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TRIPLE-ADAPTIVE INERTIAL SUBGRADIENT EXTRAGRADIENT
ALGORITHMS FOR BILEVEL SPLIT VARIATIONAL INEQUALITY
WITH FIXED POINTS CONSTRAINT

Lu-Chuan Ceng', Tzu-Chien Yin?

In this paper, we introduce triple-adaptive inertial subgradient extragradient
rule for solving a bilevel split pseudomonotone variational inequality problem (BSPVIP)
with the common fized point problem (CFPP) constraint of finitely many nonexpansive
mappings in real Hilbert spaces, where the BSPVIP involves the fized point problem
(FPP) of a demimetric mapping. The rule exploits the strong monotonicity of one
operator at the upper-level problem and the pseudomonotonicity of another mapping at
the lower level. The strong convergence result for the proposed algorithm is established
under some suitable assumptions. Our results improve and extend some recent results.
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1. Introduction

Let 3 be a real Hilbert space with inner product (-,-) and norm ||-||. Let § # C C H
be a convex and closed set. Let A : C' — H be a mapping. Consider the classical variational
inequality problem (VIP) of finding 2* € C such that

(Az*,x —2*) >0, Vz € C.

The solution set of the VIP is denoted by VI(C, A). The VIP has been investigated exten-
sively, see [3, 16, 24, 31-34]. It is well known that one of the most popular approaches for
settling the VIP is the extragradient method invented by Korpelevich [18] in 1976, that is,
for any initial pg € C, the sequence {p,} is fabricated below

qn = Po(pn — €Apn),
Pn+1 = Po(pn — lAgy),Vn > 0.

The literature on the VIP is numerous and Korpelevich’s extragradient method has received
extensive attention given by many scholars, who ameliorated it in various aspects; see e.g.,
[4-9, 11, 12, 19, 23, 25, 27, 29] and references therein.

In 2018, Thong and Hieu [23] put forward the inertial subgradient extragradient
method, that is, for any initial p,py € H, the sequence {p,} is generated by

Wy = Pp + (P — Pn—1),

Yn = Po(w, — LAw,),

Cn = {pE H: <wn*€Awn*ynayn*p> > O}a
Pnt+1 = Po, (w, — LAy,),Vn > 1.
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Under suitable conditions, they proved the weak convergence of {p,} to an element of
VI(C, A). Very recently, Ceng et al. [8] introduced the following modified inertial sub-
gradient extragradient method for solving the VIP with pseudomonotone and Lipschitz
continuous mapping A : H — H and the common fixed point problem (CFPP) of finitely
many nonexpansive self-mappings {9;}¥; on H.

Algorithm 1.1 ([8]). Let Ay >0, a >0, p € (0,1) and x1,x9 € H be arbitrary. Calculate
ZTpt1 as follows: Step 1. Given the iterates x, and x,—1 (n > 1), choose ay, such that
0 < a, <ay,, where

~ min{a, e boif @, # o,
Qg = Tn—Tn—1
«, otherwise.
Step 2. Compute w, = Spxy + an(Spey, — Spxn_1) and y, = Po(w, — A\, Aw,,). Step 3.
Construct the half-space Cp, == {y € H : (wp, — \yAw, — Yn,yn — y) > 0}, and compute
zn = Po, (W, — Ay Ayyn). Step 4. Calculate xp 1 = Bnf(@n) + Ynn + (1 —vn)I — BrpF)zn,
and update
ay = il A i (Awn — Ay, 20— ga) > 0,
m An, Otherwise.

Setn:=n+ 1 and return to Step 1.

Suppose that H; and Hy are two real Hilbert spaces. Let C and @ be nonempty,
closed and convex subsets of H; and Hs, respectively. Let T : H; — Hy denote a bounded
linear operator and A, F' : H; — H; and B : Hy — Hs be nonlinear mappings. Recall that
the bilevel split variational inequality problem (BSVIP) ([2]) is specified below:

Seek z* € {2 such that (Fz* 2z —2*) >0, Vz € {2, (1)

where 2 := {2z € VI(C,A) : Tz € VI(Q, B)} is the solution set of the split variational
inequality problem (SVIP), which was introduced by Censor et al. [10] and formulated as:

Find z* € C such that (Az*,z —2*) > 0, Vax € C, (2)
and
y* =Tz" € Q such that (By*,y —y*) >0, Yy € Q. (3)

Censor et al. proposed and analyzed the following iterative method for approximating the
solution of (2)-(3), i.e., for any initial x; € Ky, the sequence {x,,} is generated by

Tpy1 = Po(l — M) (zn +7T*(Po(I — AB) — I)Tzy,), Yn>1, (4)

where A and B are inverse-strongly monotone. Consequently, the split problems have been
studied extensively, see [13, 14, 20-22, 28, 30]. We note that the VIP can be expressed
as the FPP: Sz = Py(z — uBz), p > 0, with VI(Q, B) = Fix(S), where Fix(S) denotes
the fixed point set of the operator S. Consequently, we can reformulate the BSVIP in (1)
below: Let A : H; — H; be quasimonotone and L-Lipschitz continuous, F' : H; — H; be
k-Lipschitzian and n-strongly monotone, T : H; — Hy be non-zero bounded linear operator,
and S : Hy — Hs be 7-demimetric mapping with 7 € (—oo, 1). Then,

