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TRIPLE-ADAPTIVE INERTIAL SUBGRADIENT EXTRAGRADIENT

ALGORITHMS FOR BILEVEL SPLIT VARIATIONAL INEQUALITY

WITH FIXED POINTS CONSTRAINT

Lu-Chuan Ceng1, Tzu-Chien Yin2

In this paper, we introduce triple-adaptive inertial subgradient extragradient
rule for solving a bilevel split pseudomonotone variational inequality problem (BSPVIP)

with the common fixed point problem (CFPP) constraint of finitely many nonexpansive

mappings in real Hilbert spaces, where the BSPVIP involves the fixed point problem
(FPP) of a demimetric mapping. The rule exploits the strong monotonicity of one

operator at the upper-level problem and the pseudomonotonicity of another mapping at

the lower level. The strong convergence result for the proposed algorithm is established
under some suitable assumptions. Our results improve and extend some recent results.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let ∅ 6= C ⊂ H

be a convex and closed set. Let A : C → H be a mapping. Consider the classical variational
inequality problem (VIP) of finding x∗ ∈ C such that

〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C.
The solution set of the VIP is denoted by VI(C,A). The VIP has been investigated exten-
sively, see [3, 16, 24, 31–34]. It is well known that one of the most popular approaches for
settling the VIP is the extragradient method invented by Korpelevich [18] in 1976, that is,
for any initial p0 ∈ C, the sequence {pn} is fabricated below{

qn = PC(pn − `Apn),

pn+1 = PC(pn − `Aqn),∀n ≥ 0.

The literature on the VIP is numerous and Korpelevich’s extragradient method has received
extensive attention given by many scholars, who ameliorated it in various aspects; see e.g.,
[4–9, 11, 12, 19, 23, 25, 27, 29] and references therein.

In 2018, Thong and Hieu [23] put forward the inertial subgradient extragradient
method, that is, for any initial p1, p0 ∈ H, the sequence {pn} is generated by

wn = pn + αn(pn − pn−1),

yn = PC(wn − `Awn),

Cn = {p ∈ H : 〈wn − `Awn − yn, yn − p〉 ≥ 0},
pn+1 = PCn

(wn − `Ayn),∀n ≥ 1.
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Under suitable conditions, they proved the weak convergence of {pn} to an element of
VI(C,A). Very recently, Ceng et al. [8] introduced the following modified inertial sub-
gradient extragradient method for solving the VIP with pseudomonotone and Lipschitz
continuous mapping A : H → H and the common fixed point problem (CFPP) of finitely
many nonexpansive self-mappings {Si}Ni=1 on H.

Algorithm 1.1 ([8]). Let λ1 > 0, α > 0, µ ∈ (0, 1) and x1, x0 ∈ H be arbitrary. Calculate
xn+1 as follows: Step 1. Given the iterates xn and xn−1 (n ≥ 1), choose αn such that
0 ≤ αn ≤ ᾱn, where

ᾱn =

{
min{α, εn

‖xn−xn−1‖}, if xn 6= xn−1,

α, otherwise.

Step 2. Compute wn = Snxn + αn(Snxn − Snxn−1) and yn = PC(wn − λnAwn). Step 3.
Construct the half-space Cn := {y ∈ H : 〈wn − λnAwn − yn, yn − y〉 ≥ 0}, and compute
zn = PCn

(wn−λnAyn). Step 4. Calculate xn+1 = βnf(xn) + γnxn + ((1− γn)I −βnρF )zn,
and update

λn+1 =

{
min{µ‖wn−yn‖2+‖zn−yn‖2

2〈Awn−Ayn,zn−yn〉 , λn}, if 〈Awn −Ayn, zn − yn〉 > 0,

λn, otherwise.

Set n := n+ 1 and return to Step 1.

Suppose that H1 and H2 are two real Hilbert spaces. Let C and Q be nonempty,
closed and convex subsets of H1 and H2, respectively. Let T : H1 → H2 denote a bounded
linear operator and A,F : H1 → H1 and B : H2 → H2 be nonlinear mappings. Recall that
the bilevel split variational inequality problem (BSVIP) ([2]) is specified below:

Seek z∗ ∈ Ω such that 〈Fz∗, z − z∗〉 ≥ 0, ∀z ∈ Ω , (1)

where Ω := {z ∈ VI(C,A) : Tz ∈ VI(Q,B)} is the solution set of the split variational
inequality problem (SVIP), which was introduced by Censor et al. [10] and formulated as:

Find x∗ ∈ C such that 〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C, (2)

and

y∗ = Tx∗ ∈ Q such that 〈By∗, y − y∗〉 ≥ 0, ∀y ∈ Q. (3)

Censor et al. proposed and analyzed the following iterative method for approximating the
solution of (2)-(3), i.e., for any initial x1 ∈ H1, the sequence {xn} is generated by

xn+1 = PC(I − λA)(xn + γT ∗(PQ(I − λB)− I)Txn), ∀n ≥ 1, (4)

where A and B are inverse-strongly monotone. Consequently, the split problems have been
studied extensively, see [13, 14, 20–22, 28, 30]. We note that the VIP can be expressed
as the FPP: Sz = PQ(z − µBz), µ > 0, with VI(Q,B) = Fix(S), where Fix(S) denotes
the fixed point set of the operator S. Consequently, we can reformulate the BSVIP in (1)
below: Let A : H1 → H1 be quasimonotone and L-Lipschitz continuous, F : H1 → H1 be
κ-Lipschitzian and η-strongly monotone, T : H1 → H2 be non-zero bounded linear operator,
and S : H2 → H2 be τ -demimetric mapping with τ ∈ (−∞, 1). Then,

Seek z∗ ∈ Ω such that 〈Fz∗, z − z∗〉 ≥ 0, ∀z ∈ Ω , (5)

where Ω := {z ∈ VI(C,A) : Tz ∈ Fix(S)}. In this case, such a problem is referred to
as a bilevel split quasimonotone variational inequality problem (BSQVIP). Very recently,
Abuchu et al. [1] proposed a modified relaxed inertial subgradient extragradient iterative
algorithm for solving the BSQVIP (5). Under suitable assumptions, it was proven in [18] that
the sequence generated by the proposed algorithm converges strongly to a unique solution
of the BSQVIP (5). Inspired by the previous research works, we introduce and study a
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bilevel split pseudomonotone variational inequality problem (BSPVIP) with the common
fixed point problem (CFPP) constraint:

Seek z∗ ∈ Ξ such that 〈(ρF − f)z∗, p− z∗〉 ≥ 0, ∀p ∈ Ξ , (6)

where f : H1 → H1 is a contraction, A : H1 → H1 is pseudomonotone and L-Lipschitz
continuous and {Si}Ni=1 is finitely many nonexpansive self-mappings on H1 such that Ξ :=⋂N
i=1 Fix(Si) ∩ Ω 6= ∅.

