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WEAK CONVERGENCE THEOREM OF GENERALIZED

SELF-ADAPTIVE ALGORITHMS FOR SOLVING

SPLIT COMMON FIXED POINT PROBLEMS

Raweerote Suparatulatorn1

In the present paper, we introduce a self-adaptive algorithm for solving the split

common fixed point problem of demicontractive operators in real Hilbert spaces. Weak
convergence result is discussed under suitable assumptions. Some numerical experiments

are also given to support our main theorem. Moreover, applications are given to the split

common null point problem and the split feasibility problem.

Keywords: split common fixed point problem, demicontractive operator, self-adaptive

algorithm.

MSC2010: 47J25, 47H10, 65K10.

1. Introduction

The split common fixed point problem and the split feasibility problem have received
much attention due to its applications in image reconstruction, signal processing, intensity-
modulated radiation therapy and computed tomography. Because the problem can be ap-
plied to solve several real-world problems as mentioned above, so many mathematicians
proposed algorithms for solving the problem, see [4, 12, 13, 15, 16, 17].

Let H1 and H2 be two real Hilbert spaces with inner product 〈·, ·〉 and norm ‖ · ‖. Let
S : H1 → H1 and T : H2 → H2 be two nonlinear operators. Denote the fixed point sets of S
and T by Fix(S) and Fix(T ), respectively. The split common fixed point problem (SCFP)
was firstly introduced by Censor and Segal [3], which is the problem of finding a point

x ∈ Fix(S) such that Ax ∈ Fix(T ), (1)

where A : H1 → H2 is a given bounded linear operator. They invented and proved, in finite
dimensional spaces, the convergence of the following algorithm of two directed operators
S and T for solving such a problem: for an arbitrary point x0, generate a sequence {xn}
recursively by the rule

xn+1 = S(I − τAt(I − T )A)xn, n ≥ 0,

where τ ∈
(
0, 2

λ

)
, with λ being the largest eigenvalue of the matrix AtA (At stands for

matrix transposition).
The SCFP (1) for demicontractive operators was first investigated by Moudafi [8], who

proved weak convergence of this problem, which the step-size of his algorithm was chosen in
such a way that it depends on the norm of the bounded linear operator A. Later on, there
has been growing interest in the SCFP (1) for demicontractive operators; for examples, see
Jirakitpuwapat et al. [5], Maingé [7], Padcharoen et al. [9], Shehu and Cholamjiak [10],
Tang et al. [11], Yao et al. [18].
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Recently, Yao et al. [14] presented the following iterative algorithm for the SCFP of
two demicontractive operators S and T with constants β ∈ [0, 1) and µ ∈ [0, 1), respectively.
Algorithm 1.1: Initialization: given an initial point x0 ∈ H1 be arbitrary, then compute
xn+1 cyclically using

yn = xn − Sxn +A∗(I − T )Axn, (2)

xn+1 = xn − γτnyn, n ≥ 0, (3)

where τn is chosen self-adaptively as

τn :=
‖xn − Sxn‖2 + ‖(I − T )Axn‖2

‖yn‖2
(4)

with γ ∈ (0,min{1−β, 1−µ}) is a positive constant. If yn = 0, then xn+1 = xn is a solution
of SCFP (1), and the iterative process stops. Therefore, the weak convergence of Algorithm
1.1 can be obtained under some mild conditions.

Another interesting point of view to achieve a better algorithm is the result of Kanzow
and Shehu [6]. In a real Hilbert spaceH, the inexact KrasnoselskiiMann scheme was modified
for fixed point problems of nonexpansive operators U : H → K, where K ⊆ H is nonempty,
closed and convex, as follows:
Algorithm 1.2: Initialization: given an initial point x0 ∈ H be arbitrary, then compute
xn+1 cyclically using

xn+1 = αnxn + βnUxn + rn, n ≥ 0, (5)

where rn denotes the residual vector and αn, βn ∈ [0, 1] such that αn + βn ≤ 1. They also
proved the weak convergence result of Algorithm 1.3 under suitable assumptions.

