In some studies, all independent components are denoised, by
applying a fixed threshold [10, 13], reducing the high amplitude artefacts. Another
approach is to apply the Wavelet denoising method only on those ICs which are
identified as artefacts. Criteria like sparsity (Eq. 1) [12] and kurtosis (Eq. 2) [11]
are used to automatically identify movement or ocular artefacts. The criteria are
based on the statistical properties of the artefacts: EMG is characterized by high
amplitude and short duration compared to EEG, and EOG have mainly a peaky
distribution.
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where s = (sl‘”,...,sﬁ,")) represents the jth component, i the time index and N is
the number of samples.

kurt(s) = E(s*) —3[E(s)] )

where E is the statistical expectation. A high value for kurtosis describes a highly
peaked distribution.

The method used in this study is called robust artefact removal (RAR)
method and was proposed by Zima et al. in [12]. It is an automatic sequential
procedure that removes short-duration, high-amplitude movement artefacts from
long-term EEG recordings. The method uses ICA and Wavelet denoising, applied
several times on EEG data segments that overlap. Only ICs identified as artefacts
using the sparsity criteria are denoised. The artefact free EEG is obtained by
combining the resulting tentative reconstructions. In [12] the method is tested for
neonatal EEG recordings and the results are promising.

4, Data

The EEG data were recorded during pre-surgical evaluation of the patients
at the University Hospital Vienna, Epilepsy Monitoring Unit, following a standard
protocol that was described by Mayer et al. [14]. A group of 18 children with a
seizure recording of 10 min (5 min before and after seizure) were selected for
analysis. A number of 23 gold disc electrodes placed according to the extended
10-20 International System with additional temporal electrodes was used. The
patients suffer from mesial/lateral Temporal Lobe Epilepsy (TLE).

5. Results

In this section representative results (one subject) which have been
achieved by using ICA and RAR are described.

For the Independent Component Analysis, the FieldTrip toolbox [15] was
used. The epileptic EEG signals were decomposed and the resulting independent
components were visually inspected. Ocular and movement artefacts were
identified for all subjects. The components most affected by one or both artefacts
were rejected. From the mathematical point of view, the rank of the reconstructed
data matrix decreases with the number of rejected components and can affect a
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multivariate analysis of the data. Thus, a maximum of 3 components were
selected to be rejected for each subject. An example of ocular and movement
artefact components identified for one subject is depicted in Fig. 1.

In this example, the 3rd component is clearly associated with ocular
artefacts, as the topography (frontal scalp area) and the EOG-like pattern
indicates. The 4th and 7th components are identified as movement artefact, due to
the high amplitude and spike-like patterns.
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Fig. 1. Example of ICA decomposition. Components which are most probably associated with
artefacts are 3rd, 4th and 7th. The analysis interval is 15 s

Also, the associated topographic representation of the source points to a
homogenous distribution in the case of the 4th component and to the temporal
area for the 7th component, which is known to be more sensitive to movement
artefacts. The reconstructed EEG signals, after rejecting these three independent
components, are presented in Fig. 2B together with the original data in Fig. 2A.
The rejection of the ocular artefacts is most effective for the frontal channels that
usually pick up such activities.

The EEG at electrode TP10 shows the highest degree of movement
artefact contamination. In Fig. 2B the results of artefact rejection are shown. It can
be demonstrated that the movement artefacts have been successfully removed.
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Fig. 2. Original EEG (A), after ICA based artefact rejection (B) and after RAR approach (C).
Time [s] on the x-axis
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The examination of all EEG channels indicates the capabilities and the
limits of the removal approach. An overall improvement of the data can be
observed. However, movement artefacts are still present in all channels, but with a
strongly reduced amplitude. In contrast, the EEG particularly at electrode O1
shows no improvement with regard to the vehement impulse-like artefact because
the 1C associated with this artefact has not been excluded.

The following conclusion can be drawn: artefact removal by means of ICA
is an optimization process between the minimization of the artefact influence and
the preservation of the natural EEG activity, i.e. the higher the number of rejected
components, the lower the contamination, and simultaneously, the greater the
degree of EEG activity elimination. This is more or less common to all methods
of artefact rejection. The combination between ICA and wavelet denoising could
be a possible methodological solution to optimize the relation between rejection
quality and preservation degree for EEG components. This approach was also
applied to the TLE data and its results have been compared with those of the ICA
approach.

The RAR method is made available as open source software [12]. RAR
focus on the rejection of movement artefacts which are characterized by high
amplitude and short duration. The results for the same subject are presented in
Fig. 2C. The results demonstrate that RAR’s specialization leads to a selected
removal of impulse-like (at electrode O1), high-amplitude artefacts, whereas all
other contaminations (movement and ocular artefacts) are persistent. Only a slight
overall improvement can be observed. This is an example for just one subject.

Since every recording is different (i.e. for each subject), not all subjects are
affected by artefacts. However, an analysis was performed for selected channels
for different subgroups that presented similar artefacts. One channel that was
severely contaminated with ocular artefacts in 10 (out of 18) children is FP2. The
data after artefact rejection using both methods is presented in Fig. 3. The data
after applying the RAR method (Fig. 3A) shows the same ocular artefact pattern
as the original data (not shown) whereas a clear rejection of the ocular artefacts
can be observed for the artefact free data after the ICA approach (Fig. 3B). The
same effect can be seen in Fig. 4, where movement artefacts are present for two
subjects (channel O1). A decrease of the EEG amplitude is achieved after artefact
rejection with the RAR method (Fig. 4C) as compared to the original EEG data
(Fig. 4A), but the movement artefact is still present, in contrast to the artefact free
data as a result of the ICA approach (Fig. 4B). An interesting effect of the RAR
approach was observed when analysing the Fourier spectrum (Fig. 5Ca-b). The
method acts like a low-pass filter, setting all frequencies higher than a certain
threshold, to zero.
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Fig. 3. EEG for 10 subjects at electrode FP2: after RAR method for artefact rejection (A) and after
ICA approach (B). Strong ocular artefacts are still present in (A).
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Fig. 4. EEG for 2 subjects at electrode O1: original data (A), after ICA approach for artefact
rejection (B) and after RAR method (C). Contamination with movement artefacts.
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Fig. 5. Spectrum for one subject: original data (A), after ICA approach for artefact rejection (B)
and after RAR method (C), at electrodes FP2 (a) and O1 (b).

However, if the artefact rejection is a pre-processing step for connectivity
analysis, filtering the data is not recommended, since it results in spurious and
missed causalities [16]. For the ICA approach, the artefact free data has a broad
spectrum (Fig. 5Ba-b) and the method has only minor influences on the
connectivity analysis results [17]. It is obvious that for the TLE-EEG and
similarly contaminated EEG data, the RAR approach is not appropriate.

6. Conclusions

This article presents the results of two advanced approaches for artefact
removal applied to EEG data recorded from a group of TLE patients. The artefact
rejection is an inevitable processing step for connectivity analysis which must be
performed with big care and consequence. This paper proves that the RAR
approach is not suitable for highly contaminated data and also, that one should
investigate the effects of the artefact rejection on the spectrum of the data, if
connectivity analysis is the next step. On the other hand, the ICA approach is
more suitable for data contaminated with ocular and movement artefacts and also,
the artefact-free data can be further used for connectivity analysis, without
severely impairing the results.
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