In this paper, we propose triple-adaptive inertial subgradient extragradient algorithm
for settling the above BSPVIP with the CFPP constraint in real Hilbert spaces, where
the BSPVIP involves the FPP of demimetric mapping S. The rule exploits the strong
monotonicity of the operator F at the upper-level problem and the pseudomonotonicity of
the mapping A at the lower level. The strong convergence result for the proposed algorithm
is established under mild assumptions. Our results improve and extend the corresponding
ones in [1, 8].

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. A mapping
S : C → H is said to be nonexpansive if ‖Sx−Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C. Given a sequence
{xn} ⊂ H, we denote by xn → x (resp., xn ⇀ x) the strong (resp., weak) convergence of
{xn} to x. For each x ∈ H, there exists a unique nearest point in C, denoted by PCx, such
that ‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.

Lemma 2.1 ([15]). The following hold:
(i) 〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H;

(ii) z = PCx ⇔ 〈x− z, y − z〉 ≤ 0, ∀x ∈ H, y ∈ C;
(iii) ‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2, ∀x ∈ H, y ∈ C;
(iv) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, ∀x, y ∈ H;
(v) ‖sx+ (1− s)y‖2 = s‖x‖2 + (1− s)‖y‖2 − s(1− s)‖x− y‖2, ∀x, y ∈ H, s ∈ [0, 1].

Recall also that S : C → H is called ([17])
(i) L-Lipschitz continuous or L-Lipschitzian if ∃L > 0 s.t. ‖Sx−Sy‖ ≤ L‖x−y‖, ∀x, y ∈ C;

(ii) α-strongly monotone if ∃α > 0 such that 〈Sx− Sy, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ C;
(iii) monotone if 〈Sx− Sy, x− y〉 ≥ 0, ∀x, y ∈ C;
(iv) pseudomonotone if 〈Sx, y − x〉 ≥ 0⇒ 〈Sy, y − x〉 ≥ 0, ∀x, y ∈ C;
(v) quasimonotone if 〈Sx, y − x〉 > 0⇒ 〈Sy, y − x〉 ≥ 0, ∀x, y ∈ C;
(vi) τ -demicontractive if ∃τ ∈ (0, 1) s.t. ‖Sx− p‖2 ≤ ‖x− p‖2 + τ‖x− Sx‖2, ∀x ∈ C, p ∈

Fix(S) 6= ∅;
(vii) τ -demimetric if ∃τ ∈ (−∞, 1) s.t. 〈x − Sx, x − p〉 ≥ 1−τ

2 ‖x − Sx‖2, ∀x ∈ C, p ∈
Fix(S) 6= ∅;

(viii) sequentially weakly continuous if ∀{xn} ⊂ C, the relation holds: xn ⇀ x⇒ Sxn ⇀ Sx.

Lemma 2.2 ([26]). Let λ ∈ (0, 1], S : C → H be a nonexpansive mapping, and the mapping
Sλ : C → H be defined by Sλx := Sx − λρF (Sx), ∀x ∈ C, where F : H → H is κ-
Lipschitzian and η-strongly monotone. Then Sλ is a contraction provided 0 < ρ < 2η

κ2 , i.e.,

‖Sλx− Sλy‖ ≤ (1− λζ)‖x− y‖, ∀x, y ∈ C, where ζ = 1−
√

1− ρ(2η − ρκ2) ∈ (0, 1].

Lemma 2.3. Assume that A : C → H is pseudomonotone and continuous. Then u ∈ C is
a solution to the VIP 〈Au, v − u〉 ≥ 0, ∀v ∈ C, if and only if 〈Av, v − u〉 ≥ 0, ∀v ∈ C.

Lemma 2.4 ([26]). Let {an} be a sequence of nonnegative numbers satisfying the conditions:
an+1 ≤ (1−λn)an +λnγn ∀n ≥ 1, where {λn} and {γn} are sequences of real numbers such
that (i) {λn} ⊂ [0, 1] and

∑∞
n=1 λn =∞, and (ii) lim supn→∞ γn ≤ 0 or

∑∞
n=1 |λnγn| <∞.

Then limn→∞ an = 0.
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Lemma 2.5 ([15]). Let S : C → C be a nonexpansive mapping with Fix(S) 6= ∅. Then
I − S is demiclosed at zero, that is, if {xn} is a sequence in C such that xn ⇀ x ∈ C and
(I − S)xn → 0, then (I − S)x = 0, where I is the identity mapping of H.

Lemma 2.6 ([19]). Let {Γm} be a sequence of real numbers that does not decrease at
infinity in the sense that, ∃{Γmk

} ⊂ {Γm} s.t. Γmk
< Γmk+1, ∀k ≥ 1. Let the sequence

{φ(m)}m≥m0 of integers be formulated φ(m) = max{k ≤ m : Γk < Γk+1}, with integer
m0 ≥ 1 satisfying {k ≤ m0 : Γk < Γk+1} 6= ∅. Then the following hold:
(i) φ(m0) ≤ φ(m0 + 1) ≤ · · · and φ(m)→∞;

(ii) Γφ(m) ≤ Γφ(m)+1 and Γm ≤ Γφ(m)+1, ∀m ≥ m0.

