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GRADED HIERARCHICAL ARCHITECTURE
METAMATERIAL IN VIBRATION SUPPRESSION

Akintoye Olumide OYELADE?, Theddeus T. AKANO?

This paper examines two types of graded hierarchical architecture in
controlling elastic wave. The metamaterial material is design to have the same
resonators but with different configurations; parallel resonators in a host mass and
mass in mass in a host mass. The non-dissipative lattice systems for mass in mass
systems for the hierarchy level three systems introduces a low-frequency no-pass zone
compared to the configurations with a parallel resonator. However, the parallel
resonators produce a wider band gap at mid-frequency zone. Therefore, the choice of
configurations will be determined by the portion where the stop band is desired. The
results in this paper can provide a theoretical basis to design new metaconcrete with
enlarged bandgaps to attenuate elastic waves
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1. Introduction

Metamaterial has gained traction in engineering and material science due to
their unique properties; wave attenuation and tailoring[1-4]. The development in
simulation, theoretical, and experimental study on electromagnetic metamaterials
has engineered metamaterials with new applications such as under water acoustic,
superlensing, cloaking, and, negative refractive indices[5,6]. In taking inspiration
from electromagnetic work, researchers in acoustic metamaterials have been able
to produce materials and structures that can control and guide the propagation of
sound[7,8].

A conventional locally resonant metamaterial has a periodic diatomic
microstructure. It is arranged periodically with lumped local resonator embedded
in the microstructure. The embedded resonator brings about out of phase motion of
the resonator with the host material when the vibration is near the resonance. Hence,
negative mass density and the band gap phenomenon occur[9-11]. For illustration,
first sonic crystals elastic metamaterial to be fabricated was achieved by a coated
lead sphere in an epoxy matrix[12]; a strange bandgap (400-600 Hz) was realized
for a small inclusion. The localized resonant structures perform as a structure with
effective negative elastic constants and a complete wave reflector within certain
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tunable sonic frequency range. A comprehensive review of the metamaterial was
presented by Cveticanin and Cveticanin [13].

Metaconcrete has been constructed from the basic principle of
metamaterials[14—17]. This is a new type of concrete designed by having the coarse
aggregates replaced by engineered inclusions. The conventional metamaterial
model was used in all these works to model the metaconcrete. Experiments and
analyses have indicated that there was a reduction in the transmission ratio, which
Is as a result of the concentration of energy within the aggregates near the front of
the structures. This caused a reduction in transmitted waves in the range of
frequencies where resonant behaviour of aggregates is expected[18].

It is well recognized that the attenuation bandwidth can be enlarged by the
use of two or more resonators. First, two resonators were used, and it was
demonstrated that acoustic band gap can be created to block wave propagation in
several ranges of frequency. The major band gap was determined by the outer mass
of the mass-in-mass lattice system[19]. Furthermore, hierarchy two was proposed
by Liu and Reina[20] where the detailed parameter study revealed various
interesting features of structures with two levels of hierarchy as compared with one
level system with identical static mass. Liu and Reina’s work showed that the total
bandwidth of unit cell two systems is approximately equal, albeit bounded by that
of the unit cell one with the same static mass. The combination of different unit
cells to form graded designs is a promising avenue for tuning the bandgap structure
of acoustic/elastic metamaterials. Also, changing the configuration of the resonators
attachment to the host medium can bring about new phenomenon in creating wider
broadband. In addition, Guobiao et al [21] investigated two resonators which are
coupled through a linear spring. The research focused on the effect of the newly
added linear spring on the bandgap and transmittance of the lattice system.
Compared to their work, a three level resonators connected in different
configurations is investigated.

In this study, we consider two types of graded hierarchical metamaterial of
periodic lattice systems with resonant unit cells 3. In the first configuration, the
three resonators are connected to the host medium in parallel, whereas in the second
configuration, the resonators are embedded in each other. The periodic lattice
system is assumed to be non-dissipative. Wave dispersion characteristics of the two
configurations with multiple resonators are examined to numerically determine the
multiple bandgap formation of the ID system.

