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ARTEFACT REMOVAL APPROACH FOR EPILEPTIC EEG 
DATA 

Diana PIPER1, Rodica STRUNGARU2, Herbert WITTE3 

Clinical electroencephalographic (EEG) data are often contaminated by 
muscle and eye movement artefacts that can strongly influence the following 
analysis. Two existing methods (Independent Component Analysis and Robust 
Artefact Removal) used for the rejection of artefacts are applied to EEG data from 
epileptic patients. A comparison between the methods and a discussion on the 
results are made. 
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1. Introduction 

In clinical neuroscience the EEG is used for diagnosis and monitoring of 
treatment efficacy in several diseases and dysfunctions of the brain. Data from 
long-term recordings of EEG become available in monitoring scenarios such as 
pre-surgical epilepsy and intensive care monitoring. In neuroscience and cognitive 
sciences, the EEG provides the data for many advanced analysis strategies, like 
source localization and connectivity analysis. EEG recordings have a low 
amplitude and are very sensitive to movement artefacts that can be caused by head 
movements (e.g. electrode displacement), eye and eyelid movements and by 
muscle activity (face and neck muscles). An analysis of contaminated EEG data 
can lead to misinterpretations of the results. Consequently, artefact removal is an 
important pre-processing step. Many studies have focused on methods that aim at 
the reduction of artefacts' influence on EEG data.  

A high number of approaches that focus on artefact removal exist and 
most of them are specialized on a type of artefact (ocular, heartbeat, movement). 
Methods that use a co-registered reference signal are applicable when recordings 
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from the source of the artefact are available. Signals such as EOG (reference 
signal for eye movements, i.e. cornea-retinal dipole movement, retinal dipole 
movement and eyelid movements), the ECG (for the designation of the heartbeat) 
and surface EMG recordings (EMG interferences and movements) can be used as 
reference. 

Regression-based algorithms are frequently used for ocular and heartbeat 
artefacts and can be found in EEG analysis toolboxes. Ocular artefacts are more 
difficult to correct than heartbeat ones because of their varying shape (types and 
intensity of eye movements) and their random occurrence. In contrast to the quasi 
periodic sequence of the ECG-interference. Frequently used EOG removal 
algorithms estimate (e.g. least-square regression) the portion (correction 
coefficients) of the artefact that is in the EEG and removes it by subtraction [1].  

The EMG and its envelope can be used as reference signal to detect 
contaminated EEG epochs. Surface EMG and EEG signals strongly overlap in the 
higher frequency bands and the corresponding artefact amplitude can be higher 
than those of the EEG. Thompson et.al [2] considers that a low pass filtering is 
enough when the brain activity of interest is below 15 Hz and also that one can 
avoid using the contaminated channels.  

Often, a co-registration of a reference signal is not possible or the 
available signals are not suitable as a reference signal. In this case, methods such 
as blind source separation (BSS) approaches and spatial filtering can be used. 

Blind source separation methods used for artefact correction are Canonical 
Correlation Analysis (CCA) [3], Principal Component Analysis (PCA) [4], 
Independent Component Analysis (ICA) [5, 6].  

The Independent Component Analysis (ICA) was successfully used alone 
in several studies as artefact removal technique [5 - 9] and also in combination 
with the Wavelet Transform (WT) [10 - 12].  

In this paper, the classic ICA approach and the Robust Artefact Removal 
(RAR) method proposed in [12], which is based on WT and ICA, are applied on 
highly contaminated epileptic EEG data for the removal of ocular and muscle 
artefacts. The objective of this methodological study is to select the approach that 
is most suitable for our data set. A description of the methods as well as a 
comparison of their results is made. 

2. Independent component analysis 

ICA aims at separating individual signals from mixtures assuming that the 
original source signals are statistically independent. This assumption is the crucial 
point of the ICA. Two variables are statistically independent if information on the 
value of one variable does not give any information on the value of the second 
variable, and vice versa. Furthermore, if two random variables are independent, 
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they are also uncorrelated, but not vice versa [9]. When applied to EEG data, the 
brain sources are linearly separated from the artefact sources, offering the 
possibility to reject the artefact components and to reconstruct the data. 

The artefact removal procedure starts with the decomposition of the signal 
into a set of independent components (ICs). Thereafter, the ICs that correspond to 
artefacts are identified and set to zero (elimination). The back projection of the 
remaining ICs results in a reconstruction of the signal which is largely freed from 
artefacts. 