3. Convergence criteria

Suppose that H1 and H2 both are real Hilbert spaces and the feasible set C is
nonempty, closed and convex in H1. For the convergence analysis of our proposed algo-
rithm for treating the BSPVIP (1.6) with the CFPP constraint, we assume always that the
following hold:
• T : H1 → H2 is a non-zero bounded linear operator with the adjoint T ∗, and S : H2 →
H2 is a τ -demimetric mapping such that I−S is demiclosed at zero, where τ ∈ (−∞, 1);

• A : H1 → H1 is pseudomonotone and L-Lipschitz continuous mapping satisfying the
condition: ‖Au‖ ≤ lim infn→∞ ‖Aun‖ for each {un} ⊂ C with un ⇀ u;

• {Si}Ni=1 is finitely many nonexpansive self-mappings on H1 such that Ξ :=
⋂N
i=1 Fix(Si)∩

Ω 6= ∅, with Ω := {z ∈ VI(C,A) : Tz ∈ Fix(S)};
• f : H1 → H1 is a contraction with constant δ ∈ [0, 1), and F : H1 → H1 is η-strongly

monotone and κ-Lipschitzian such that δ < ζ := 1−
√

1− ρ(2η − ρκ2) for ρ ∈ (0, 2ηκ2 );
• {βn}, {γn}, {εn} are positive sequences such that βn+γn < 1,

∑∞
n=1 βn =∞, limn→∞ βn =

0, 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1 and εn = o(βn).
In addition, we write Sn := SnmodN for integer n ≥ 1 with the mod function taking values
in the set {1, 2, ..., N}, that is, whenever n = jN + q for some integers j ≥ 0 and 0 ≤ q < N ,
one has that Sn = SN if q = 0 and Sn = Sq if 0 < q < N .

Algorithm 3.1. Let λ1 > 0, ε > 0, σ ≥ 0, µ ∈ (0, 1), α ∈ [0, 1] and x0, x1 ∈ H1 be
arbitrary. Calculate xn+1 as follows: Step 1. Given the iterates xn−1 and xn (n ≥ 1),
choose αn such that 0 ≤ αn ≤ ᾱn, where

ᾱn =

{
min{α, εn

‖xn−xn−1‖}, if xn 6= xn−1,

α, otherwise.
(7)

Step 2. Compute wn = Snxn + αn(Snxn − Snxn−1) and yn = PC(wn − λnAwn).
Step 3. Construct the half-space Cn := {y ∈ H1 : 〈wn − λnAwn − yn, yn − y〉 ≥ 0},

and compute vn = PCn
(wn − λnAyn) and zn = vn − σnT ∗(I − S)Tvn.

Step 4. Calculate xn+1 = βnf(xn) + γnxn + ((1− γn)I − βnρF )zn, update

λn+1 =

{
min{µ‖wn−yn‖2+‖vn−yn‖2

2〈Awn−Ayn,vn−yn〉 , λn}, if 〈Awn −Ayn, vn − yn〉 > 0,

λn, otherwise,
(8)

and for any fixed ε > 0, σn is chosen to be the bounded sequence satisfying

0 < ε ≤ σn ≤
(1− τ)‖Tvn − STvn‖2

‖T ∗(Tvn − STvn)‖2
− ε, if Tvn 6= STvn, (9)

otherwise set σn = σ ≥ 0.
Set n := n+ 1 and return to Step 1.
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Remark 3.1. It is easy to see that, from (7) we get limn→∞
αn

βn
‖xn − xn−1‖ = 0. Indeed,

we have αn‖xn − xn−1‖ ≤ εn, ∀n ≥ 1, which together with limn→∞
εn
βn

= 0 implies that
αn

βn
‖xn − xn−1‖ ≤ εn

βn
→ 0 as n→∞.

Lemma 3.1. Let {λn} be generated by (8). Then {λn} is a nonincreasing sequence with
λn ≥ λ := min{λ1, µL} ∀n ≥ 1, and limn→∞ λn ≥ λ := min{λ1, µL}.

Proof. First, from (8) it is clear that λn ≥ λn+1 ∀n ≥ 1. Also, observe that

1
2 (‖wn − yn‖2 + ‖vn − yn‖2) ≥ ‖wn − yn‖‖vn − yn‖
〈Awn −Ayn, vn − yn〉 ≤ L‖wn − yn‖‖vn − yn‖

}
⇒ λn+1 ≥ min{λn,

µ

L
}.

�

Lemma 3.2. Let {xn} be the sequence generated by Algorithm 3.1. Then, the stepsize σn
formulated in (9) is well-defined.

Proof. It suffices to show that ‖T ∗(Tvn − STvn)‖2 6= 0. Take a p ∈ Ξ arbitrarily. Since S
is τ -demimetric mapping, we obtain

‖vn − p‖‖T ∗(Tvn − STvn)‖ ≥ 〈vn − p, T ∗(Tvn − STvn)〉
= 〈Tvn − Tp, Tvn − STvn〉

≥ 1− τ
2
‖Tvn − STvn‖2.

(10)

If Tvn 6= STvn, then ‖Tvn − STvn‖2 > 0. Thus, ‖T ∗(Tvn − STvn)‖2 > 0. �

Lemma 3.3. Let {wn}, {yn}, {vn} be the sequences generated by Algorithm 3.1. Then

‖vn − p‖2 ≤ ‖wn − p‖2 − (1− µ λn
λn+1

)‖wn − yn‖2 − (1− µ λn
λn+1

)‖vn − yn‖2, ∀p ∈ Ξ .