Motivated by these research works, we construct a self-adaptive algorithm for solv-
ing the SCFP (1) and prove weak convergence theorem of the proposed algorithm under
some suitable assumptions. Some numerical experiments have been presented to show the
efficiency of our algorithm. Finally, we apply our result to solve split common null point
problems and split feasibility problems.

2. Mathematical preliminaries

In this section, we give some mathematical preliminaries which will be used in the
sequel. Let H be a real Hilbert space. We know that the metric projection PC from H onto
a nonempty, closed and convex subset C ⊆ H is defined by

PCx := arg min
y∈C
‖x− y‖, x ∈ H.

It is well known that PC is characterized by the inequality, for x ∈ H

〈x− PCx, y − PCx〉 ≤ 0, ∀y ∈ C. (6)

Next, we have the following equality:

2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x− y‖2, (7)

the subdifferential inequality:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, (8)

and

‖tx+ sy‖2 = t(t+ s)‖x‖2 + s(t+ s)‖y‖2 − st‖x− y‖2 (9)

for all x, y ∈ H, s, t ∈ R.
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Definition 2.1. An operator T : C → C is said to be demicontractive (or k-demicontractive)
if there exists a constant k ∈ [0, 1) such that

‖Tx− x∗‖2 ≤ ‖x− x∗‖2 + k‖x− Tx‖2,

or equivalently,

〈x− Tx, x− x∗〉 ≥ 1− k
2
‖x− Tx‖2,

for all (x, x∗) ∈ H × Fix(T ).

We use ⇀ for weak convergence and → for strong convergence. Next, we give some
important tools for proving our main results.

Definition 2.2. Let T : C → H be an operator. Then T is said to be demiclosed at y ∈ H
if, for any sequence {xn} in C such that xn ⇀ x ∈ C and Txn → y imply Tx = y.

Lemma 2.1. [1] Let {σn} and {γn} be nonnegative sequences satisfying

∞∑
n=1

σn <∞ and

γn+1 ≤ γn + σn, n ≥ 0.

Then, {γn} is a convergent sequence.

Lemma 2.2. (Opial) Let D be a nonempty set of H and {xn} be a sequence in H such that
the following two conditions hold:
(a) for every x ∈ D, lim

n→∞
‖xn − x‖ exists;

(b) every sequential weak cluster point of {xn} is in D.
Then {xn} converges weakly to a point in D.

3. Weak convergence theorem

In this section, we study the SCFP (1) under the following hypothesis.
(HP1) H1 and H2 are two real Hilbert spaces;
(HP2) S : H1 → H1 and T : H2 → H2 are two demicontractive operators with constants
β ∈ [0, 1) and µ ∈ [0, 1), respectively, and both I − S and I − T are demiclosed at zero;
(HP3) A : H1 → H2 is a bounded linear operator with its adjoint operator A∗;
(HP4) The problem is consistent, i.e. its solution set, denoted by Ω, is nonempty.

Next, we construct the following self-adaptive algorithm to solve SCFP (1) and prove
weak convergence of the proposed algorithm under some suitable conditions.
Algorithm 3.1: Initialization: given an initial point x0 ∈ H1 be arbitrary, then compute
xn+1 cyclically using

yn = xn − Sxn +A∗(I − T )Axn, (10)

xn+1 = αnxn + βn(xn − τnyn) + rn, n ≥ 0, (11)

where τn is chosen self-adaptively as

τn := γ
‖xn − Sxn‖2 + ‖(I − T )Axn‖2

‖yn‖2
(12)

with γ ∈ (0,min{1 − β, 1 − µ}) is a positive constant, rn denotes the residual vector, and
αn, βn ∈ [0, 1] such that αn + βn ≤ 1. If yn = 0, then xn is a solution of SCFP (1), and the
iterative process stops.

Remark 3.1. z ∈ Ω if and only if ‖z − Sz +A∗(I − T )Az‖ = 0, see Yao et al. [14].
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Theorem 3.1. Let the following conditions hold:

(a) lim inf
n→∞

αnβn > 0; (b)

∞∑
n=0

‖rn‖ <∞; (c)

∞∑
n=0

(1− αn − βn) <∞.

