
U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 2, 2024 ISSN 2286-3540

SIEVE OF ATKIN REVISITED

Mircea GHIDARCEA1 and Decebal POPESCU3

The Sieve of Atkin (SoA) represented a significant advancement
in the domain of prime number identification, promising substantial effi-
ciency gains over its predecessors – yet, despite its theoretical advantages,
practical enhancements to SoA have seen limited exploration. This paper
presents a set of comprehensive enhancements to SoA, achieving an order-
of-magnitude improvement in its performance. Our approach introduces a
set of algorithmic refinements aimed at optimizing its core computational
processes, carefully designed to leverage the algorithm’s inherent strengths
while addressing known limitations. Subsequently, we implement a parallel,
incremental and cache-intensive sieve as proof-of-concept for this new SoA
algorithm.

Our empirical analysis demonstrates through benchmarking that these
enhancements not only can revitalize SoA but also position it within the
same performance echelon as the most efficient sieves currently available.
These findings underscore the untapped potential of SoA in prime number
sieving, opening new avenues for research and application in mathematical
computing and beyond.

Keywords: Prime numbers sieving, Sieve of Atkin, Algorithms, Algorithm
optimization, Parallel algorithms

1. Introduction

Although is the last important prime sieving algorithm, Sieve of Atkin
is quite old: it was officially published in 2003 [1], but the preprint for the
article dates from 1999, as seen in References section of [2]. Nevertheless,
extremely few serious attempts were made to improve upon this promising al-
gorithm, as systematic generation of prime numbers in sequence (aka
prime sieving) was practically ignored lately. No real progress was made to ad-
vance prime numbers sieving algorithms in the last decades [3] – nowadays, the
only sieving algorithm that receives any attention beyond didactic landscape
is the Sieve of Eratosthenes (SoE).

1Doctoral student, University POLITEHNICA of Bucharest – Computer Science, Ro-
mania; e-mail: mircea.ghidarcea@stud.acs.upb.ro

2Professor, University POLITEHNICA of Bucharest – Computer Science, Romania; e-
mail: decebal.popescu@upb.ro

15

16 Mircea GHIDARCEA, Decebal POPESCU

In our systematic study of the prime sieving domain [3] we could iden-
tify only two papers trying to improve upon SoA: Galway in 2000 [2] and
Farach/Tsai in 2015 [4]. Galway’s contribution is interesting, but it does
not address the binary operational complexity of the algorithm; Farach/Tsai’s
work is even more abstract – it introduces an improved theoretical algorithm
that may lower the complexity of SoA, but with no practical discussions and
no follow-up.

Given that SoA stands alongside SoE as the only algorithms of practical
significance in prime number sieving, as shown in [3], we think there is much
potential to unearth in SoA based algorithms. To prove this, our article takes
over from Atkin/Bernstein and carry their work several steps further, in two
stages:

1) We apply some refinements to SoA and show that impressive speed-up
is still possible even at the level of the single threaded reference implementa-
tion.

2) We implement a parallel, incremental, cache-intensive sieve as a proof-
of-concept and show that its performance really is of the same order of mag-
nitude with as best modern prime sieves.

This study is primarily addressed to researchers and practitioners in the
fields of number theory, cryptography, computational mathematics, parallel
computing and software optimization. Our improvements on SoA show that
significant advancements in prime number sieving efficiency is still possible,
potentially impacting various applications from cryptography to computational
research methodologies. By targeting these key areas, we aim to contribute
to the ongoing development and optimization of mathematical computational
techniques.

NOTE 1: Our experiments used C/C++ to create succinct, self-contained
and high-performance code that can be readily compiled across several different
platforms. Accompanying code used in this article can be found on GitHub
at https: // github. com/ mirceag70/ SoA_ Revisited .

NOTE 2: All the timings for this paper were measured on a workstation
with AMD Ryzen 9 7900X. For a better standardisation of results, all the
components of the generation process must be included in the timings to be
compared, including any data preparation that occurs before sieving (like root
primes generation) or after sieving (like really, effectively obtaining the value
of all prime numbers and getting those values in order). 1

1An optimizing compiler will discard futile code, so very often it is not sufficient to simply
compute the number in code without using it – one must assure that the number is really
computed in the benchmarking process.

