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NUMERICAL INTEGRAL APPROACHES FOR BUCKLING 
ANALYSIS OF STRAIGHT BEAMS 

Viorel ANGHEL1, Cristinel MARES2 

This paper presents two different approaches using an integral approximate 
method based on flexibility influence functions (Green’s functions), concerning the 
critical buckling load calculation   for straight Euler-Bernoulli beams.  The integral 
formulation solves in fact the differential equation governing the bending behavior 
of a beam subjected to compression loads. The integrals are then computed by a 
summation using weighting numbers for a chosen number of collocation points on 
beam axis. Several examples concerning the pin-ended beams and clamped-free 
beams are analyzed. The first approach is formulated using an integral form of the 
corresponding differential equation in terms of bending deflection while in the 
second approach the differential equation is written in terms of bending slope. The 
numerical results show good agreement with the analytical one.  
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1. Introduction 

The integral approach based on the use of flexibility influence functions 
(Green’s functions), as are they called in [1], was widely used in the structural and 
aeroelastic analysis for the fixed large aspect ratio cantilever wing problems in the 
works [2-4]. In [5] the differential equation governing the transverse bending 
vibration analysis for rotating beams was put in integral form using Green 
functions in order to obtain the natural frequencies, highlighting the stiffening 
effect due to the centrifugal forces. The approach was then extended to the 
coupled bending vibration analysis for pre twisted blades [6]. Then, in [7] was 
described the more general case of the coupled bending-bending-torsion vibration 
analysis for straight beams and blades.  Other applications of the integral 
approach in static and dynamic response analysis of beams are described in [8]. In 
the case of the dynamic, stability or aeroelastic analysis this method leads to an 
eigenvalues and eigenvectors problem [9]. 
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This paper presents two standard cases of the buckling analysis for pin-
ended and clamped-free beams using the integral forms of the corresponding 
differential equations and appropriate Green’s functions. Two approaches are 
described: the first one obtains the integral form of the beam equations in terms of 
bending deflection, while the second one works with the beam bending slopes. 
For both approaches and both beam configurations, numerical applications are 
discussed allowing the comparison with known analytical results.  

2. Integral and matrix forms for beam differential equations 

The differential equation governing the bending behavior for a straight 
beam, of length L and subjected to a transverse distributed load force p(x), can be 
written as: 

[ ] )('''')( xpwxEI = . (1) 
This can be reformulated in the integral form, [1]: 

∫=
L

w dpxGxw
0

)(),()( ξξξ . (2) 

In this equation, the Green’s function Gw(x,ξ) are the bending deflections w(x,ξ) 
measured at distances x due to unit forces applied at distance ξ (Fig. 1a). 

From the Saint Venant torsional behavior of a straight beam of length L 
and subjected to the distributed torsion moment mt(x), the differential equation is: 

[ ] 0)('')( =+ xmxGJ tφ . (3) 
It can take the integral form: 

∫=
L

tt dmxGx
0

)(),()( ξξξφ , (4) 

using the Green’s function Gt(x,ξ) representing the twist deflection angles ϕ(x,ξ) at 
distances x due to unit torsion moments applied at distances ξ (Fig. 1b).  

 

a)                                                        b) 

Fig. 1.  Physical significance of Green’s functions for bending and torsion  

In these equations the material of the beam considered isotropic has the 
longitudinal elastic modulus E and the shear modulus G. The terms I(x) and J(x) 
represent the moment of inertia of the cross-section of the beam, respectively the 
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torsional stiffness constant. Choosing n collocation points ξi with fi = f(ξi), the 
integral forms (2) and (4)  can be approximated as: 
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)( ξξ , (5) 

where Wi are weighting numbers. In this paper the Simpson’s method of 
integration was used for an even number n = 2m of equally spaced collocation 
points: 
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The equation (1) can take the matrix form: 
{ } [ ][ ]{ }pWGw w= . (7) 