One crucial step is the correct identification of the components that 
correspond to artefacts. When a reference signal is available, the most common 
method is to calculate the correlation between the ICs and the reference; high 
correlations indicate artefacts. In the case that a reference signal is not available, 
typical artefact signal characteristics, such as time-frequency or/and topographic 
(scalp topography) patterns [6], can be used to identify the artefactual 
components. A semi-automatic identification of artefact ICs is the correlation of 
ICs inverse weights (IC maps) with those of a user-defined template [5]. 

The usefulness of ICA for artefact removal has been demonstrated by a 
high number of applications. It can be noted that ECG and eye artefacts may be 
corrected by ICA.  Muscle and eye artefacts were successfully treated by using 
CCA and ICA [3, 7]. Strong gait-related movement artefacts can be removed by 
means of a combined processing strategy consisting of a template-regression 
method and ICA. These selected examples already show the broad spectrum of 
ICA applications [8]. 

3. Wavelet transform and ICA 

However, the ICA artefact removal has one drawback: those ICs that are 
identified as 'artefacts' may include EEG activity, i.e. their rejection would yield a 
loss of meaningful brain activity. 

The combination of ICA and WT was proved to overcome this problem 
[10 - 13]. The WT is applied to the ICs, (all or selected ones) in order to identify 
and reduce, by denoising, only the artefact activity of the independent 
components. In some studies, all independent components are denoised, by 
applying a fixed threshold [10, 13], reducing the high amplitude artefacts. Another 
approach is to apply the Wavelet denoising method only on those ICs which are 
identified as artefacts. Criteria like sparsity (Eq. 1) [12] and kurtosis (Eq. 2) [11] 
are used to automatically identify movement or ocular artefacts. The criteria are 
based on the statistical properties of the artefacts: EMG is characterized by high 
amplitude and short duration compared to EEG, and EOG have mainly a peaky 
distribution. 



216                                       Diana Piper, Rodica Strungaru, Herbert Witte 

[ ]
[ ]

[ ]
[ ]⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

)(

)(

)(

)(
)( log

max
)(

j
i

j
i

j
i

j
ij

smedian
sstd

sstd

s
ssparsity  ,                            (1) 

 
where ( ))()(

1
)( ,, j

N
jj sss …=  represents the jth component, i the time index and N is 

the number of samples. 
 

[ ]224 )(3)()( sEsEskurt −= ,                                                          (2) 
 
where E is the statistical expectation. A high value for kurtosis describes a highly 
peaked distribution. 

The method used in this study is called robust artefact removal (RAR) 
method and was proposed by Zima et al. in [12]. It is an automatic sequential 
procedure that removes short-duration, high-amplitude movement artefacts from 
long-term EEG recordings. The method uses ICA and Wavelet denoising, applied 
several times on EEG data segments that overlap. Only ICs identified as artefacts 
using the sparsity criteria are denoised. The artefact free EEG is obtained by 
combining the resulting tentative reconstructions. In [12] the method is tested for 
neonatal EEG recordings and the results are promising. 

4. Data 

The EEG data were recorded during pre-surgical evaluation of the patients 
at the University Hospital Vienna, Epilepsy Monitoring Unit, following a standard 
protocol that was described by Mayer et al. [14]. A group of 18 children with a 
seizure recording of 10 min (5 min before and after seizure) were selected for 
analysis. A number of 23 gold disc electrodes placed according to the extended 
10-20 International System with additional temporal electrodes was used. The 
patients suffer from mesial/lateral Temporal Lobe Epilepsy (TLE). 

5. Results 

In this section representative results (one subject) which have been 
achieved by using ICA and RAR are described.  

For the Independent Component Analysis, the FieldTrip toolbox [15] was 
used. The epileptic EEG signals were decomposed and the resulting independent 
components were visually inspected. Ocular and movement artefacts were 
identified for all subjects. The components most affected by one or both artefacts 
were rejected. From the mathematical point of view, the rank of the reconstructed 
data matrix decreases with the number of rejected components and can affect a 
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multivariate analysis of the data. Thus, a maximum of 3 components were 
selected to be rejected for each subject. An example of ocular and movement 
artefact components identified for one subject is depicted in Fig. 1. 

In this example, the 3rd component is clearly associated with ocular 
artefacts, as the topography (frontal scalp area) and the EOG-like pattern 
indicates. The 4th and 7th components are identified as movement artefact, due to 
the high amplitude and spike-like patterns. 

 

 
 

Fig. 1. Example of ICA decomposition. Components which are most probably associated with 
artefacts are 3rd, 4th and 7th. The analysis interval is 15 s 

 
Also, the associated topographic representation of the source points to a 

homogenous distribution in the case of the 4th component and to the temporal 
area for the 7th component, which is known to be more sensitive to movement 
artefacts. The reconstructed EEG signals, after rejecting these three independent 
components, are presented in Fig. 2B together with the original data in Fig. 2A. 
The rejection of the ocular artefacts is most effective for the frontal channels that 
usually pick up such activities. 