Then the sequence {xn} generated by Algorithm 3.1 converges weakly to a solution of
SCFP (1).

Proof. Let z ∈ Ω. Firstly, we prove that lim
n→∞

‖xn − z‖ exists. By the equivalence of

demicontractive operators, we have

〈yn, xn − z〉 = 〈xn − Sxn +A∗(I − T )Axn, xn − z〉
= 〈xn − Sxn, xn − z〉+ 〈(I − T )Axn, Axn −Az〉

≥ 1− β
2
‖xn − Sxn‖2 +

1− µ
2
‖(I − T )Axn‖2

≥ 1

2
min{1− β, 1− µ}

(
‖xn − Sxn‖2 + ‖(I − T )Axn‖2

)
. (13)

Using (13), we derive

‖xn − τnyn − z‖2 = ‖xn − z‖2 − 2τn〈yn, xn − z〉+ τ2
n‖yn‖2

≤ ‖xn − z‖2 − γmin{1− β, 1− µ}
(
‖xn − Sxn‖2 + ‖(I − T )Axn‖2

)2
‖yn‖2

+ γ2

(
‖xn − Sxn‖2 + ‖(I − T )Axn‖2

)2
‖yn‖2

= ‖xn − z‖2 − γ (min{1− β, 1− µ} − γ)

(
‖xn − Sxn‖2 + ‖(I − T )Axn‖2

)2
‖yn‖2

.

(14)

So, since γ ∈ (0,min{1− β, 1− µ}), we have for all n ≥ 0,

‖xn − τnyn − z‖ ≤ ‖xn − z‖. (15)

On the other hand, we see that

‖xn+1 − z‖ = ‖αn(xn − z) + βn(xn − τnyn − z) + rn − (1− αn − βn)z‖
≤ αn‖xn − z‖+ βn‖xn − τnyn − z‖+ ‖rn − (1− αn − βn)z‖
≤ (αn + βn)‖xn − z‖+ (1− αn − βn)‖rn − z‖+ (αn + βn)‖rn‖
≤ ‖xn − z‖+ (1− αn − βn)M + ‖rn‖,

for some M > 0. By conditions (b) and (c) together with Lemma 2.1, we determine that
lim
n→∞

‖xn − z‖ exists. This implies that {xn} is bounded. Here we show that lim
n→∞

‖xn −
Sxn‖ = lim

n→∞
‖(I − T )Axn‖ = 0. From (9) and (15), we have

‖αn(xn − z) + βn(xn − τnyn − z)‖2 = αn(αn + βn)‖xn − z‖2 + βn(αn + βn)‖xn − τnyn − z‖2

− αnβnτ2
n‖yn‖2

≤ (αn + βn)2‖xn − z‖2 − αnβnτ2
n‖yn‖2. (16)
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Then from (8) and (16), we obtain

‖xn+1 − z‖2 = ‖αn(xn − z) + βn(xn − τnyn − z) + rn − (1− αn − βn)z‖2

≤ ‖αn(xn − z) + βn(xn − τnyn − z)‖2 + 2〈rn − (1− αn − βn)z, xn+1 − z〉
≤ (αn + βn)2‖xn − z‖2 − αnβnτ2

n‖yn‖2 + 2〈rn − (1− αn − βn)z, xn+1 − z〉
≤ ‖xn − z‖2 − αnβnτ2

n‖yn‖2 + 2〈rn − (1− αn − βn)z, xn+1 − z〉
= ‖xn − z‖2 − αnβnτ2

n‖yn‖2 + 2(1− αn − βn)〈rn − z, xn+1 − z〉
+ 2(αn + βn)〈rn, xn+1 − z〉
≤ ‖xn − z‖2 − αnβnτ2

n‖yn‖2 + 2 [(1− αn − βn)‖rn − z‖+ (αn + βn)‖rn‖] ‖xn+1 − z‖
≤ ‖xn − z‖2 − αnβnτ2

n‖yn‖2 + (1− αn − βn)M1 + ‖rn‖M2,

for some M1,M2 > 0. That is

αnβnτ
2
n‖yn‖2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + (1− αn − βn)M1 + ‖rn‖M2.