In this relation: 
[Gw] is the (n,n) symmetric matrix of the Green’s functions values,   
[W] is a (n,n) diagonal weighting matrix corresponding to the Simpson’s method, 
{w} and {p} are column vectors of the bending deflections and of the distributed 
transverse forces p(ξ) in the chosen n collocation points respectively. 
The equation (4) can also be written in matrix form: 

{ } [ ][ ]{ }tt mWG=φ , (8) 
where: 
[Gt] is the (n,n) symmetric matrix containing Green’s functions values,   
{ϕ} and {mt} are column vectors of the torsion deflections and of the distributed 
torsion moments mt(ξ) in the n collocation points respectively. 

3. Buckling analysis of pin-ended straight beam 

In the first case the buckling analysis of a pin-ended straight beam is 
carried out. The beam is loaded in compression by a force P. In this boundary 
conditions case, the Green’s functions Gw(x,ξ) = w(x,ξ) are shown in the figure 
below: 

 

 

 
Fig. 2.  Buckling of a pin-ended straight beam and the corresponding  Green function  

One starts from the equation governing the bending displacements written as: 
( ) ( )[ ] '''''';'' PwwxEIorPwwxEI −=−= . (9) 

 The matrix form of the last equations takes the form: 
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{ } [ ][ ][ ]{ } [ ]{ }wGPwDWGPw w −=−= 2 . (10) 
In the previous relation [D2] is a differentiating matrix used to obtain the second 
derivative of the bending deflection. This is calculated using a central difference 
operator. Equation (10) represents an eigenvalue problem having the dimension 
given by the number n of collocation points: 

[ ] [ ][ ]{ } { }01 =+ wIPA  (11) 
where [A1] = inv[G]. The eigenvalues of the matrix [A1] are the critical buckling 
loads ( λ = - Pc). The collocation points ξi are chosen such that the first point ξ1 is 
near x = 0 and the last point ξn is located near the end of the beam (x = L), in order 
to avoid the null columns or rows values in the matrix [Gw]. 

One can reduce the dimension of the eigenvalue problem by using 
collocation functions. The displacement w is written in this case as: 

( )∑
=

⋅=
p

k
kk xfCxw

1
)( , (12) 

where fk(x) are p known functions corresponding to the boundary conditions and 
Ck are constant coefficients. One obtains relations of the form: 

{ } [ ]{ } { } [ ]{ } { } [ ]{ }CFwCFwCFw 2
''

1
' ;; === . (13) 

The matrices [F], [F1], [F2] contain the values kf , '
kf , ''

kf in the collocation points. 
Their dimensions are (n, p). An advantage of this formulation is that the 
differentiating matrices are no more necessary and (10) can be written as: 

[ ]{ } [ ][ ][ ]{ }CFWGPCF w 2−= . (14) 
Multiplying left with transpose of  matrix [F] one obtains matrix relations as:   

[ ]{ } [ ]{ }CBPCA −= , (15) 
or: 

[ ] [ ]{ } { }CPCAB −=−1 , (16) 
which can be written as an eigenvalue problem: 

[ ] [ ][ ]{ } { }02 =+ CIPA , (17) 
where [A2] is now a p×p matrix (p < n), and its eigenvalues represent  the critical 
buckling loads ( λ = - Pc).                                                          

Another way considered in this paper is using a similar approach but 
formulation is written in terms of bending slopes. Starting from (9): 

( )[ ] '''' PwwxEI −=  (18) 
and using the notation ϕ='w  for the local bending slope, the above equation 
becomes:  

( )[ ] 0'' =+ ϕϕ PxEI  (19) 
This equation can be considered of the form (3) and its integral form is similar 
with (4) if ( ) ( )ξϕξ Pm = : 
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∫=
L

dmxGx
0

)(),()( ξξξϕ ϕ . (20) 

In the above relation, the Green’s function values Gφ(x, ξ) represents the bending 
deflection slopes φ(x, ξ) at distances x due to unit bending moments applied at 
distances ξ (Fig. 3) and m(ξ) is the distributed bending moment.  
 