The EEG at electrode TP10 shows the highest degree of movement 
artefact contamination. In Fig. 2B the results of artefact rejection are shown. It can 
be demonstrated that the movement artefacts have been successfully removed.  
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Fig. 2. Original EEG (A), after ICA based artefact rejection (B) and after RAR approach (C).  
Time [s] on the x-axis 
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The examination of all EEG channels indicates the capabilities and the 
limits of the removal approach. An overall improvement of the data can be 
observed. However, movement artefacts are still present in all channels, but with a 
strongly reduced amplitude. In contrast, the EEG particularly at electrode O1 
shows no improvement with regard to the vehement impulse-like artefact because 
the IC associated with this artefact has not been excluded. 

The following conclusion can be drawn: artefact removal by means of ICA 
is an optimization process between the minimization of the artefact influence and 
the preservation of the natural EEG activity, i.e. the higher the number of rejected 
components, the lower the contamination, and simultaneously, the greater the 
degree of EEG activity elimination. This is more or less common to all methods 
of artefact rejection. The combination between ICA and wavelet denoising could 
be a possible methodological solution to optimize the relation between rejection 
quality and preservation degree for EEG components. This approach was also 
applied to the TLE data and its results have been compared with those of the ICA 
approach. 

The RAR method is made available as open source software [12]. RAR 
focus on the rejection of movement artefacts which are characterized by high 
amplitude and short duration. The results for the same subject are presented in 
Fig. 2C. The results demonstrate that RAR’s specialization leads to a selected 
removal of impulse-like (at electrode O1), high-amplitude artefacts, whereas all 
other contaminations (movement and ocular artefacts) are persistent. Only a slight 
overall improvement can be observed. This is an example for just one subject. 

Since every recording is different (i.e. for each subject), not all subjects are 
affected by artefacts. However, an analysis was performed for selected channels 
for different subgroups that presented similar artefacts. One channel that was 
severely contaminated with ocular artefacts in 10 (out of 18) children is FP2. The 
data after artefact rejection using both methods is presented in Fig. 3. The data 
after applying the RAR method (Fig. 3A) shows the same ocular artefact pattern 
as the original data (not shown) whereas a clear rejection of the ocular artefacts 
can be observed for the artefact free data after the ICA approach (Fig. 3B). The 
same effect can be seen in Fig. 4, where movement artefacts are present for two 
subjects (channel O1).  A decrease of the EEG amplitude is achieved after artefact 
rejection with the RAR method (Fig. 4C) as compared to the original EEG data 
(Fig. 4A), but the movement artefact is still present, in contrast to the artefact free 
data as a result of the ICA approach (Fig. 4B). An interesting effect of the RAR 
approach was observed when analysing the Fourier spectrum (Fig. 5Ca-b). The 
method acts like a low-pass filter, setting all frequencies higher than a certain 
threshold, to zero. 
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Fig. 3. EEG for 10 subjects at electrode FP2: after RAR method for artefact rejection (A) and after 

ICA approach (B). Strong ocular artefacts are still present in (A). 

 
Fig. 4. EEG for 2 subjects at electrode O1: original data (A), after ICA approach for artefact 

rejection (B) and after RAR method (C). Contamination with movement artefacts. 
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Fig. 5. Spectrum for one subject: original data (A), after ICA approach for artefact rejection (B) 

and after RAR method (C), at electrodes FP2 (a) and O1 (b). 
 

However, if the artefact rejection is a pre-processing step for connectivity 
analysis, filtering the data is not recommended, since it results in spurious and 
missed causalities [16]. For the ICA approach, the artefact free data has a broad 
spectrum (Fig. 5Ba-b) and the method has only minor influences on the 
connectivity analysis results [17]. It is obvious that for the TLE-EEG and 
similarly contaminated EEG data, the RAR approach is not appropriate. 

6. Conclusions 

This article presents the results of two advanced approaches for artefact 
removal applied to EEG data recorded from a group of TLE patients. The artefact 
rejection is an inevitable processing step for connectivity analysis which must be 
performed with big care and consequence. This paper proves that the RAR 
approach is not suitable for highly contaminated data and also, that one should 
investigate the effects of the artefact rejection on the spectrum of the data, if 
connectivity analysis is the next step. On the other hand, the ICA approach is 
more suitable for data contaminated with ocular and movement artefacts and also, 
the artefact-free data can be further used for connectivity analysis, without 
severely impairing the results. 
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