Seek z* € 2 such that (Fz*,z—2") >0, Vze , (5)

where 2 := {z € VI(C,A) : Tz € Fix(S)}. In this case, such a problem is referred to
as a bilevel split quasimonotone variational inequality problem (BSQVIP). Very recently,
Abuchu et al. [1] proposed a modified relaxed inertial subgradient extragradient iterative
algorithm for solving the BSQVIP (5). Under suitable assumptions, it was proven in [18] that
the sequence generated by the proposed algorithm converges strongly to a unique solution
of the BSQVIP (5). Inspired by the previous research works, we introduce and study a
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bilevel split pseudomonotone variational inequality problem (BSPVIP) with the common
fixed point problem (CFPP) constraint:

Seek z* € 5 such that ((pF — f)z*,p—2") >0, Vpe Z, (6)

where f : H; — H; is a contraction, A : H; — H; is pseudomonotone and L-Lipschitz
continuous and {Si}zN:l is finitely many nonexpansive self-mappings on H; such that = :=
N, Fix(S;) N 2 # 0.

In this paper, we propose triple-adaptive inertial subgradient extragradient algorithm
for settling the above BSPVIP with the CFPP constraint in real Hilbert spaces, where
the BSPVIP involves the FPP of demimetric mapping S. The rule exploits the strong
monotonicity of the operator F' at the upper-level problem and the pseudomonotonicity of
the mapping A at the lower level. The strong convergence result for the proposed algorithm
is established under mild assumptions. Our results improve and extend the corresponding
ones in [1, 8.

2. Preliminaries

Let C' be a nonempty closed convex subset of a real Hilbert space H. A mapping
S : C — H is said to be nonexpansive if ||[Sx — Sy|| < || —yl|, Vz,y € C. Given a sequence
{zn} C H, we denote by x,, — z (resp., x, — x) the strong (resp., weak) convergence of
{z,} to x. For each & € H, there exists a unique nearest point in C, denoted by Pcx, such
that |l — Poal| < |l — yll, Vy € C.

Lemma 2.1 ([15]). The following hold:
(1) <£C*y7PC;L'7PCy> > ||PC‘T7PCyH27 vxayeg{;
i) z=Pex & (x—2,y—2) <0, Ve e H,y € C;

(if)
(i) ||z —yl?* > |lo — Pex|® + |ly — Pex||*, Yz € H,y € C;
iv)
(v)

(i) [l = oll* = 12 = [yl ~ 2(x ~ y.0), Yoy € 2
v) llsz + (1= s)yll2 = sl + (1 = 8)[lyl> = s(1 = )]« — ylI?, Va,y € 3, s € [0, 1].

Recall also that S : C — X is called ([17])
) L-Lipschitz continuous or L-Lipschitzian if 3L > 0s.t. ||[Sz—Sy|| < L|jz—y||, Vz,y € C;
) a-strongly monotone if 3o > 0 such that (Sz — Sy,z —y) > oz — y||?, Yo,y € C;
) monotone if (Sz — Sy,z —y) >0, Va,y € C;
v) pseudomonotone if (Sz,y —x) > 0= (Sy,y —z) > 0, Vz,y € C;
)
)

i
(v) quasimonotone if (Sz,y —x) > 0= (Sy,y —x) >0, Va,y € C;
(vi) 7-demicontractive if 37 € (0,1) s.t. ||Sx — p||?> < ||x — p||*> + 7||x — Sz||?, V2 € C, p €
Fix(S) # 0;
(vil) 7-demimetric if 37 € (—o0,1) s.t. (z — Sz 2 —p) > L5T||x — Sz||?, Va2 € C, p €
Fix(S) # 0;

(viil) sequentially weakly continuous if V{z,,} C C, the relation holds: z,, — x = Sz,, — Sx.

Lemma 2.2 ([26]). Let A € (0,1], S : C — H be a nonexpansive mapping, and the mapping
S* . C — H be defined by S*x := Sx — A\pF(Sz), Vx € C, where F : H — K is k-
Lipschitzian and n-strongly monotone. Then S is a contraction provided 0 < p < i—g, i.e.,
8%z — S*y[| < (1= Az —yll, Va,y € C, where { =1— /1~ p(2n — pr?) € (0,1].

Lemma 2.3. Assume that A : C — H is pseudomonotone and continuous. Then u € C' is
a solution to the VIP (Au,v —u) >0, Yv € C, if and only if (Av,v —u) >0, Vv € C.

Lemma 2.4 ([26]). Let {a,} be a sequence of nonnegative numbers satisfying the conditions:
ant1 < (1= Ap)an + Apyn Y > 1, where {\,} and {v,} are sequences of real numbers such
that (i) {\n} C [0,1] and 3.7 | A, = 00, and (i) limsup,, .o v <0 or > oo | [Apyn| < 00.
Then lim,,_,oo an, = 0.
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Lemma 2.5 ([15]). Let S : C — C be a nonezpansive mapping with Fix(S) # 0. Then
I — S is demiclosed at zero, that is, if {x,} is a sequence in C such that , — x € C and
(I —S)x, =0, then (I — S)x =0, where I is the identity mapping of H.