Proof. First, by the definition of {λn} we claim that

2〈Awn −Ayn, vn − yn〉 ≤
µ

λn+1
‖wn − yn‖2 +

µ

λn+1
‖vn − yn‖2, ∀n ≥ 1. (11)

Indeed, if 〈Awn−Ayn, vn− yn〉 ≤ 0, then inequality (11) holds. Otherwise, from (8) we get
(11). Also, observe that for each p ∈ Ξ ⊂ C ⊂ Cn,

‖vn − p‖2 = ‖PCn
(wn − λnAyn)− PCn

p‖2 ≤ 〈vn − p, wn − λnAyn − p〉

=
1

2
‖vn − p‖2 +

1

2
‖wn − p‖2 −

1

2
‖vn − wn‖2 − 〈vn − p, λnAyn〉,

which hence yields

‖vn − p‖2 ≤ ‖wn − p‖2 − ‖vn − wn‖2 − 2〈vn − p, λnAyn〉. (12)

From p ∈ VI(C,A), we get 〈Ap, x− p〉 ≥ 0 ∀x ∈ C. By the pseudomonotonicity of A on C
we have 〈Ax, x− p〉 ≥ 0 ∀x ∈ C. Putting x := yn ∈ C we get 〈Ayn, p− yn〉 ≤ 0. Thus,

〈Ayn, p− vn〉 = 〈Ayn, p− yn〉+ 〈Ayn, yn − vn〉 ≤ 〈Ayn, yn − vn〉. (13)

Substituting (13) for (12), we obtain

‖vn − p‖2 ≤ ‖wn − p‖2 − ‖vn − yn‖2 − ‖yn − wn‖2 + 2〈wn − λnAyn − yn, vn − yn〉. (14)

Since vn = PCn
(wn − λnAyn), we have that vn ∈ Cn and hence

2〈wn − λnAyn − yn, vn − yn〉 = 2〈wn − λnAwn − yn, vn − yn〉+ 2λn〈Awn −Ayn, vn − yn〉
≤ 2λn〈Awn −Ayn, vn − yn〉,
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which together with (11), implies that

2〈wn − λnAyn − yn, vn − yn〉 ≤ µ
λn
λn+1

‖wn − yn‖2 + µ
λn
λn+1

‖vn − yn‖2. (15)

Therefore, substituting (15) for (14), we obtain the desired result. �

Lemma 3.4. Let {xn} be the sequence generated by Algorithm 3.1. Then, {xn} is bounded.

Proof. First of all, we show that PΞ (f + I−ρF ) is a contraction. Indeed, for any x, y ∈ H1,
by Lemma 2.2, we have

‖PΞ (f + I − ρF )x− PΞ (f + I − ρF )y‖ ≤ ‖f(x)− f(y)‖+ ‖(I − ρF )x− (I − ρF )y‖
≤ δ‖x− y‖+ (1− ζ)‖x− y‖ = [1− (ζ − δ)]‖x− y‖,

which implies that PΞ (f + I − ρF ) is a contraction. Hence, PΞ (f + I − ρF ) has a unique
fixed point. Say z∗ ∈ H1, that is, z∗ = PΞ (f + I − ρF )z∗. Thus, there exists the unique

solution z∗ ∈ Ξ =
⋂N
i=1 Fix(Si) ∩ Ω to the VIP

〈(ρF − f)z∗, p− z∗〉 ≥ 0, ∀p ∈ Ξ . (16)

This also means that there exists the unique solution z∗ ∈ Ξ to the BSPVIP (6) with the
CFPP constraint.

Now, by the definition of wn in Algorithm 3.1, we have

‖wn − z∗‖ = ‖Snxn + αn(Snxn − Snxn−1)− z∗‖ ≤ ‖xn − z∗‖+ βn ·
αn
βn
‖xn − xn−1‖.

From Remark 3.1, we know that limn→∞
αn

βn
‖xn − xn−1‖ = 0. This means that {αn

βn
‖xn −

xn−1‖} is bounded. Thus, ∃M1 > 0 s.t. αn

βn
‖xn − xn−1‖ ≤M1, ∀n ≥ 1. Hence,

‖wn − z∗‖ ≤ ‖xn − z∗‖+ βnM1, ∀n ≥ 1. (17)

From Step 3 of Algorithm 3.1, using the definition of zn, we get

‖zn − z∗‖2 = ‖vn − z∗‖2 − 2σn〈T (vn − z∗), (I − S)Tvn〉+ σ2
n‖T ∗(I − S)Tvn‖2. (18)

Since the operator S is τ -demimetric, from (18) we get

‖zn − z∗‖2 ≤ ‖vn − z∗‖2 − σn(1− τ)‖(I − S)Tvn‖2 + σ2
n‖T ∗(I − S)Tvn‖2

= ‖vn − z∗‖2 + σn[σn‖T ∗(I − S)Tvn‖2 − (1− τ)‖(I − S)Tvn‖2].
(19)

But from the stepsize σn in (9), we get

σn + ε ≤ (1− τ)‖Tvn − STvn‖2

‖T ∗(I − S)Tvn‖2
,

if and only if

σn(σn‖T ∗(I − S)Tvn‖2 − (1− τ)‖Tvn − STvn‖2) ≤ −σnε‖T ∗(I − S)Tvn‖2. (20)

Using 0 < ε ≤ σn in (9), we have that −ε2 ≥ −σnε and hance

−σnε‖T ∗(I − S)Tvn‖2 ≤ −ε2‖T ∗(I − S)Tvn‖2. (21)

Combining (19),(20) and (21), we obtain

‖zn − z∗‖2 ≤ ‖vn − z∗‖2 − ε2‖T ∗(I − S)Tvn‖2 ≤ ‖vn − z∗‖2. (22)

In addition, by Lemma 3.1, we have limn→∞ λn ≥ λ := min{λ1, µL}, which hence leads

to limn→∞(1 − µ λn

λn+1
) = 1 − µ > 0. Without loss of generality, we may assume that
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1− µ λn

λn+1
> 0 ∀n ≥ 1. Thus, by Lemma 3.3, we get

‖vn − z∗‖2 ≤ ‖wn − z∗‖2 − (1− µ λn
λn+1

)‖wn − yn‖2 − (1− µ λn
λn+1

)‖vn − yn‖2

≤ ‖wn − z∗‖2.
(23)

Combining (17),(22) and (23), we obtain

‖zn − z∗‖ ≤ ‖vn − z∗‖ ≤ ‖wn − z∗‖ ≤ ‖xn − z∗‖+ βnM1, ∀n ≥ 1. (24)

Since βn+γn < 1, ∀n ≥ 1, we get βn

1−γn < 1 ∀n ≥ 1. So, from Lemma 2.2 and (24) it follows

that

‖xn+1 − z∗‖ = ‖βnf(xn) + γnxn + ((1− γn)I − βnρF )zn − z∗‖
≤ βn‖f(xn)− z∗‖+ γn‖xn − z∗‖

+ (1− βn − γn)‖( 1− γn
1− βn − γn

I − βn
1− βn − γn

ρF )zn − z∗‖

≤ βn(‖f(xn)− f(z∗)‖+ ‖f(z∗)− z∗‖) + γn‖xn − z∗‖
≤ βn(δ‖xn − z∗‖+ ‖f(z∗)− z∗‖) + γn‖xn − z∗‖
+ (1− γn − βnζ)(‖xn − z∗‖+ βnM1) + βn‖(I − ρF )z∗‖

≤ max{‖xn − z∗‖,
M1 + ‖f(z∗)− z∗‖+ ‖(I − ρF )z∗‖

ζ − δ
}.