Sieve of Atkin Revisited 17

2. Original SoA

Sieve of Atkin [1] is a quadratic sieve, based on the mathematical
properties of some quadratic forms. This sieve has the lowest known theoretical
complexity (similar to Sieve of Pritchard (SoP) [5], but with significantly lower
overhead) and thus it is quite promising.

The algorithm uses the fact that all the numbers p = 12k + r that:
a) have an odd number of positive solutions at these equations:

• p = 4x2 + y2, where r=1 or 5, x and y > 0;
• p = 3x2 + y2, where r=7, x and y > 0;
• p = 3x2 − y2, where r=11, x > y > 0;

and
b) are squarefree (not a multiple of the square of a prime);

are primes (in cited paper [1] one can find more about the mathematical reason-
ing behind SoA). The structure of SoA is more related to Sieve of Sundaram
[3] than SoE and has great potential for parallelization (the sieve was pub-
lished from the start in the segmented form). In the accompanying code you
can find three basic implementation for this sieve: a very simple, naive ver-
sion, a straightforward, standard implementation and a lightly optimized one,
implementing the 6k ± 1 pattern and bit compression. The multiple modulo
operations impair the performance, as you can see in table 1 where we added
also results for Singleton’s 357 [6, 3] as a baseline. We must note that we
tried several tricks in the code to speed up the computations, for example by
substituting multiplications with additions etc. – still, the additive versions
does not work faster than the normal one because the optimizing compiler is
better at optimizing straightforward code (the optimizations will generally be
executed better by the compiler if the code is as clear as possible), thus we
kept using the straightforward code for clarity.

Tbl 1. SoA timings (ms) for generating primes up to 10n – basic versions

n π(10n)
SoA

357
Naive Standard 1bit 6k ± 1

5 9’592 1 1 1 -
6 78’498 2 1 1 1
7 664’579 22 16 14 9
8 5’761’455 642 456 148 86
9 50’847’534 - 6’043 2’415 849
10 455’052’511 - - 53’842 7’648

The space complexity of the basic sieve is O(N) – in fact the memory
required is exactly N for the uncompressed version or N/24 in the one imple-
menting the compressed pattern.

18 Mircea GHIDARCEA, Decebal POPESCU

As mentioned, the original technique is somewhat improved for very large
limits by Galway in [2], or Farach/Tsai in [4], but still there remain a huge
number of complex arithmetic operations that have to be executed. It becomes
clear that we need to eliminate these complex operations in order to get a
practical sieve.

3. Optimized SoA

3.1. Avoiding futile work

Here is the code for one of the sieving loops (as said before, the optimizing
compiler will deal with all those multiplications, this is not the issue):

1 //straighforward code
2 for (x = 1; 4 * x * x < limit; x++)
3 for (y = 1; ; y++)
4 {
5 n = (4 * x * x) + (y * y);
6 if (n > limit) break;
7 if (n % 12 == 1 || n % 12 == 5)
8 FlipBit(n);
9 }

10

11 //additive version
12 for (x = 1; x * x < (limit / 4); x++)
13 for (y = 1, n = 4*x*x + 1; n <= limit; n += 2*y + 1, y++)
14 if (n % 12 == 1 || n % 12 == 5)
15 FlipBit(n);

We can see two main problems here:

• The loop generates far more values than those that are really useful;
• The validation of a value implies modulo operations, which is one of
the most taxing operations in terms of CPU resources.

We should try to generate from the start only the values that are already
valid, thus avoiding both problems. For this we use the observation that any
quadratic form Q has the following properties:

Q(a, b) = a · x2 + b · y2 | x = 12kx + dx; y = 12ky + dy

Q(a, b) ≡ (a · dx2 + b · dy2)(mod 12) (1)

At this moment a possible solution becomes clear: for each desired remainder
identify and use all the eligible tuples

(dx, dy) | dx, dy < 12 ∩ Q(a, b) ≡ r (mod 12) | r ∈ {1, 5, 7, 11}
and use only those in the sieve. A simple program will enumerate these values
– see figure 1, where we can spot some beautiful symmetries.