Lemma 2.6 ([19]). Let {T';,} be a sequence of real numbers that does not decrease at
infinity in the sense that, Ty, } C {Tim} s.t. Ty < D1, Vk > 1. Let the sequence
{p(m)}m>m, of integers be formulated ¢(m) = max{k < m : Ty < T'ypi1}, with integer
mo > 1 satisfying {k < mg : Ty < Tgy1} # 0. Then the following hold:

(i) ¢(mo) < ¢(mo +1) < -+ and $(m) — oo;

(11) F¢(m) < r¢(7n)+1 and T'y, < F¢(m)+1a Ym > mg.

3. Convergence criteria

Suppose that H; and Hs both are real Hilbert spaces and the feasible set C' is
nonempty, closed and convex in JH;. For the convergence analysis of our proposed algo-
rithm for treating the BSPVIP (1.6) with the CFPP constraint, we assume always that the
following hold:

o T :H; — Hs is a non-zero bounded linear operator with the adjoint 7%, and S : Ho —
Hy is a T-demimetric mapping such that 7—.5 is demiclosed at zero, where 7 € (—o0, 1);
e A:JH; — H; is pseudomonotone and L-Lipschitz continuous mapping satisfying the
condition: ||Au| < liminf, _, ||Au,|| for each {u,} C C with u, — v;
e {S;}X, is finitely many nonexpansive self-mappings on 3(; such that = := ﬁV:l Fix(S;)N
2 #0, with 2 :={z e VI(C,A) : Tz € Fix(5)};
e f: 3y — H; is a contraction with constant § € [0,1), and F : Hy — H; is n-strongly
monotone and k-Lipschitzian such that § < {:=1— /1 — p(2n — pr?) for p € (0, %),
e {Bn}, {7}, {en} are positive sequences such that 8, +v, < 1, Zf;l Bn = 00, lim,_yo0 Br =
0, 0 < liminf, o vn <limsup, _, . v <1 and &, = o(fy).
In addition, we write S, := Spmoan for integer n > 1 with the mod function taking values
in the set {1,2, ..., N}, that is, whenever n = jN + ¢ for some integers j > 0 and 0 < g < N,
one has that S, = Sy if g=0and 5, =5,if 0 < g < N.

Algorithm 3.1. Let Ay >0, € >0, 0 >0, p € (0,1), o € [0,1] and xp,z1 € F; be
arbitrary. Calculate x,11 as follows: Step 1. Given the iterates x,—1 and z, (n > 1),
choose «ay, such that 0 < o, < &,,, where

. c .

o - min{c, [ Yoif xp # o,

n — .
«, otherwise.

(7)

Step 2. Compute wy, = Spxy + @ (Spn — Snn-1) and y, = Po(w, — Ay Aw,,).

Step 8. Construct the half-space Cy, := {y € Hy : (wy, — A\ AWy, — Yn, Yn — y) > 0},
and compute v, = Pe, (W, — A\pAyn) and z, = vy, — 0, T*(I — S)Tv,,.

Step 4. Calculate xp11 = Bnf(n) + Ynxn + (1 — ) — BnpF)z,, update

3 ”wn_yn‘lz"l‘l‘vn_ynl‘z :

Ner = min{p DTV YT T JAnt, if (Awy, — Ayp, vn — yn) > 0,
An, otherwise,

and for any fived € > 0, oy, is chosen to be the bounded sequence satisfying

(1 —7)||Tv, — ST, |2 .
| T*(Tv,, — STvy,)|? ’

0<e<o, < if Tv, # STy, (9)

otherwise set o, = o > 0.
Set n:=n+ 1 and return to Step 1.
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Remark 3.1. It is easy to see that, from (7) we get limy, o0 G ||Tn — Tn-1]| = 0. Indeed,
we have ayl||T, — p—1|| < €n, Yn > 1, which together with lim,, g—" = 0 implies that
Fllen — anal < 5= —= 0 as n — oo.

Lemma 3.1. Let {\,} be generated by (8). Then {\,} is a nonincreasing sequence with
Ap > Ai=min{A, £} Vn > 1, and lim, 0 Ap > A :=min{A;, £}

Proof. First, from (8) it is clear that A\, > A\, 41 Vn > 1. Also, observe that

1 2 2
Slwn = gl + Nom = 9al1?) > o = galllon =gl \ oo s
(Auwn — Ayn, v — yn) < Llwn — yallllon — vl wer 2 min{An, )

|

Lemma 3.2. Let {x,} be the sequence generated by Algorithm 3.1. Then, the stepsize o,
formulated in (9) is well-defined.

Proof. 1t suffices to show that | T*(Tv,, — STv,)||? # 0. Take a p € = arbitrarily. Since S
is T-demimetric mapping, we obtain

[on = pIIT*(Ton = STvn)|| = (vn — p, T (T — STvn))

= (Tw Tp, Tv, — STvy) (10)
> 1o — STv,|?.