By induction, we obtain ‖xn − z∗‖ ≤ max{‖x1 − z∗‖, M1+‖f(z∗)−z∗‖+‖(I−ρF )z∗‖
ζ−δ }, ∀n ≥ 1.

Thus, {xn} is bounded, and so are the sequences {vn}, {yn}, {zn}, {Fzn}, {Snxn}. �

Lemma 3.5. Let {vn}, {wn}, {xn}, {yn}, {zn} be the sequences generated by Algorithm 3.1.
Suppose that xn − xn+1 → 0, wn − xn → 0, wn − yn → 0 and vn − zn → 0. Then
ωw({xn}) ⊂ Ξ , with ωw({xn}) = {z ∈ H1 : xnk

⇀ z for some {xnk
} ⊂ {xn}}.

Proof. Take an arbitrary fixed z ∈ ωw({xn}). Then, ∃{xnk
} ⊂ {xn} s.t. xnk

⇀ z ∈ H1.
Thanks to wn−xn → 0, we know that ∃{wnk

} ⊂ {wn} s.t. wnk
⇀ z ∈ H1. In what follows,

we claim that z ∈ Ξ . In fact, from Algorithm 3.1, we get wn−xn = Snxn−xn+αn(Snxn−
Snxn−1), ∀n ≥ 1, and hence

‖Snxn − xn‖ ≤ ‖wn − xn‖+ αn‖Snxn − Snxn−1‖

≤ ‖wn − xn‖+ βn ·
αn
βn
‖xn − xn−1‖.

Using Remark 3.1 and the assumption wn − xn → 0, we have

lim
n→∞

‖xn − Snxn‖ = 0. (25)

Also, from yn = PC(wn − λnAwn), we have 〈wn − λnAwn − yn, yn − y〉 ≥ 0, ∀y ∈ C, and
hence

1

λn
〈wn − yn, y − yn〉+ 〈Awn, yn − wn〉 ≤ 〈Awn, y − wn〉, ∀y ∈ C. (26)

According to the Lipschitz continuity of A, {Awnk
} is bounded. Note that λn ≥ min{λ1, µL}.

So, from (26) we get lim infk→∞〈Awnk
, y − wnk

〉 ≥ 0, ∀y ∈ C. Meantime, observe that
〈Ayn, y− yn〉 = 〈Ayn−Awn, y−wn〉+ 〈Awn, y−wn〉+ 〈Ayn, wn− yn〉. Since wn− yn → 0,
from L-Lipschitz continuity of A we obtain Awn−Ayn → 0, which together with (26) arrives
at lim infk→∞〈Aynk

, y− ynk
〉 ≥ 0, ∀y ∈ C. Next we show that limn→∞ ‖xn−Slxn‖ = 0 for

l = 1, ..., N . Indeed, note that for i = 1, ..., N ,

‖xn − Sn+ixn‖ ≤ ‖xn − xn+i‖+ ‖xn+i − Sn+ixn+i‖+ ‖Sn+ixn+i − Sn+ixn‖
≤ 2‖xn − xn+i‖+ ‖xn+i − Sn+ixn+i‖.
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Hence from (25) and the assumption xn − xn+1 → 0 we get limn→∞ ‖xn − Sn+ixn‖ = 0 for
i = 1, ..., N . This immediately implies that

lim
n→∞

‖xn − Slxn‖ = 0, for l = 1, ..., N. (27)

We now take a sequence {ςk} ⊂ (0, 1) satisfying ςk ↓ 0 as k →∞. For all k ≥ 1, we denote
by mk the smallest positive integer such that

〈Aynj , y − ynj 〉+ ςk ≥ 0, ∀j ≥ mk. (28)

Since {ςk} is decreasing, it is clear that {mk} is increasing.
Again from the assumption on A, we know that lim infk→∞ ‖Aynk

‖ ≥ ‖Az‖. If
Az = 0, then z is a solution, i.e., z ∈ VI(C,A). Let Az 6= 0. Then we have 0 < ‖Az‖ ≤
lim infk→∞ ‖Aynk

‖. Without loss of generality, we may assume that Aynk
6= 0, ∀k ≥ 1.

Noticing that {ymk
} ⊂ {ynk

} and Aynk
6= 0 ∀k ≥ 1, we set umk

=
Aymk

‖Aymk
‖2 , we get

〈Aymk
, umk

〉 = 1, ∀k ≥ 1. So, from (28) we get 〈Aymk
, y+ςkumk

−ymk
〉 ≥ 0, ∀k ≥ 1. Again

from the pseudomonotonicity of A we have 〈A(y + ςkumk
), y + ςkumk

− ymk
〉 ≥ 0, ∀k ≥ 1.

This immediately yields

〈Ay, y − ymk
〉 ≥ 〈Ay −A(y + ςkumk

), y + ςkumk
− ymk

〉 − ςk〈Ay, umk
〉, ∀k ≥ 1. (29)

We claim that limk→∞ ςkumk
= 0. Indeed, from xnk

⇀ z and xn − yn → 0 (due to
wn − xn → 0 and wn − yn → 0), we obtain ynk

⇀ z. So, {yn} ⊂ C guarantees z ∈ C. Note
that {ymk

} ⊂ {ynk
} and ςk ↓ 0 as k → ∞. So it follows that 0 ≤ lim supk→∞ ‖ςkumk

‖ =

lim supk→∞
ςk

‖Aymk
‖ ≤

lim supk→∞ ςk
lim infk→∞ ‖Aynk

‖ = 0. Hence we get ςkumk
→ 0.