From all 144 possible values for each r we are left now with only 32 tuples
for r = 1, respectively r = 5. Similar, only 24 for r = 7 and 48 for r = 11 –

Sieve of Atkin Revisited 19

Fig 1. All valid tuples

in total, we have only 136 valid tuples to verify for primality out of each 576,
more than four time reduction. Moreover, as r is predetermined for each tuple,
modulo operations are eliminated completely, at the cost of a small overhead
induced by the tuples management. In the accompanying code you can find a
version that capitalizes on this observation, with timings reflected in table 2,
column Tuples.

Next step is suggested by another representation of those values, arranged
as in figure 2 – it becomes clear that generally dy follows a 6k± i pattern, with
dx either on a 2k pattern for r = 7 and 11 or a “100” pattern for r = 1,
respectively a “011” pattern for r = 5 – in total there are six pattern: two for
r = 1 and 11, one for r = 5 and 7.

Fig 2. Symmetries in tuples

With a little effort, these patterns can be implemented directly in code,
avoiding also the overhead induced by the tuples management – here is an
example for one of the six patterns:

1 const unsigned xmax = (unsigned)floor(sqrt(limit / 4));
2 for(unsigned x=1, jmp=0; x<=xmax; x += 1 + jmp, jmp = 1 - jmp)
3 for (unsigned y = 3; ; y += 6)
4 {
5 unsigned n = (4 * x * x) + (y * y);
6 if (n > limit) break;
7 FlipBit(n, sieve1);
8 }

20 Mircea GHIDARCEA, Decebal POPESCU

Again, in the accompanying code you can find an implementation of the
pattern based algorithm, with timings in the same table 2, column Patterns.

Tbl 2. SoA timings (ms) for generating primes up to 10n – optimized versions

n π(10n)
SoA

357
1bit 6k ± 1 Tuples Patterns 4 sieves Incremental

5 9’592 1 1 1 1 1 -
6 78’498 1 1 1 1 1 1
7 664’579 14 10 6 6 6 9
8 5’761’455 148 97 67 63 56 86
9 50’847’534 2’415 1’590 1’241 643 533 849
10 455’052’511 53’842 - 29’807 17’969 5’420 7’648

And a final touch is to split the sieve buffer in four, based on the fact
that now each of the 4 rs (1, 5, 7, 11) is basically treated individually, so we
can do all the associated computations decoupled, each r with its own sieve:
this will further reduce the arithmetic complexity of the code in sieving and
squares detection, at the cost of some added complexity in the final phases.
Regarding phase two – eliminating squares – another observation about the
square of any prime p is useful here:

p2 = (12k1 + i)2 = 12k2 + i2 ≡ i2 (mod 12) (2)

For i ∈ {1, 5, 7, 11} we have:

i2 ∈ {1, 25, 49, 121} = {1, 24 + 1, 48 + 1, 120 + 1} ≡ 1 (mod 12)

thus all p2 ≡ 1 (mod 12). In conclusion, (12k + r)p2 ≡ r (mod 12), which
make it very simple to efficiently parse only those multiples of squares that
are appropriate for a certain r. In the accompanying code you can find an
implementation of the 4 sieves with pattern algorithm – see timings in the
same table 2, column 4 Sieves : more than three times the performance of
the basic optimized SoA. It is visible that our SoA variant is now significantly
more efficient than basic SoE and, as long as it stays within L2/3 cache, it even
beats 357 – only when L3 becomes to small for the sieve size, 357 regains the
advantage cause it’s incremental nature keeps its footprint under those limits.
Nevertheless, it is clear that the pattern doubles the speed, and splitting the
sieve in four gives us 3x improvement.

3.2. From incremental to parallel

Given the previous conclusion it becomes evident that we must process
SoA incrementally to have the same advantage as 357 when when it comes
to cache intensity. Here we must concentrate on the first phase of the sieving
(quadratics), because the last part is already uniform and the middle one
(squares) is already very cheap in our variant.

Sieve of Atkin Revisited 21

There are two approaches to this problem: a pure segmented one (in
which each segment is treated individually and computes its own boundaries)
and a really incremental one (where each segment takes over from the previous
– as in 357). The segmented approach is a little heavier, but is simpler to
manage and can be used also in parallelization; the pure incremental one can
be faster, but it requires additional space (O(

√
N)) and for a relatively small

number of iterations the performance impact should be insignificant. Thus,
we implemented the incremental sieving in phase one (quadratics) with the
timings reflected in table 2, column Incremental – the better performance and
especially better linearity of the algorithm, compared with 357’s SoE is pretty
visible now. The time spent in the different phases of the algorithm is also
interesting: from the 5.4 seconds spent for 10 billion, the sieving part takes
only 3.3 seconds (of which 0.3 in phase 2 – squares); 2.1 seconds are spent
in the last phase (the actual generation and counting of the primes, after
sieving is completed), which is relatively huge – that’s why is very important
to consider all phases in benchmarking. Anyway: the code used here is pretty
optimized, but is not production quality code, so we assume there is space for
another 20-40% performance improvements. Nevertheless, we must note the
10x improvement over the original optimized implementation for large limits.