By our assumptions, we have that lim
n→∞

τ2
n‖yn‖2 = 0, which implies that

lim
n→∞

(
‖xn − Sxn‖2 + ‖(I − T )Axn‖2

)2
‖yn‖2

= 0. (17)

However, we observe that(
‖xn − Sxn‖2 + ‖(I − T )Axn‖2

)2
‖yn‖2

=

(
‖xn − Sxn‖2 + ‖(I − T )Axn‖2

)2
‖xn − Sxn +A∗(I − T )Axn‖2

≥
(
‖xn − Sxn‖2 + ‖(I − T )Axn‖2

)2
2 (‖xn − Sxn‖2 + ‖A‖2‖(I − T )Axn‖2)

≥ ‖xn − Sxn‖
2 + ‖(I − T )Axn‖2

2 max{1, ‖A‖2}
. (18)

Combining (17) and (18), we immediately obtain

lim
n→∞

‖xn − Sxn‖ = lim
n→∞

‖(I − T )Axn‖ = 0. (19)

We next show that every weak cluster point of the sequence {xn} belongs to the solution set
of SCFP (1). Let z̄ be a sequential weak cluster point of {xn}, that is, it has a subsequence
{xnk

} fulfilling xnk
⇀ z̄ as k → ∞. Since A is bounded linear operator, we obtain that

Axnk
⇀ Az̄ as k →∞. By the demiclosedness at zero of I − S and I − T , we can conclude

that z̄ ∈ Ω.
Finally, by Opial’s lemma (Lemma 2.2), we can conclude that {xn} converges weakly

to a solution of SCFP (1). The proof is now completed. �

4. Numerical experiments

In this section, we provide some numerical experiments and illustrate its performance
for supporting our main theorem.

Example 4.1. Let H1 = H2 = l2 with usual norm. Define

S (v1, v2, v3, . . . ) =

{(
2
3v1 sin 1

v1
, 5

6v2 sin 4
v2
, 0, 0, 0, . . .

)
if v1 6= 0 and v2 6= 0,

(0, 0, 0, . . . ) otherwise,

and T (v1, v2, v3, . . . ) = −3 (v1, v2, v3, . . . ), and let A (v1, v2, v3, . . . ) = (0, v1, v2, . . . ) for all
(v1, v2, v3, . . . ) ∈ l2.



72 Raweerote Suparatulatorn

Choose αn = n+3
3(n+1) , βn = 2n

3(n+1) and rn =
(

1
n+1

)20

for all n ≥ 0 in Algorithm

3.1. It is not hard to show that S is 0-demicontractive but not nonexpansive and T is
1
2 -demicontractive and T is not quasi-nonexpansive. So, we set γ = 2

5 and consider different
choices of x0 as follows:

Choice 1: x0 = e1 + e2 + 5e3;
Choice 2: x0 = 3e1 − 6e2 + 2e3;
Choice 3: x0 = −7e1 + 4e2 − 5e3;
Choice 4: x0 = −20e1 + 25e2 − 17e3,

where ei is the sequences whose the ith term is 1 and the other terms are zero, for i ∈ N.
In the experiment, we choose the stopping criterion is En := ‖yn‖ < 10−16 such

that z := (0, 0, 0, . . . ) is the solution of the SCFP (1). The following table shows numerical
experiments of Algorithm 1.1 and Algorithm 3.1 for solving SCFP (1) with different choices
of x0.

Choice of x0 Algorithm 1.1 Algorithm 3.1

Choice 1
No. of Iter. 41 27

Elapsed Time (s) 0.0023 0.0007

Choice 2
No. of Iter. 43 27

Elapsed Time (s) 0.0015 0.0006

Choice 3
No. of Iter. 43 25

Elapsed Time (s) 0.0025 0.0006

Choice 4
No. of Iter. 46 24

Elapsed Time (s) 0.0032 0.0010
Table 1. Numerical experiments of Example 4.1.

From Example 4.1, we observe that the sequence generated by our algorithms involv-
ing the residual vector provides less number of iterations and elapsed times than that of Yao
et al. [14].