If Tv, # STvy,, then ||Tv, — STv,||? > 0. Thus, |T*(Tv,, — STv,)||* > 0. O

Lemma 3.3. Let {w,},{yn}, {vn} be the sequences generated by Algorithm 3.1. Then

o = 21 < = I = (1= ) = il = (1= ) o = P, Vi € 2.
Proof. First, by the definition of {\,} we claim that
2(Aun = Ay, vn = ) < 3l =gl + 3o vl Vaz 1)

Indeed, if (Aw,, — Ayn, vy, —yn) < 0, then inequality (11) holds. Otherwise, from (8) we get
(11). Also, observe that for each p e = C C C Cy,

[on = plI* = [[Pe, (wn — AnAyn) — Po,pl” < (vn — p,wn — A Ayn — p)
1 1 1
= Sllon = pl? + Gllwn = pl> = 3 llvn = wall® = (on — p AnAga),
which hence yields

[|vn, _pH2 < [Jwn _pH2 — |lvn — wnH2 = 2(vn — P, AnAyn)- (12)

From p € VI(C, A), we get (Ap,z —p) > 0 Va € C. By the pseudomonotonicity of A on C
we have (Az,z —p) > 0V € C. Putting z :=y,, € C we get (Ay,,p — yn) < 0. Thus,

<Ayn1p - Un> = <Ayn7p - yn> + <Ayn7yn - Un> S <Ayn7yn - ’Un>. (13)
Substituting (13) for (12), we obtain
||'Un - P||2 < ||wn —PH2 - an - yn||2 - ||yn - wn||2 + 2<wn - )‘nAyn — Yn,Un — yn> (14)
Since v, = Pe, (wn — ApAyy, ), we have that v, € C), and hence

<2 (Awy — Ay, vy — Y ),
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which together with (11), implies that

T >\’I'L
2<wn - AnAyn — Yn,Un — yn> S 14 ||wn - yn||2 + w ”Un - yn||2 (15)
>\n+1 )\n+1
Therefore, substituting (15) for (14), we obtain the desired result. ]

Lemma 3.4. Let {z,,} be the sequence generated by Algorithm 8.1. Then, {xz,} is bounded.

Proof. First of all, we show that P=(f + I — pF) is a contraction. Indeed, for any z,y € Hy,
by Lemma 2.2, we have

1P=(f +1—=pF)x = P=(f+1—pF)y| <|[|f(z) = f)l + (I = pF)z = (I = pF)y]|
<élle —yll+ A =QOllz —yll =1 = (€= 0)]llz —yll,
which implies that P=(f + I — pF) is a contraction. Hence, P=(f + I — pF') has a unique
fixed point. Say z* € Hj, that is, 2* = P=(f + I — pF)z*. Thus, there exists the unique
solution z* € 5 = ﬂfil Fix(S;) N 2 to the VIP
((pF — f)z",p—2") >0, VYpeE. (16)

This also means that there exists the unique solution z* € = to the BSPVIP (6) with the
CFPP constraint.
Now, by the definition of w,, in Algorithm 3.1, we have

«
lwn — 2% = |Sn@n + an(SnTn — Spwn-1) — 2| < ||lz0 — 27| + Bn - l”zn — Zp—1]|-

B

From Remark 3.1, we know that limp o0 3 [|2n — @n—1]| = 0. This means that {3z, —
Zn—1]|} is bounded. Thus, IM; > 0 s.t. %Hxn — Zp_1| < My, Vn > 1. Hence,

lwn — 2% < ||l&n — 27| + BM1, Vn > 1. (17)
From Step 3 of Algorithm 3.1, using the definition of z,, we get
ln = 21 = llva — 2[|* = 200 (T (vn — 2%), (I = 8)Twn) + o3 | T*(I = §)Twn . (18)
Since the operator S is 7-demimetric, from (18) we get

l2n = 2% < llvn = 2|* = o0 (1 = DI = S)Tva|* + og|T(I = S)Twnl|?

(19)
= llon = 271> + oulonl|T*(1 = S)Tva|* = (1 = ) (I = 8)Tva?).
But from the stepsize o, in (9), we get
P (1 —7)|Tv, — STv,|?
T = 8Tl
if and only if
T (0l T*(I = 8)Tvp||* = (1 = 7)|Tvn — STv,[*) < —0nel| T (I — ) Tv, || (20)
Using 0 < € < 0, in (9), we have that —e? > —o,,¢ and hance
—onel|T*(I = S)Tv,||> < —€2(|T*(I — S)Tv, ||>. (21)
Combining (19),(20) and (21), we obtain
o = 212 < llom — 2° 2 = EIT* (L = $)Tonll? < flon — 2" (22)
In addition, by Lemma 3.1, we have lim, oo Ay > X := min{A;, £}, which hence leads