Of course, the next step is to employ some light parallelization. Hefty
parallelization of SoA inside a segment is somewhat difficult because, where
SoE simply takes a sieve value one way from 1 to 0 or vice-versa (operation
which does not need much synchronization), SoA requires in the first phase
(the heaviest one) repeated updates of the same value, where synchronization
can not be avoided. Until now the simple segmentation was the only technique
to avoid the problem – the 4 sieves technique gives more liberty here, because
each sieve is continuous and can be efficiently processed individually without
any impact on the other sieves. With only 4 threads we can dramatically reduce
the duration, as seen in table 3, column Light parallel – in the accompanying
code you can find an implementation of this light parallel technique. We must
observe that now, from the 2 seconds consumed up to 10 billion, only half is
spent sieving: 1 second is wasted computing primes in the correct order.

The light parallel version above does not exploit optimally the resources
of the CPU – at least because the sieving for patterns 1 and especially 5 is
twice as lengthy as those for pattern 7 and 11: we should allocate twice as
many threads for 5 as per 11. Similar for squares sieving, although with much
lower impact – for r = 1 we have almost 11 times more values to strike out
than for r = 11: there are unused cores that could be involved in sieving.
Of course, one can not have many more threads than physical cores here,
because otherwise cache will not be exploited optimally and, above a certain
point, thread management / context switching overhead will kill any gain
from parallelization. On the other hand, in counting phase the cache usage is

22 Mircea GHIDARCEA, Decebal POPESCU

uniform, so there we can increase drastically the number of threads to optimally
exploit CPUs internal pipelines.

Tbl 3. SoA timings (ms) for generating primes up to 10n – advanced versions

n
SoA

Incremental Light parallel Parallel Full Segmented Optim
6 1 1 - - - -
7 6 3 17 19 - -
8 56 18 21 24 135 -
9 533 210 76 70 200 166
10 5’420 2’048 670 518 583 530
11 55’784 20’350 6’712 5’155 5’866 5’414
12 665’816 208’716 75’786 59’241 59’583 55’700
13 - - - - 750’850 591’257
14 - - - - 11’732’744 6’711’497

We implemented the extended parallel version of the algorithm on our
AMD 7900X workstation and experimentally determined an optimum number
of 40 threads (10 per sieve) in sieving and 400 threads in counting. This
approach dramatically reduced the duration down to 75 seconds up to 1 trillion,
as seen in table 3, column Parallel – in the accompanying code you can find
an implementation of this localized parallel technique.

Still, the middle step (striking out multiples of squares) is not yet seg-
mented, as it needs to access the first prime candidates to compute squares
and multiples – it is the least consumer of time, but now that the outer phases
were segmented, we must deal with this one, too. Like in standard SoE, we can
pre-compute the root primes and use them here. Anyway, up to 107 the light
parallel version is significantly faster and it allows us to compute primes up to
1014. Even at 108 the light version is still faster and that suffice for 1016. One
can compute the root primes initially, or in parallel with sieving – for really
big numbers the 100 milliseconds saved doing it in parallel are not significant
and mess up our conclusions about sieving itself, so the accompanying code
implements the sequential version.

The list of root primes is stored as a vector of gaps between primes
for better cache locality – the first gap value greater than 256 appears at
p = 436, 273, 009 2, so we are safe to use an 8bit vector up to 4.3 × 108. The
time for 1 trillion is now under 1 minute, as seen in table 3, column Full
– the technique to mark squares based on root primes is exemplified in the
accompanying code.