5. Applications

In this section, we apply our main result to obtain two new algorithms for solving the
split common null point problem and the split feasibility problem.

5.1. The split common null point problem

Recall that a set-valued mapping M : H1 → 2H1 is called monotone if for all x, y ∈ H1,
u ∈M(x) and v ∈M(y) imply

〈x− y, u− v〉 ≥ 0.

A monotone mapping M is said to be maximal if the graph G(M) is not properly contained
in the graph of any other monotone map, where G(M) := {(x, y) ∈ H1 ×H1 : y ∈Mx} for
a multi-valued mapping M . The resolvent operator JMβ associated with M and β is defined
by

JMβ (x) := (I + βM)−1(x), x ∈ H1, β > 0.

It is known that the resolvent operator JMβ is single-valued and 0-demicontractive and that

a solution of the problem: find x ∈ H1 such that 0 ∈ M(x) is a fixed point of JMβ , for all

β > 0, see [2]. Now, given set-valued maximal monotone mappings B1 : H1 → 2H1 , and
B2 : H2 → 2H2 , respectively. The split common null point problem (SCNP) is the problem
of finding a point x ∈ H1 such that

0 ∈ B1(x) and 0 ∈ B2(Ax). (20)
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By setting S = JB1

β and T = JB2

β , we see that Algorithm 3.1 reduce to the following

algorithm for studying SCNP (20).
Algorithm 5.1.1: Initialization: given an initial point x0 ∈ H1 be arbitrary, then compute
xn+1 cyclically using

yn = xn − JB1

β xn +A∗(I − JB2

β )Axn, (21)

xn+1 = αnxn + βn(xn − τnyn) + rn, n ≥ 0, (22)

where τn is chosen self-adaptively as

τn := γ
‖xn − JB1

β xn‖2 + ‖(I − JB2

β )Axn‖2

‖yn‖2
(23)

with γ ∈ (0, 1) is a positive constant, rn denotes the residual vector, and αn, βn ∈ [0, 1] such
that αn + βn ≤ 1. If yn = 0, then xn is a solution of SCNP (20), and the iterative process
stops.

We immediately obtain the following result by Theorem 3.1.

Theorem 5.1. Suppose the conditions (a) − (c) in Theorem 3.1. Then the sequence {xn}
generated by Algorithm 5.1.1 converges weakly to a solution of SCNP (20).

5.2. The split feasibility problem

Given nonempty, closed and convex sets C ⊆ H1 and Q ⊆ H2. The split feasibility
problem (SFP) is to find

x∗ ∈ C such that Ax∗ ∈ Q. (24)

By setting S = PC , T = PQ, κ(x) := 1
2‖(I − PC)x‖2 and ζ(x) := 1

2‖(I − PQ)Ax‖2 for all
x ∈ H1. Then ∇κ(x) = (I −PC)x and ∇ζ(x) = A∗(I −PQ)Ax. Then Algorithm 3.1 reduce
to the following algorithm for studying SFP (24).
Algorithm 5.2.1: Initialization: given an initial point x0 ∈ H1 be arbitrary, then compute
xn+1 cyclically using

yn = ∇κ(xn) +∇ζ(xn), (25)

xn+1 = αnxn + βn(xn − τnyn) + rn, n ≥ 0, (26)

where τn is chosen self-adaptively as

τn := 2γ
(κ+ ζ)(xn)

‖yn‖2
(27)

with γ ∈ (0, 1) is a positive constant, rn denotes the residual vector, and αn, βn ∈ [0, 1] such
that αn + βn ≤ 1. If yn = 0, then xn is a solution of SFP (24), and the iterative process
stops.

We get the following result by Theorem 3.1.

Theorem 5.2. Suppose the conditions (a) − (c) in Theorem 3.1. Then the sequence {xn}
generated by Algorithm 5.2.1 converges weakly to a solution of SFP (24).

6. Conclusion

The problem of SCFP (1) is discussed, and we provide a self-adaptive algorithm,
Algorithm 3.1, is presented for solving the problem. Convergence analysis of the algorithm
shows that, under some simple and suitable control conditions, the sequence generated by
Algorithm 3.1 converges weakly to a solution of the problem.
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