 
Fig. 3.  Green’s functions for bending slope in the case of pin-ended straight beam  

In matrix form equation (20) becomes: 
{ } [ ][ ]{ }ϕϕ ϕ WGP= , (21) 

which is an eigenvalue problem: 
[ ] [ ][ ]{ } { }03 =− ϕIPA  (22) 

with [A3] = inv([Gφ][W]). The eigenvalues of the matrix [A3] determine the 
buckling loads ( λ =  Pc). 

As numerical application a beam having the constant bending rigidity EI = 
1 and L = 1 is analyzed. According to [10], the analytical results concerning the 
first three critical buckling loads are the followings: 
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The first critical buckling loads determined using the relation (11) based on the 
matrix [Gw] and n collocation points are given in the next table. 

Table 1 
Results for the pin-ended straight beam - relation (11), collocation points 

 
 n = 10 n = 20 n = 40 n = 60 n = 100 Exact 

Pc1 11.246 10.422 10.119 10.03 9.963 π2=9.869 
Pc2 50.7 42.848 40.74 40.236 39.894 4π2 = 39.478 
Pc3 139.473 100.947 92.668 90.961 89.693 9π2 = 88.826 

 
The results are improved by increasing the collocation points number n. The 
numerical differentiation is a source of errors, so it is preferable to avoid the 
differentiating matrix [D2] using the collocation functions approach. This 
approach is especially efficient in the case of the calculation of critical buckling 
loads for non-uniform cross-section beams using the real buckling mode shapes 
for the uniform beam which are compatible with the boundary conditions. For the 
pin-ended straight beam these functions are, [10]: 
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( )      sin 


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=

L
xkxwk
π k =1..p. (24) 

The next table shows the results for the uniform beam in the case of the use of 
relation (22) based on the matrix [Gφ] and n collocation points. 

Table 2 
Results for the pin-ended straight beam-relation (22), collocation points 

 
 n = 10 n = 20 n = 40 n = 60 n = 100 Exact 

Pc1 10.404 10.171 10.027 9.976 9.934 π2=9.869 
Pc2 39.959 40.320 40.024 39.868 39.724 4π2 = 39.478 
Pc3 83.214 89.339 89.732 89.563 89.329 9π2 = 88.826 

 
The convergence is slow as in this case the matrix [Gφ] can contain also very 
small positive and negative values. 

The next example concerns the calculation of the first critical buckling 
loads for a non-uniform stepped cross-section beam having the total length L. (see 
fig. 4).  

 

Fig. 4.  Non-uniform pin-ended stepped cross-section beam  

The idea is to use the approach with collocation points and the collocation 
functions representing in fact the buckling mode shapes for the uniform beam 
given by (24).   The table 3 presents the results obtained for n = 100 collocation 
points and p = 5 collocation functions, in comparison with those of [10], in terms 
of the parameter λ calculated using  the formula giving the first critical buckling 
load: 

2
2

1 L
EIPc

λ
=  (25) 

The results obtained in the present work show good agreement when compared 
with those of [10]. This reference obtains the buckling loads based on the 
resolution of transcendental equations. 

Table 3 
λ values  for pin-ended stepped beam -relation (17), collocation functions 

I1/I2 a/L=0.2 a/L=0.4 a/L=0.6 a/L=0.8 Source 

0.01 0.15 0.27 0.60 2.26 [10] 
0.150 0.271 0.601 2.287 present 

0.1 1.47 2.40 4.50 8.59 [10] 
1.468 2.406 4.508 8.670 present 

0.2 2.80 4.22 6.69 9.33 [10] 
2.796 4.228 6.700 9.346 present 
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0.4 5.09 6.68 8.51 9.67 [10] 
5.089 6.680 8.510 9.675 present 

0.6 6.98 8.19 9.24 9.78 [10] 
6.979 8.185 9.243 9.782 present 

0.8 8.55 9.18 9.63 9.84 [10] 
8.550 9.175 9.630 9.836 present 

4. Buckling analysis of clamped-free straight beam 

A clamped-free straight beam compressed with the force P and the 
corresponding Green’s functions values Gw(x,ξ) = w(x,ξ) are shown in Fig. 5. 
 