All the phases of the algorithm are now segmented, but they work on the
full memory buffer, so the algorithm itself is not segmented as a whole and it

2https://en.wikipedia.org/wiki/Prime_gap, still valid novemeber 2023

Sieve of Atkin Revisited 23

consumes O(N) space – actually N/24 bytes, but still this amounts to 42GB
for 1 trillion. To get over 1 trillion on a 64GB machine we need to implement
the segmentation at the level of the full algorithm, not only for individual
phases, and use a small static buffer for all processing – of course, we have to

keep the root primes vector, so we can’t go lower than O(π(
√
N)) = O(

√
N

ln
√
N
)

for space complexity (this can be achieved with a segmented computation for
root primes). The overhead imposed by segment and chunk management will
hurt the performance, especially for lower ranges, as visible in table 3, column
Segmented. Still, the performance for higher values is closing in with the Full
version because of better L2/3 cache intensity.

Nevertheless, there is one little problem: although the number of mark-
ings per segment is indeed linear, for really huge values the number of y posi-
tionings (we need to compute the start y for each x, as in the code bellow – see
accompanying code for all the details) becomes greater and greater – around
n = 1014, for a segment size 1010, we have approximately 110 million markings
but we already have more than 120 million positionings, each one with an sqrt
operation, hence the grater and greater duration inflicted for huge values.

1 void Pattern11S(uint64 start, uint64 stop, uint8 sieve[])
2 {
3 const uint64 nmax = stop - segment_start;
4 const uint64 xmax = (tpPrime)(sqrt(stop / 4));
5 for (uint64 x=1, jmp=0; x <= xmax; x += 1+jmp, jmp = 1-jmp)
6 {
7 //get in position
8 uint64 y, n0 = 4 * x * x;
9 if (n0 < start)

10 {
11 const uint64 yy = (tpPrime)ceil(sqrt(start - n0));
12 y = 6 * (yy / 6) + 3;
13 if (y < yy) y += 6;
14 }
15 else y = 3;
16

17 //sieve
18 for (uint64 n = n0 + y*y - segment_start; n <= nmax;
19 n += 12*y + 36, y += 6)
20 {
21 assert(n >= start - segment_start);
22 FlipBit(n, sieve);
23 }
24 }};

Increasing the step size will reduce the number of positionings, but it
will worsen the L1/L2 cache locality, so the best compromise for the CPU and
desired range is to be found experimenting with several values. The optimized

24 Mircea GHIDARCEA, Decebal POPESCU

implementation in the accompanying code is interpolating a different cache
buffer value for each segment to mitigate this aspect. Also, that version is
not computing the start y for each x independently, but it derives it from the
previous y value, thus reducing significantly the effort in positioning – this
new optimized version is able to compute up to 1013 in under 10 minutes, as
seen in table 3, column Optim. The theoretical complexity of SoA may be
sublinear, but in practice, with all the overhead, its arithmetic complexity is
slightly over-linear – nevertheless, the original linear character is much more
visible now in the optimized version.

Tbl 4. SoA timings (ms) for generating primes in intervals of length = 5 · 1010

Interval at SoA primesieve
1011 3’051 402
1012 3’231 514
1013 3’720 626
1014 4’622 767

The segmented algorithm has very low memory footprint and is able to
generate the primes using only 0.5GB RAM or less (depending on the segment
size). The algorithm manages now to compute all 3.2 trillion primes up to
1014 in less than 2 hours, using only 12 CPU cores (on our Ryzen 9 7900X
workstation). It is also capable to compute all primes in any interval up to 264

– a small sample of such timings is depicted in table 4.
Regarding the practical significance of SoA, table 4 contains, in the last

column, the corresponding timings for Kim Walisch’s primesieve3, the most
advanced sieve we know of, computed on the same machine. We see a six
times apparent performance gap, but, considering that our proof-of-concept
implementation really computes all the primes, where primesieve only counts
them with extremely advanced, very fast techniques, that gap is really around
four times, which is the same order of magnitude and within practical domain.
Moreover, our proof-of-concept doesn’t even come close to primesieve when
code optimization is considered: it is quite probable that the same level of
optimization can reduce the gap to 2x or less (primesieve was at version v11.1
at the moment of writing this article (august 2023) and benefits from many
years of intensive code optimization and refinement). This is important be-
cause, although primesieve may remain faster for numbers up to 264, beyond
the word size of x64 CPUs the sub-linear SoA, with much better theoretical
complexity, may win over SoE due to lower number of operations overall.