An
Ant1

to lim, eo(l — p ) = 1—p > 0. Without loss of generality, we may assume that
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1-— u)\iil > 0 Vn > 1. Thus, by Lemma 3.3, we get
o = 212 < lm = 212 = (1 = 12 o = gll? = (1 = 2 0 = 2
An+1 )\n+1 (23)
< wp — 2%
Combining (17),(22) and (23), we obtain
[2n = 2%[| < lon = 2"|| < lwn — 27| < Ml — 2"[| + B M1, Yn 2> 1 (24)
Since Bp+7, < 1, Yn > 1, we get 1/_37}% < 1V¥n > 1. So, from Lemma 2.2 and (24) it follows
that
|zt — 2% = 1Bnf(2n) + Yn2n + (1= vn)I = BupF)zn — 27|
< Ballf(@n) — 2% + vallzn — 2%
1 — Tn Bn
+1_ﬂn_’7n - an_z*
( )||(1_/6n_7n I_Bn_’an ) ||
< Ba(llf(zn) = FEO +1£(Z") = 27(]) + llzn — 27
< Bn(dlln — 25| + 1 £(27) = 2"[) + Wallzn — 27|
+ (1= = BuQ)([[zn — 27| + BaM1) + Ba/(I — pF)2"||
M * _ * I_ F *
< max(, oo, MUEISC) =+ T = o))
(-6
By induction, we obtain ||z, — z*|| < max{||x1 — 2*||, MlHlf(z*)_ZTL;FH(I_pF)z*” b, Vn > 1.
Thus, {z,} is bounded, and so are the sequences {v,}, {yn}, {zn}, {Fzn}, {Snxn}. O

Lemma 3.5. Let {v,},{wn}, {xn}, {yn}, {20} be the sequences generated by Algorithm 3.1.
Suppose that x, — Tpy1 — 0, wy —xy — 0, wy — Yy, — 0 and v, — 2z, — 0. Then
ww({zn}) C E, with wy({zn}) = {2z € Hy : xp,, — 2 for some {z,, } C {z,}}.

Proof. Take an arbitrary fixed z € wy({zn}). Then, Iz, } C {zn} st. z,, — 2 € Hy.
Thanks to wy, —z, — 0, we know that H{w,, } C {w,} s.t. w,, — z € H;. In what follows,
we claim that z € 5. In fact, from Algorithm 3.1, we get w,, — x,, = Sp&y, — Ty, + @ (Spy —
SnTn—1), Vn > 1, and hence

||Snmn - xn” < ||wn - an + O‘nHSnxn - Snwnflll

an,
Bn

Using Remark 3.1 and the assumption w,, — z,, — 0, we have

nh_}rrgo |l zn, — Snxn| = 0. (25)

< ||wn_xn|‘+ﬁn ”zn_zn—l”-

Also, from y,, = Po(w, — A\pAw,), we have (w, — \pAw, — yn,yn —y) > 0, Yy € C, and
hence

%@Un = Yns Y = Yn) + (AWn, Y — wy) < (Awp,y —wy), Yy e C. (26)
According to the Lipschitz continuity of A, { Aw,, } is bounded. Note that A\, > min{Ay, #}.
So, from (26) we get liminfy_, oo (Awy, ,y — wy,) > 0, Yy € C. Meantime, observe that
(AYn, Yy — yn) = (Ayn — Awn, Yy — wy) + (Awn, Y — wn) + (AYn, Wy — yn). Since wy, —yn — 0,
from L-Lipschitz continuity of A we obtain Aw,, — Ay,, — 0, which together with (26) arrives
at Uminfy oo (AYn,, ¥ — Yn,) > 0, Yy € C. Next we show that lim,_, ||z, — Siz,|| = 0 for
l=1,...,N. Indeed, note that for i =1, ..., NV,

20 — Sntitnll <|2n = Zngill + |Zngs — SntiTnpill + 1SntiTnri — Snyitnl|

< 2||510n - $n+z‘|\ + ||33n+z‘ - Sn+i9€n+i||-
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Hence from (25) and the assumption z,, — z,+1 — 0 we get lim,,_, o ||y, — Sn4iZyn|| = 0 for
t=1,..., N. This immediately implies that
lim ||z, — Sizn]| =0, forli=1,..,N. (27)
n—oo

We now take a sequence {¢;} C (0,1) satisfying ¢; | 0 as k& — oo. For all k¥ > 1, we denote
by mj the smallest positive integer such that

Since {¢} is decreasing, it is clear that {my} is increasing.

Again from the assumption on A, we know that liminf,_, o ||Ayn, || > [|Az|. If
Az = 0, then z is a solution, i.e., z € VI(C, A). Let Az # 0. Then we have 0 < ||Az|| <
lminfy oo ||Ayn, ||. Without loss of generality, we may assume that Ay, # 0, Vk > 1.