 

 
 

 
Fig. 5.  Buckling of  a clamped-free straight beam and the  used Green function 

 
In this case, the equation governing the bending behavior can be written as: 

( ) [ ])('' LwwPwxEI −−=  (26) 
Comparing equations (26) and (9), it has a supplementary term, the bending 
moment Pw(L). After a first differentiation with respect to x this equation 
becomes: 

( )[ ] [ ])(''''' LwwPwxEI −−=  (27) 
where the supplementary term )(' LPw can be considered as a transverse tip 
concentrated force.  The second differentiation with respect to x leads to: 

( )[ ] [ ])('''''''' LwwPwxEI −−=  (28) 
Neglecting the term in )('' Lw , the integral form of the equation (28) regarded as 
of the form (1) becomes: 

)('),()(''),()(
0

LwLxGPdwxGPxw w

L

w ⋅⋅+−= ∫ ξξξ  (29) 

where the second term of (29) gives the influence of the concentrated tip 
transverse force )(' LPw  from (27) before the second differentiation. The relation 
(29) takes the following matrix form: 

{ } [ ][ ][ ]{ } [ ][ ]{ }wDGPwDWGPw ww 1
*

2 +−= , (30) 
where 
[D1] is a differentiating matrix used to obtain the first derivative of the bending 
deflection, 
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[ ]*
wG is a (n,n) correction matrix  used only to obtain the terms containing the first 

derivative of the bending deflection )(' Lw at beam end, considered as given by the 
relation: 
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The collocation points ξi are chosen equally spaced with the step Δξ = L/n, the 
first point ξ1 being near x = 0 and the last point ξn = L being exactly at the tip of 
the beam. The Green functions can be computed using the formula: 
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Following a similar procedure one can consider the equation written in 
terms of bending deflection slopes. Starting from (26) written with ϕ='w  one can 
obtain: 

( )[ ] ( ) 0''' =−+ LPPxEI ϕϕϕ  (33) 
Neglecting the last term, the integral form of (33) is the same as (20):  

∫=
L

dmxGx
0

)(),()( ξξξϕ ϕ  (34) 

but now the Green’s function values Gφ(x,ξ) are the bending deflection slopes 
φ(x,ξ) according to Fig. 6 and m(ξ) is the distributed bending moment.  

 
Fig. 6.  Green’s functions for bending deflection slope in the case of clamped-free straight 

beam 

The matrix form is similar to equation (21) with a different matrix [Gφ(x,ξ)]. This 
represents an eigenvalue problem allowing the buckling loads determination. In 
this case, the Green functions can be computed using the formula: 
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As numerical application a beam having the constant bending rigidity EI = 1 and 
L = 1 is considered. In this case, the first three critical buckling loads are 
according to [10]: 
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The first three critical buckling loads determined using the relation (30) based on 
the matrix [Gw] and n collocation points are given in table 4. 

Table 4 
Results for the clamped-free beam - relation (30), collocation points 

 n = 10 n = 20 n = 40 n = 60 n = 100 Exact 
Pc1 2.460 2.465 2.466 2.467 2.467 π2/4=2.467 
Pc2 21.652 22.069 22.172 22.191 22.201 9π2 /4 =22.206 
Pc3 57.295 60.620 61.620 61.567 61.642 25π2 /4= 61.685 

 
The precision increases with the number of the collocation points number n.  

The next table shows the results in the case of the use of relation (22) 
based on the matrix [Gφ] and n collocation points. 