3https://github.com/kimwalisch/primesieve

Sieve of Atkin Revisited 25

3.3. Future work perspectives

There are several directions to develop SoA from here:

• Improve the pattern algorithm, for example using separate loops for
each eligible value i in 12k + i;

• Implement the algorithm on GPU devices to exploit their massive par-
allel hardware advantages;

• Approach Galway [2] and Farach/Tsai [4] work using the same or a
similar pattern implementation;

• Achieve a similar level of optimization as primesieve; there is ample
space for improvement especially regarding the problem of y positioning
at the start of each interval, as explained earlier;

• Implement the algorithm beyond 264 using specific techniques; for ex-
ample, one can still work with values greater than 264 as long as it stays
within intervals lower than 264 (which is only natural for any incremen-
tal / segmented approach) – any value here can be represented using a
base (interval start) plus a value ∆ that is lower than 264: as long as
we are very careful to keep track of interval limits we can perform all
arithmetic here only with variables ∆ lower than 264.

We think that especially the last point in the enumeration above can be
very significant when we try to asses the practical significance of prime siev-
ing techniques. Almost every possible theory regarding primes was tested up
to 264 (or 4 x 1018) using SoE based fast sieves, but beyond this value not
much was done. We strongly believe that an implementation of an optimized
SoA like ours (or a better one hopefully provoked by this modest optimization
tentative) will outperform any fast SoE based sieve for such very large values
due to sheer complexity advantage. This could advance the limits for test-
ing conjectures like Goldbach and others, improve our knowledge concerning
the mysterious distribution of primes and twin prime numbers or exploit lists
of very big contiguous primes which are useful resources for pseudo-random
sequences (noise simulation, generator seeds, statistical randomness based on
prime distribution etc.)

4. Conclusions

For a very long time it was considered that SoE is by far the only approach
to practical sieving, although other algorithms were known to have better
complexity.

In this article we presented a variant of SoA which allows for signifi-
cant performance gains over an optimized version of standard SoA in lower
ranges, while the gain is even higher for bigger ranges – up to ten times single-
threaded performance over an optimized implementation of the original algo-
rithm. Moreover, our method retains better linearity over a much larger set
of values, allowing to compute up to one trillion (1012) in about 10 minutes

26 Mircea GHIDARCEA, Decebal POPESCU

single threaded and less than 4 minutes lightly threaded. A fully parallelized
version of the algorithm computes all primes up to one trillion in just 1 minute
using only 12 cores of a Ryzen 9 7900X CPU. A segmented version is able
to compute up to 1014 in less than two hours. This version will compute all
the primes in the last interval of length 5 · 1010 before 1014 in just under 5
seconds and proves to have performance in the same order of magnitude with
primesieve.

The techniques mentioned here are completely illustrated in the accom-
panying code – although the code is meant for academic purposes and is not
production quality, it does includes a lot of optimizations necessary to get the
most out of the algorithm. Nevertheless, we are confident that there is much
space for improvement, as we propose in section 3.3 Future work.

Acknowledgement: We express our gratitude to professors Nirvana POPESCU,
Emil SLUSANSCHI and Vlad CIOBANU from Computer Science Department in
University POLITEHNICA of Bucharest, for their invaluable guidance and advice
– their input was decisive for the quality of this paper.

REFERENCES

[1] A. O. L. Atkin, D. J. Bernstein, Prime sieves using binary quadratic forms, Mathe-

matics of Computation 73 (2003) 1023–1030. doi:10.1090/S0025-5718-03-01501-1.

[2] W. F. Galway, Dissecting a Sieve to Cut Its Need for Space, Technical Report, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2000.

[3] M. Ghidarcea, D. Popescu, Prime Numbers Sieving - A Systematic Review with Per-

formance Analysis, Algorithms 2024, 17, 157. doi:10.3390/a17040157.

[4] M. Farach-Colton, M.-T. Tsai, On the complexity of computing prime tables, 2015.

arXiv:1504.05240.

[5] P. Pritchard, A sublinear additive sieve for finding prime number, Communications of

the ACM 24 (1981) 18–23. doi:10.1145/358527.358540.

[6] R. C. Singleton, Algorithm 357: An efficient prime number generator [A1], Communi-

cations of the ACM 12 (1969) 563–564. doi:10.1145/363235.363247.