Next we show that z ∈ Ξ . Indeed, using (27) we have xnk
−Slxnk

→ 0 for l = 1, ..., N .
Note that Lemma 2.5 guarantees the demiclosedness of I −Sl at zero for l = 1, ..., N . Thus,
from xnk

⇀ z, we get z ∈ Fix(Sl). Since l is an arbitrary element in the finite set {1, ..., N},
it follows that z ∈ ∩Ni=1Fix(Si). Also, letting k →∞, we deduce that the right-hand side of
(29) tends to zero by the uniform continuity of A, the boundedness of {wmk

}, {umk
} and the

limit limk→∞ ςkumk
= 0. Thus, we get 〈Ay, y− z〉 = lim infk→∞〈Ay, y− ymk

〉 ≥ 0, ∀y ∈ C.
By Lemma 2.3 we have z ∈ VI(C,A). Furthermore, we claim Tz ∈ Fix(S). In fact, noticing
zn = vn − σnT ∗(I − S)Tvn, from 0 < ε ≤ σn and vn − zn → 0, we get

ε‖T ∗(I − S)Tvn‖ ≤ σn‖T ∗(I − S)Tvn‖ = ‖vn − zn‖ → 0,

which together with the τ -demimetricness of S, leads to

1− τ
2
‖(I − S)Tvn‖2 ≤ 〈(I − S)Tvn, T (vn − z∗)〉

≤ ‖T ∗(I − S)Tvn‖‖vn − z∗‖ → 0 (n→∞).
(30)

Noticing xn+1 = βnf(xn) + γnxn + ((1− γn)I − βnρF )zn, we have

(1− γn)‖zn − xn‖ = ‖xn+1 − xn − βn(f(xn)− ρFzn)‖
≤ ‖xn+1 − xn‖+ βn(‖f(xn)‖+ ‖ρFzn‖).

Since 0 < lim infn→∞(1− γn), xn − xn+1 → 0 and βn → 0, from the boundedness of {xn}
and {zn}, we get limn→∞ ‖zn − xn‖ = 0, which hence yields

‖vn − xn‖ ≤ ‖vn − zn‖+ ‖zn − xn‖ → 0 (n→∞).

From xnk
⇀ z, we get vnk

⇀ z. Since T is bounded linear operator, it is easy to see that
T is weakly continuous on H1. So it follows that Tvnk

⇀ Tz. By the assumption on S, we
know that I − S is demiclosed at zero. Hence, from (30) we derive Tz ∈ Fix(S). Therefore,

z ∈
⋂N
i=1 Fix(Si) ∩ Ω = Ξ . This completes the proof. �

Theorem 3.1. Let {xn} be the sequence generated by Algorithm 3.1. Then {xn} converges
strongly to the unique solution z∗ ∈ Ξ of the BSPVIP (6) with the CFPP constraint.
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Proof. First of all, in terms of Lemma 3.4 we obtain that {xn} is bounded. From its proof
we know that there exists the unique solution z∗ ∈ Ξ of the BSPVIP (6) with the CFPP
constraint, that is, the VIP (16) has the unique solution z∗ ∈ Ξ . In order to show the
conclusion of the theorem, we divide the rest of the proof into several steps.

Step 1. We claim that

(1− βnζ − γn)[(1− µ λn
λn+1

)(‖wn − yn‖2 + ‖vn − yn‖2) + ε2‖T ∗(I − S)Tvn‖2]

≤ ‖xn − z∗‖2 − ‖xn+1 − z∗‖2 + βnM4,

for some M4 > 0. Indeed, observe that

xn+1 − z∗ = βn(f(xn)− z∗) + γn(xn − z∗) + (1− βn − γn){ 1− γn
1− βn − γn

[(I − βn
1− γn

ρF )zn

− (I − βn
1− γn

ρF )z∗] +
βn

1− βn − γn
(I − ρF )z∗}

= βn(f(xn)− f(z∗)) + γn(xn − z∗) + (1− γn)[(I − βn
1− γn

ρF )zn

− (I − βn
1− γn

ρF )z∗] + βn(f − ρF )z∗.

Then by Lemma 2.2 and the convexity of the function h(s) = s2, ∀s ∈ R, we get

‖xn+1 − z∗‖2 ≤ ‖βn(f(xn)− f(z∗)) + γn(xn − z∗) + (1− γn)[(I − βn
1− γn

ρF )zn

− (I − βn
1− γn

ρF )z∗]‖2 + 2βn〈(f − ρF )z∗, xn+1 − z∗〉

≤ βnδ‖xn − z∗‖2 + γn‖xn − z∗‖2 + (1− βnζ − γn)‖zn − z∗‖2

+ 2βn〈(f − ρF )z∗, xn+1 − z∗〉
≤ βnδ‖xn − z∗‖2 + γn‖xn − z∗‖2 + (1− βnζ − γn)‖zn − z∗‖2 + βnM2

(31)

where supn≥1 2‖(f − ρF )z∗‖‖xn − z∗‖ ≤ M2 for some M2 > 0. Substituting (22) for (31),
by Lemma 3.3 we get

‖xn+1 − z∗‖2 ≤ βnδ‖xn − z∗‖2 + γn‖xn − z∗‖2 + (1− βnζ − γn)[‖vn − z∗‖2

− ε2‖T ∗(I − S)Tvn‖2] + βnM2

≤ βnδ‖xn − z∗‖2 + γn‖xn − z∗‖2 + (1− βnζ − γn)[‖wn − z∗‖2 + βnM2

− (1− µ λn
λn+1

)(‖wn − yn‖2 + ‖vn − yn‖2)− ε2‖T ∗(I − S)Tvn‖2].