Table 5 
Results for the clamped-free beam - relation (22), collocation points 

 n = 10 n = 20 n = 40 n = 60 n = 100 Exact 
Pc1 2.460 2.465 2.466 2.467 2.467 π2/4=2.467 
Pc2 21.652 22.069 22.172 22.191 22.201 9π2 /4 =22.206 
Pc3 57.295 60.620 61.620 61.567 61.642 25π2 /4= 61.685 

 
The results are in good agreement as in this case, according to the relation (35), 
matrix [Gφ] contains only positive values. 

Another example considering a non-uniform beam and using the 
collocation function approach is presented next. As appropriate collocation 
functions one can take the family of the real vibration mode shapes of a clamped-
free uniform beam, [11]: 
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The example concerns the calculation of the first critical buckling loads for a non-
uniform cross-section clamped-free beam (fig. 7).  

 

Fig. 7.  Non-uniform clamped-free beam  

 
The bending stiffness distribution for this example from [10] is in terms of 
distances a and y: 
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Here we will use the variable x, so: 
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with EI2 given at x = 0: 
k

a
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For given values of I1/I2 and k one can obtain the distance a. 
The first approach uses the relation (17) with collocation points and the 

collocation functions (37). The second one based on bending slopes uses only 
collocation points and relation (22). 
   The table below presents the results obtained for n = 100 points and p = 5 
functions, in comparison with those presented in [10] in terms of the parameter λ 
from the formula: 

2
2

1 L
EIPc

λ
=  (43) 

Table 6 
λ values for the clamped-free non-uniform cross section beam 

I1/I2 
k = 2 k = 4 

[10] (17) (22) [10] (17) (22) 
0.1 1.350 1.341 1.3359 1.202 1.194 1.1897 
0.2 1.593 1.5829 1.5796 1.505 1.4964 1.4935 
0.3 1.763 1.7566 1.754 1.710 1.7026 1.7002 
0.4 1.904 1.8974 1.895 1.870 1.8635 1.8614 
0.5 2.023 2.0179 2.016 2.002 1.9973 1.9955 
0.6 2.128 2.1246 2.123 2.116 2.1129 2.1112 
0.7 2.223 2.2211 2.219 2.217 2.2151 2.2135 
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0.8 2.311 2.3096 2.308 2.308 2.3072 2.3057 
0.9 2.392 2.3918 2.3903 2.391 2.3912 2.3898 

 
The results obtained for both formulations agree well with the analytical ones 
obtained in [10] by solutions of Bessel type differential equations. 
 

6. Conclusions 

This work presents two simple integral formulations for stability analysis 
of straight Euler-Bernoulli beams. These approaches are based on the use of  
flexibility influence functions (Green’s functions). These functions are numerically 
computed, taking into account the fact that they are displacements in some points 
of a beam due to unit forces applied in other points. The symmetric matrix 
containing the Green’s functions values is computed in a number of collocation 
points. An integration matrix based of Simpson’s method of integration is also 
employed. Differentiating matrices are used in order to obtain the first and the 
second derivative of the bending deflections. In order to avoid these 
differentiating matrices one can use collocation functions depending upon the 
boundary conditions. In fact the collocation functions are suitable especially in the 
case of non-uniform cross-section beams when the buckling mode shapes or  
natural mode shapes of vibrations of uniform beams can be employed.  

The second approach based on the use of the buckling differential 
equations written in terms of bending slopes is a specific contribution of this 
work. This approach is suitable especially for the clamped-free beam critical 
buckling loads calculation, as no differentiation matrices or collocation functions 
are necessary. In this work the standard cases of the pin-ended beam and of the 
clamped-free beam have been analyzed. The Green’s functions are computed 
numerically. In the case of the clamped-free beam they are given by simple 
relations listed in the text. The numerical examples, for several critical buckling 
loads calculations show good agreement with known analytical results obtained 
for uniform or non-uniform cross section beams, the accuracy depending on the 
number of the used collocation points. Both approaches are in fact matrix 
formulations, suitable for Matlab/Octave implementation, an appropriate 
calculation software for numerical and data manipulation point of view.  
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