2. Theoretical analysis

For standard metamaterials, there are only two positive real solutions. This
is expected based on the order of the dispersion equation resulting from the
equation. Hence, only one forbidden band gap exists in the system. The dispersion
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equation and the effective density of the system in Fig 1. have been given in many
references[10,16] as;
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where w is the angular frequency, w3 = k,/m, is the local resonance frequency of
m,, q isthe wave number, and L is the length of the unit cell.

Fig 1. (a) The mass-spring structure with negative effective mass; (b) its equivalent effective
model

2.1 1D chain of resonators in parallel

This design of the metamaterial used in this paper is motivated by the work of Liu and
Reina[20]. As shown in Fig. 2 (b), the metamaterial consists of three-unit cell.
Furthermore, another form of configuration is proposed in Fig. 2(a). In this first case, the
other three masses are embedded in mass m as shown in Fig. 2(a).

Applying Newton’s second law for the unit cell of the element for Fig 2 (a) gives:
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Fig 2. Schematic of 1D mass-spring lattices for (a) three masses embedded in a mass; (b) mass in
mass model
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The steady state harmonic wave solution for the (j + n)th unit cell is expressed in the form
X£j+n) _ Xyei(j§+n§—a)t) (7)

where ¢ = gL is the non-dimensional wavenumber, X, is complex wave amplitude, g is
wave number, w is angular frequency, and y = 0,1,2 and 3. From Eqgns. (3) - (7), the
determinant of the coefficient matrix of the system of equations is set equal to zero as:
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2 2
Where C11 — _!92_ + 21(1 - COSE) + 1 + AZ + 13, Cyp = _-Q.Z + 1 C33 = _9992 +
1 1
2
Ay Chy = —9693 + 13, Q=w/w, is the non-dimensional frequency with w, =
1

Vki/m,;. The ratio of the masses and stiffness are given as 6; = m,/m,6, =
my/m,0; = mg/m,A=k/ki,A; = ky/ky, A3 = k3/ky

2.2 1D chain of resonators embedded in each other

The second model shown in Fig 2 (b), which is similar to Liu and Reina model is
presented here. The equations of motion are given by:

myy +k(2ys —ya = ya™)+k (vd - i) =0 )
m ) +k (v —yd)+k, (v) —vi)=0 (10)
m, ) +k, (V3 =y )+k (v —yi)=0 (11)
myi +k, (yd -y} )=0 (12)

Substituting of the harmonic wave solution into Egs. (9) - (12) gives the dispersion
relations which can be calculated from the determinant of Eqn. (13)

a, -1 0 0
-1 a A 0
22 2 — 0 (13)
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Where a1 = _92/01 + 2).(1 - COS{) + 1, ayy = _QZ +1+ Az,
azz = — (Q26,)/6; + Ay + A3, gy = — (0%605) /6, + A3

3. Parametric study

In the parametric investigation for these two configurations, these parameters will be used
unless otherwise stated. For the mass and stiffness, 6, =4,0, =4,0; =4,1=
30/4,1, = A; = 1. The three mass resonator embedded in a host will be termed Case 1
and mass in mass model will be denoted as Case 2.
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Fig 3. Dispersion curves for periodic one-dimensional lattice structures with: (a) one mass
embedded in a mass; (b) three masses embedded in a mass (Case 1); (c) mass in mass model (Case
2)

The non-dimensional wavenumber as a function of frequency is plotted in Fig. 3. The
total mass in the three models is equivalent. In Fig. 3 (a) the conventional metamaterials
is shown to have bandgap of 0.97- 3.62 Hz, whereas for Case 1, the stop band occurs at
0.91- 3.62 Hz. There is a small discrepancy here because the three resonators are
connected at different points in the host material. Therefore, when hierarchy level one
and hierarchy level three metamaterial is made to have the same inner mass, the stop band
created are similar. The effect of the displacements of the attachments of the resonators
does not have much effect on the bandgap. However, there are multiple bandgaps in Case
2 due to different resonators embedded in each other; hence three stop band are created.
For wider broadband, using Case 1 may be more effective, whereas when low frequency
vibration attenuation is the target for the metamaterial, Case 2 is the preferred
configuration. To understand the physics of energy transfer within the inner resonators,
the displacement of inner masses, m,, m5 and m,, for Case 1 and Case 2 are calculated
from the eigenvectors of Eq. (8) and (13), respectively. The plot of the frequency against
the dimensionless displacement for the three resonators is depicted in Fig. 4.
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Fig 4. Frequency as a function of dimensionless displacement for m,, m5 and m, for Case 1 (a) -
(c) and for Case 2 (d) - ()