Noticing that {ym,} C {yn,} and Ay,, # 0 Vk > 1, we set u,, = H:?j!#-l\“ we get

-
(AYmy, s Um,,) = 1, Yk > 1. So, from (28) we get (AYm, , Y+ SklUm,, — Ym,,) > 0, Vk > 1. Again
from the pseudomonotonicity of A we have (A(Y + Sktm,,)s Y + SkUmy, — Ym,) > 0, Vk > 1.
This immediately yields

(AY, Y — Ymy) > (Ay — A(Y + Skmy,), Y + SkUmy, — Umy) — Sk(AY, Umy ), VE>1.  (29)

We claim that limg_yco Sktm, = 0. Indeed, from z,, — z and z, — y, — 0 (due to
Wy, — Ty, — 0 and wy, — y, — 0), we obtain y,, — 2. So, {y,} C C guarantees z € C. Note
that {ym,} C {yn,} and ¢x | 0 as k — oco. So it follows that 0 < limsupy,_,o |SkUm, | =

. Sk lim sup, _, . Sk _
Hm supy 00 Ty < Tmmte . g — 0 Hence we get getim, — 0.

Next we show that z € 5. Indeed, using (27) we have x,,, —Sjx,, — 0forl =1,...,N.
Note that Lemma 2.5 guarantees the demiclosedness of I — S; at zero for [ = 1, ..., N. Thus,
from x,, — z, we get z € Fix(S;). Since [ is an arbitrary element in the finite set {1, ..., N},
it follows that z € NY , Fix(S;). Also, letting k — oo, we deduce that the right-hand side of
(29) tends to zero by the uniform continuity of A, the boundedness of {wy,, }, {tm, } and the
limit limg s oo SptUm, = 0. Thus, we get (Ay,y — z) = liminfr 00 (AY, ¥ — Ym,.) >0, Vy € C.
By Lemma 2.3 we have z € VI(C, A). Furthermore, we claim Tz € Fix(S). In fact, noticing
Zn = Uy — 0, T*(I — S)Tv,, from 0 < € < g, and v, — 2z, — 0, we get

e|T*(I — S)T,|| < on||T*(I — S)Tvn|| = ||vn — 2a| = 0,
which together with the 7-demimetricness of S, leads to
1—7

2

I(1 = 8)Tw,||* < {(I = S)Tvn, T(vy, — 2%))
<|T*(I = S)Ton|||lven = 2" = 0 (n — o0).
Noticing @n1+1 = Bnf(Tn) + YnZn + (1 — o)1 — BupF)z,, we have
(L =v)llzn = @all = 2041 — 20 = Bu(f () — pFzn)||
< [ens1 = @all + Bulllf (@n)ll + lpF 2 ).

Since 0 < liminf, oo (1 —Yn), Zn — Tpt1 — 0 and B, — 0, from the boundedness of {z,}
and {z,}, we get lim,_, ||2n — @ | = 0, which hence yields

(30)

[vn = Zoll < llvn — 2ull + (|20 — 20|l = 0 (n — 00).
From z,, — z, we get v,, — z. Since T is bounded linear operator, it is easy to see that
T is weakly continuous on H{;. So it follows that Tv,, — T'z. By the assumption on S, we
know that I — S is demiclosed at zero. Hence, from (30) we derive Tz € Fix(S). Therefore,
z € ﬂf\il Fix(S;) N 2 = =Z. This completes the proof. O

Theorem 3.1. Let {x,} be the sequence generated by Algorithm 3.1. Then {x,} converges
strongly to the unique solution z* € = of the BSPVIP (6) with the CFPP constraint.
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Proof. First of all, in terms of Lemma 3.4 we obtain that {x,} is bounded. From its proof
we know that there exists the unique solution z* € = of the BSPVIP (6) with the CFPP
constraint, that is, the VIP (16) has the unique solution z* € Z. In order to show the
conclusion of the theorem, we divide the rest of the proof into several steps.

Step 1. We claim that

An *
(1 - BnC — ’Yn)[(l - /U')\ . )(”wn - ynH2 + an - yn”z) =+ EQHT (I - S)TvnHz]

n+

< llwn = 2112 = llznts = 2* | + BnMa,

for some M, > 0. Indeed, observe that

Tnt1 — 2" = Bu(f(@n) = 27) + ml@n — 27) + (1 = B — m){ —_ (1 O pF)z

1- Bn —Tn a 1- Tn

— (I — pF)z*
1_7n 1_Bn_'7n( p) }

— (-

= Bu(f(wn) = f(27)) + (Tn — 2%) + (1 = 3)[({ — 1 fn pF)zn

Tn
Bn

(] —
( ]-_Wn

pF) 2] 4 Bu(f — pF)z".

Then by Lemma 2.2 and the convexity of the function h(s) = s, Vs € R, we get

lonsr =212 < 1Baf@n) = £(7)) +mlon = 27) + (1= 3)[(] - { fn% pF)zn
—(I=y ﬁn pF)2" |17 + 2B, ((f — pF)2", ni1 — 27)
Yn .