(32)

Also, from (24) we have

‖wn − z∗‖2 ≤ (‖xn − z∗‖+ βnM1)2

= ‖xn − z∗‖2 + βn(2M1‖xn − z∗‖+ βnM
2
1 )

≤ ‖xn − z∗‖2 + βnM3,

(33)
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where supn≥1(2M1‖xn − z∗‖ + βnM
2
1 ) ≤ M3 for some M3 > 0. Combining (32) and (33),

we obtain

‖xn+1 − z∗‖2 ≤ βnδ‖xn − z∗‖2 + γn‖xn − z∗‖2 + (1− βnζ − γn)[‖xn − z∗‖2 + βnM3]

− (1− βnζ − γn)[(1− µ λn
λn+1

)(‖wn − yn‖2 + ‖vn − yn‖2)

+ ε2‖T ∗(I − S)Tvn‖2] + βnM2

≤ ‖xn − z∗‖2 − (1− βnζ − γn)[(1− µ λn
λn+1

)(‖wn − yn‖2 + ‖vn − yn‖2)

+ ε2‖T ∗(I − S)Tvn‖2] + βnM4,

where M4 := M2 +M3. This immediately implies that

(1− βnζ − γn)[(1− µ λn
λn+1

)(‖wn − yn‖2 + ‖vn − yn‖2) + ε2‖T ∗(I − S)Tvn‖2]

≤ ‖xn − z∗‖2 − ‖xn+1 − z∗‖2 + βnM4.

(34)

Step 2. We claim that

‖xn+1 − z∗‖2 ≤ [1− βn(ζ − δ)]‖xn − z∗‖2

+ βn(ζ − δ)[ 2

ζ − δ
〈(f − ρF )z∗, xn+1 − z∗〉+

3M

ζ − δ
· αn
βn
· ‖xn − xn−1‖]

for some M > 0. Indeed, we have

‖wn − z∗‖2 ≤ [‖xn − z∗‖+ αn‖xn − xn−1‖]2

≤ ‖xn − z∗‖2 + αn‖xn − xn−1‖[2‖xn − z∗‖+ αn‖xn − xn−1‖].
(35)

Combining (24), (31) and (35), we have

‖xn+1 − z∗‖2 ≤ βnδ‖xn − z∗‖2 + γn‖xn − z∗‖2 + (1− βnζ − γn)‖zn − z∗‖2

+ 2βn〈(f − ρF )z∗, xn+1 − z∗〉
≤ βnδ‖xn − z∗‖2 + γn‖xn − z∗‖2 + (1− βnζ − γn)‖wn − z∗‖2

+ 2βn〈(f − ρF )z∗, xn+1 − z∗〉

≤ [1− βn(ζ − δ)]‖xn − z∗‖2 + βn(ζ − δ) · [ 2〈(f − ρF )z∗, xn+1 − z∗〉
ζ − δ

+
3M

ζ − δ
· αn
βn
· ‖xn − xn−1‖],

(36)

where supn≥1{‖xn − z∗‖, αn‖xn − xn−1‖} ≤M for some M > 0.
Step 3. We claim that {xn} converges strongly to the unique solution z∗ ∈ Ξ to the

VIP (16). Indeed, putting Γn = ‖xn − z∗‖2, we show the convergence of {Γn} to zero by
the following two cases.

Case 1. Suppose that there exists an integer n0 ≥ 1 such that {Γn} is nonincreasing.
Then the limit limn→∞ Γn = d < +∞ and limn→∞(Γn − Γn+1) = 0. From (34) we obtain

(1− βnζ − γn)[(1− µ λn
λn+1

)(‖wn − yn‖2 + ‖vn − yn‖2) + ε2‖T ∗(I − S)Tvn‖2]

≤ ‖xn − z∗‖2 − ‖xn+1 − z∗‖2 + βnM4 = Γn − Γn+1 + βnM4.

Since limn→∞(1−µ λn

λn+1
) = 1−µ > 0, lim infn→∞(1−γn) > 0, βn → 0 and Γn−Γn+1 → 0,

one has

lim
n→∞

‖wn − yn‖ = lim
n→∞

‖vn − yn‖ = lim
n→∞

‖T ∗(I − S)Tvn‖ = 0. (37)
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Noticing zn = vn − σnT ∗(I − S)Tvn and the boundedness of {σn}, from (37) we get

‖vn − zn‖ = σn‖T ∗(I − S)Tvn‖ → 0 (n→∞). (38)

and hence

‖wn − zn‖ ≤ ‖wn − yn‖+ ‖yn − vn‖+ ‖vn − zn‖ → 0 (n→∞). (39)

Moreover, noticing xn+1 − z∗ = γn(xn − z∗) + (1 − γn)(zn − z∗) + βn(f(xn) − ρFzn), we
obtain from (24) that

‖xn+1 − z∗‖2 ≤ γn‖xn − z∗‖2 + (1− γn)‖zn − z∗‖2 − γn(1− γn)‖xn − zn‖2

+ 2‖βn(f(xn)− ρFzn)‖‖xn+1 − z∗‖
≤ γn‖xn − z∗‖2 + (1− γn)‖zn − z∗‖2 − γn(1− γn)‖xn − zn‖2

+ 2βn(‖f(xn)‖+ ‖ρFzn‖)‖xn+1 − x∗‖
≤ ‖xn − z∗‖2 + βnM1[2‖xn − z∗‖+ βnM1]

− γn(1− γn)‖xn − zn‖2 + 2βn(‖f(xn)‖+ ‖ρFzn‖)‖xn+1 − z∗‖,
which immediately arrives at

γn(1− γn)‖xn − zn‖2 ≤ ‖xn − z∗‖2 − ‖xn+1 − z∗‖2

+ βnM1[2‖xn − z∗‖+ βnM1] + 2βn(‖f(xn)‖+ ‖ρFzn‖)‖xn+1 − z∗‖

≤ Γn − Γn+1 + βnM1[2Γ
1
2
n + βnM1] + 2βn(‖f(xn)‖+ ‖ρFzn‖)Γ

1
2
n+1.

Since 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1, βn → 0, Γn − Γn+1 → 0 and limn→∞ Γn =
d < +∞, from the boundedness of {xn}, {zn}, we infer that

lim
n→∞

‖xn − zn‖ = 0.