For Case 1, all the resonators are in phase with the host materials at frequency zero to 1,
and after frequency 1, the resonators move in anti-phase. However, for the Case 2, due to
the configuration of the system, only two resonators are in phase with the host material at
low frequency (0-0.4) while the third resonator moves in anti-phase with the host mass
for the given frequency. The band gap is created at the point when the two resonators
move in anti-phase with the host material.

The corresponding band edge frequencies diagram is shown in Fig. 5, where the stiffness
ratio A is varied from zero to six. It can be observed that A value does not change the
bandgap edges. Fig. 6 shows the effect of the ratio of the inner stiffness with the stiffness
connecting the host mass A;. We note for Case 1, in Fig. 6(a) that, with the increase of
A 3 lower and upper edges for the 1st band gap is narrow compared to the wide bandgap
in Case 2 as shown in Fig. 6 (c). This is as a result of the coupling of the mass to each
other unlike what we have in Case 1, where there is an only coupling of the host mass
with the other three masses. However, for the 2nd band gap zone, Case 2 provided wider
broadband compared to Case 1 as shown in Fig 6 (d) and (b) respectively.
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Fig 5. Bandgap variations of the lower and upper edges of the bandgaps for the three resonator
lattice system with different A : (a) Case 1 lower and upper edges for 1st band gap; (b) Case 1
lower and upper edges for 2nd band gap ; (c) Case 2 lower and upper edges for 1st band gap; (d)
Case 2 lower and upper edges for 2nd and 3rd band gap.

a b
0.8 @) (b)
N R ——
0.6
C: 0.4 C} 2
0.2
1
0.0
01 02 _ 03 04 05 01 02 03 04 05
A3 A3
- (©) C)
2
0.6
G o4 c 1/
0.2
0
0.1 0.2 0.3 0.4 0.6 0.1 0.2 0.3 0.4 0.6
?‘“3 7\‘3

Fig 6. Bandgap variations of the lower and upper edges of the bandgaps for the three resonator
lattice system with different A5: (a) Case 1 lower and upper edges for 1st band gap; (b) Case 1
lower and upper edges for 2nd band gap ; (c) Case 2 lower and upper edges for 1st band gap; (d)
Case 2 lower and upper edges for 2" and 3" band gap.
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Fig 7. Bandgap variations of the lower and upper edges of the bandgaps for the three resonator lattice
system with different 6, : (a) Case 1 lower and upper edges for 1st band gap; (b) Case 1 lower and upper
edges for 2nd band gap ; (c) Case 2 lower and upper edges for 1st band gap; (d) Case 2 lower and upper

edges for 2" and 3" band gap.

We are now ready to inspect the effect of the mass ratio 8, on the overall bandwidth of
the two configurations. The dependency of the mass ratio 8, against frequency is plotted
in Fig. 7. The bandgap increases from 6; = 0.1 to 8, = 3, corresponding to Case 2, as
shown in Fig. 7 (c), while for Case 1, the bandgap increases as 6, increases to an extent
but tend to reduce as 6; reaches 1 for the 1st band gap (Fig 7 (a)). There is a linear
relationship between the mass ratio and frequency for the 2nd bandgap for Case 1 as
shown in Fig. 7 (b). This is different from the characteristics of bandgap formation for
Case 2, where there are two narrow bandgaps.

4. Conclusions

This paper has presented two configurations of graded designs for tuning the bandgap
structures of acoustic/elastic metamaterials. The results show that the total bandwidth of
multiple resonator systems for Case 1 is roughly equal with that of the single-resonator
unit with the same static mass. When the host material housed the multiple resonators as
we have in Case 1, there is broad wave attenuations at relatively high frequencies. In
contrast to Case 2, where the mass is inserted in each other, which produces narrow
bandgap at low frequencies. These two configurations can be used in many applications
such as in rainbow trapping devices and low frequency bending waveguides.
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