< Bubllzn — 2|7 + ynllzn — 217 + (1 = Bl = a) |2 — 2"
+ 28 ((f — pF)2", 21 — 27)
< Bz, — Z*||2 + YallTn — Z*||2 + (1 = Bl — Tn)ll2n — Z*”2 + B M,

where sup,,>1 2||(f — pF)z*||[|[xn — 2|| < My for some My > 0. Substituting (22) for (31),
by Lemma 3.3 we get

[2n41 = 2|7 < Bubllzn — 217 + nllzn — 217 + (1 = Bl = ) [lvn — 2*||
— | T*(I — )T, |?] + B Mo
< BubllTn — 2% [ + Anllwn — 252 + (1 = Bul — ya)l|wn — 2| + Bu Mz (32)

An "
— (=) (lwn = Yall® + llvn = yall®) = €1 T*(1 = S)Twn|?].

n+

Also, from (24) we have

Jwn = 2°[1* < (|n — 2*|| + Bud)?
= [lan — 2*I1° + Bn (@M1 ||y — 2% + BuMT) (33)
< lwn — z*||2 + B Ms,
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where sup, > (2M; ||z, — 2*|| + B M7) < Ms for some Mz > 0. Combining (32) and (33),
we obtain

l2ns1 = 251" < Budllzn — 2* |7 + ynllan — 27|17 + (1 = BuC = y)lllwn — 271 + B Ms]

An
= (1= BuC =)l —py +1)(Hwn = nll® + on = ull?)

+ T (1 = S)Tvn|*] + Bn M2

* )\n
<l = 27112 = (1= Bul = ) [(1 = p5; +1)(Hwn ~ Yal® + llvn = ynll?)

+ T (I = 8)Twnl|*) + B Ma,
where My := Ms + M3. This immediately implies that

An *
(1= BnC = 7)1 = W )([wn = yall* + lvn = yal*) + | T*(I = §)Tv, %]

(34)
< vy — Z*”2 —|zny1 — Z*||2 + BnMy.
Step 2. We claim that
[Zng1 = 2*)1% < 1= B¢ = O)llzn — 2%
2 . N 3M  «a,
+ Bn(C — 5)[m<(f —pF)z" wny1 — 27) + =5 B, zn — @n-1]
for some M > 0. Indeed, we have
lwn = 2*[* < Il — 2*[| + anllzn — zp—1]]? (35)
<@y — Z*H2 +anl|zn — 21|20 — 27| + anllzn — zn-1]l]-
Combining (24), (31) and (35), we have
2041 = 2% < Bubllzn — 271 + ynllzn — 2717 + (1 = Bl = ) 120 — 2*||
+ 265 ((f = pF)2", &ny1 — 27)
< Bndl|zn — Z*||2 + YnllTn — Z*||2 + (1 = BnC — V) llwn — Z*||2
+ 25n<(f - pF)z*,xn+1 - Z*> (36)
. 2(f — pF)z", xpy1 — 2°
< L= Bl = ONlfn = |+ B (¢ — ) - (ALt =21
+ 2 ]
C—(s Bn n n—11]»

where sup,,~1{||zn — 2*||; @nl|Tn — Tn_1||} < M for some M > 0.

Step 3. We claim that {zn} converges strongly to the unique solution z* € £ to the
VIP (16). Indeed, putting T',, = ||z, — 2*||?, we show the convergence of {I',,} to zero by
the following two cases.

Case 1. Suppose that there exists an integer ng > 1 such that {I',,} is nonincreasing.
Then the limit lim, o I'y = d < +00 and lim,, (I, — I'y41) = 0. From (34) we obtain

An *
(1 - BnC — ’Yn)[(l - /U')\ o )(”wn - ynH2 + an - yn||2) =+ EQHT (I - S)TvnHz]

< ||$n - Z*||2 - ||xn+1 - Z*||2 + ﬂnMAL = Fn - 11n+1 + 5nM4

An

Since limy, o0 (1 — i "

)=1—p>0, liminf,, ,oo(1—7,) >0, 8, > 0and I, - T',,11 — 0,
one has

Jim [jwp, = ynll = Tim [jo, —yn|| = lim [ T*(I = 5)To, || = 0. (37)
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Noticing z,, = v, — 0, T*(I — S)Tv,, and the boundedness of {7}, from (37) we get
lvn — znll = on||T*(I — S)Tv,]| = 0 (n — 00). (38)
and hence
[wn = znll < lwn = Yull + 1yn — vall + [lvn — 20] = 0 (0 — 00). (39)
Moreover, noticing zn11 — 2% = Y (@n — 2°) + (1 = W) (20 — 2%) + Bu(f(20n) — pFzn), we
obtain from (24) that
[Znt1 — 2517 < Anlln — 2711 + (1= y)llzn — 2° 17 = 1 (1 = ) 120 — 2all?
+2[|Bn(f(zn) — pFzp)|| |41 — 27|
< Ynlln — z*||2 + (1= v)llzn — Z*HZ — V(1 =) |20 — Zn||2
+ 2Bn ([ f (@)l + pFznl) |2nt1 — 27|
< lan — 25|12 + B M1[2)|2n — 2| + B Mi]
= (1 = y)llen = 2ull® + 280 (I1f @)l + |lpF znlD |21 — 2%,
which immediately arrives at
(1 =)0 = zal® < [l2n — 2*)° = 201 — 2%
+ BpMi[2[|zn — 27| + BoMa] + 2Bn ([ f(zn) || + lpFznl) | 2n+1 — 27|
STy —Tony1 + B Mi[2D53 + B M) + 28, (|| f(@n)]| + [[0F 20l )Ty