So it follows from (39) that

‖wn − xn‖ ≤ ‖wn − zn‖+ ‖zn − xn‖ → 0 (n→∞). (40)

Also, from Algorithm 3.1 we obtain that

‖xn+1 − xn‖ = ‖βnf(xn) + (1− γn)(zn − xn)− βnρFzn‖
≤ (1− γn)‖zn − xn‖+ βn‖f(xn)− ρFzn‖
≤ ‖zn − xn‖+ βn(‖f(xn)‖+ ‖ρFzn‖)→ 0 (n→∞).

(41)

In addition, from the boundedness of {xn} it follows that there exists a subsequence {xnk
}

of {xn} such that

lim sup
n→∞

〈(f − ρF )z∗, xn − z∗〉 = lim
k→∞

〈(f − ρF )z∗, xnk
− z∗〉. (42)

Since H1 is reflexive and {xn} is bounded, we may assume, without loss of generality, that
xnk

⇀ z̃. Thus, from (42) one gets

lim sup
n→∞

〈(f − ρF )z∗, xn − z∗〉 = lim
k→∞

〈(f − ρF )z∗, xnk
− z∗〉 = 〈(f − ρF )z∗, z̃ − z∗〉. (43)

Since xn − xn+1 → 0, wn − xn → 0, wn − yn → 0 and vn − zn → 0, by Lemma 3.5 we
deduce that z̃ ∈ ωw({xn}) ⊂ Ξ . Hence from (16) and (43) one gets

lim sup
n→∞

〈(f − ρF )z∗, xn − z∗〉 = 〈(f − ρF )z∗, z̃ − z∗〉 ≤ 0, (44)

which together with (41), leads to

lim sup
n→∞

〈(f − ρF )z∗, xn+1 − z∗〉

≤ lim sup
n→∞

[‖(f − ρF )z∗‖‖xn+1 − xn‖+ 〈(f − ρF )z∗, xn − z∗〉] ≤ 0.
(45)
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Note that {βn(ζ − δ)} ⊂ [0, 1],
∑∞
n=1 βn(ζ − δ) =∞, and

lim sup
n→∞

[
2〈(f − ρF )z∗, xn+1 − z∗〉

ζ − δ
+

3M

ζ − δ
· αn
βn
· ‖xn − xn−1‖] ≤ 0.

Consequently, applying Lemma 2.4 to (36), one has limn→∞ ‖xn − z∗‖2 = 0.
Case 2. Suppose that ∃{Γnk

} ⊂ {Γn} s.t. Γnk
< Γnk+1, ∀k ∈ N, where N is the set

of all positive integers. Define the mapping φ : N→ N by φ(n) := max{k ≤ n : Γk < Γk+1}.
By Lemma 2.6, we get Γφ(n) ≤ Γφ(n)+1 and Γn ≤ Γφ(n)+1. From (34) we have

(1− βφ(n)ζ − γφ(n))[(1− µ
λφ(n)

λφ(n)+1
)(‖wφ(n) − yφ(n)‖2 + ‖vφ(n) − yφ(n)‖2)

+ ε2‖T ∗(I − S)Tvφ(n)‖2]

≤ ‖xφ(n) − z∗‖2 − ‖xφ(n)+1 − z∗‖2 + βφ(n)M4 = Γφ(n) − Γφ(n)+1 + βφ(n)M4,

(46)

which immediately yields

lim
n→∞

‖wφ(n) − yφ(n)‖ = lim
n→∞

‖vφ(n) − yφ(n)‖ = lim
n→∞

‖T ∗(I − S)Tvφ(n)‖ = 0.

Using the same inferences as in the proof of Case 1, we deduce that

lim
n→∞

‖vφ(n) − zφ(n)‖ = lim
n→∞

‖wφ(n) − xφ(n)‖ = lim
n→∞

‖xφ(n)+1 − xφ(n)‖ = 0,

and

lim sup
n→∞

〈(f − ρF )z∗, xφ(n)+1 − z∗〉 ≤ 0. (47)

On the other hand, from (36) we obtain

βφ(n)(ζ − δ)Γφ(n) ≤ Γφ(n) − Γφ(n)+1 + βφ(n)(ζ − δ)[
2〈(f − ρF )z∗, xφ(n)+1 − z∗〉

ζ − δ

+
3M

ζ − δ
·
αφ(n)

βφ(n)
· ‖xφ(n) − xφ(n)−1‖]

≤ βφ(n)(ζ − δ)[
2〈(f − ρF )z∗, xφ(n)+1 − z∗〉

ζ − δ
+

3M

ζ − δ
·
αφ(n)

βφ(n)
· ‖xφ(n) − xφ(n)−1‖],

which hence arrives at

lim sup
n→∞

Γφ(n) ≤ lim sup
n→∞

[
2〈(f − ρF )z∗, xφ(n)+1 − z∗〉

ζ − δ
+

3M

ζ − δ
·
αφ(n)

βφ(n)
· ‖xφ(n) − xφ(n)−1‖] ≤ 0.

Thus, limn→∞ ‖xφ(n) − z∗‖2 = 0. Owing to Γn ≤ Γφ(n)+1, we get

‖xn − z∗‖2 ≤ ‖xφ(n) − z∗‖2 + 2‖xφ(n)+1 − xφ(n)‖‖xφ(n) − z∗‖+ ‖xφ(n)+1 − xφ(n)‖2 → 0.

That is, xn → z∗ as n→∞. This completes the proof. �

4. Concluding remarks

In this paper, we study a bilevel split pseudomonotone variational inequality problem
(BSPVIP) with the common fixed point problem (CFPP) constraint of finitely many nonex-
pansive mappings in real Hilbert spaces. We introduce a triple-adaptive inertial subgradient
extragradient algorithm [Algorithm 3.1] for solving BSPVIP with the CFPP constraint (6),
where the BSPVIP involves the FPP of demimetric mapping S. The algorithm exploits the
strong monotonicity of the operator F at the upper-level problem and the pseudomonotonic-
ity of the mapping A at the lower level. We prove the strong convergence theorem [Theorem
3.1] under mild assumptions. Our results improve and extend the corresponding ones in
[1, 8].
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