Since 0 < liminf,, oo vn < limsup,,_ oo Yo <1, Bn — 0, I'), = T'yp1 — 0 and limy, 0o Ty, =
d < 400, from the boundedness of {z,}, {2}, we infer that

lim |z, — z,|| = 0.
n—oo

So it follows from (39) that
[wn = &nll < llwn = zoll + |20 = 2l = 0 (0 — o0). (40)
Also, from Algorithm 3.1 we obtain that
|Zn+1 — 2ol = [|Bnf(@n) + (1 = vn) (20 — 2n) — BapFzn ||
< (L =9)llzn — @all + Bull f(@n) — pF 2| (41)
<lzn = @nll 4+ Bullf (@)l + lpF2nl]) = 0 (0 — o0).
In addition, from the boundedness of {z,} it follows that there exists a subsequence {z, }

of {x,,} such that
limsup{(f — pF)z*,x, — 2*) = klim ((f = pF)z", xn, —2%). (42)
—00

n—oo

Since H; is reflexive and {z,} is bounded, we may assume, without loss of generality, that

Zn, — Zz. Thus, from (42) one gets

liyrfl—ilip«f —pF)z* x, — 2%) = kl;&((f —pF)z" xp, — 27y ={(f — pF)z",Z2 — 2%). (43)

Since =, — py1 — 0, wy, — 2, — 0, wy, — Yy, — 0 and v, — 2, — 0, by Lemma 3.5 we
deduce that z € w,, ({zn}) C E. Hence from (16) and (43) one gets
limsup((f — pF)=", @ — %) = {(f — pF)=", % — 2*) 0, (44)

n—oo

which together with (41), leads to

limsup((f — pF)z", zp+1 — 27)

< limsup[|(f — pF)z" [lenss — 2ull + ((f — pE)" 2 — 2] < 0. (45)

n—0o0
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Note that {3,(¢ — &)} € [0,1], >0 Bn(¢ — &) = o0, and

) 2((f — pF)z* xpe1 — 2%y 3M  ay
lim su + c— |z — z—1]]] <0.
msup( 21 =201 e P
Consequently, applying Lemma 2.4 to (36), one has lim,, o ||z, — z*[|> = 0.
Case 2. Suppose that T, } € {T'n} s.t. Ty, < g1, Yk € N, where N is the set
of all positive integers. Define the mapping ¢ : N — N by ¢(n) := max{k <n: T\ < Tyy1}.
By Lemma 2.6, we get T'y,) < Tg)41 and Ty < Tyy41. From (34) we have

Ao(n
(1 = Bom)§ — Vo)1 — Ow ()il Y(lwsmy = Yo I* + 1vgem) = Yo 1)
x 46
+ T (I = 8)Togu ] (46)
<lwgmy = 2112 = Nlzgmy+1 = 2° 17 + BomyMa = To(ny = Tomy+1 + BomyMa,
which immediately yields
Jim [wgn) = Yol = T (ogm) = yo | = lm [[T7(1 = S)Tvem)|| = 0.
Using the same inferences as in the proof of Case 1, we deduce that
Jim {Jogn) = Zp(mll = I [[wgm) = gl = Mm[|lzgm) 41 = Zom)ll = 0,
and
limsup((f — pF)z", Ty(n)+1 — 2") < 0. (47)
n—oo

On the other hand, from (36) we obtain
2<(f - PF)Z*,%;(n)H - Z*>

Bom) (€ = 0)Tsn) < Ty — Lomy1 + Bon) (¢ — 9)]

(-6
3M a¢(n)
— NTpn) = Tpn)—
C=5 Bowm 12 (n) — Tp(n)—1ll]
2((f = pF)2" 2ymy41 — 27) | BM ag(n)
< — . . _
= B¢(")(C 5)[ (-6 + (=6 B¢(n) Hxﬁf’(n) $¢(n)—1“]a

which hence arrives at

U(f — pF)z*, Tymyss — 2* M n
lim supTy(,) < limsup| (f = PF)2" Zom41 = 27) + M Qg

Tp(n) — Tp(n)— SO
oo n—roo ¢—9¢ (=0 Bowm) 126m) = Zo(m) -1}

Thus, limy, o ||y — 2*[|* = 0. Owing to T'y, < Ty(ny41, we get

[2n — 217 < llzpm) — 2°I1% + 2zpm)+1 — Tom) o) — 2° 1| + |1Zpm)+1 — Tom)I* — 0.

That is, x,, — z* as n — oo. This completes the proof. O

4. Concluding remarks

In this paper, we study a bilevel split pseudomonotone variational inequality problem
(BSPVIP) with the common fixed point problem (CFPP) constraint of finitely many nonex-
pansive mappings in real Hilbert spaces. We introduce a triple-adaptive inertial subgradient
extragradient algorithm [Algorithm 3.1] for solving BSPVIP with the CFPP constraint (6),
where the BSPVIP involves the FPP of demimetric mapping S. The algorithm exploits the
strong monotonicity of the operator F' at the upper-level problem and the pseudomonotonic-
ity of the mapping A at the lower level. We prove the strong convergence theorem [Theorem
3.1] under mild assumptions. Our results improve and extend the corresponding ones in
[1, 8].
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