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Introducing the weak para-f-structure on a smooth (2n + s)-dimensional man-
ifold allows us to take a fresh look at the geometry of the para-f-structure by A. Bucki
and A. Miernowski and find new applications. We demonstrate this by generalizing some
known results on para-f-manifolds.
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Introduction

Totally geodesic foliations have the simplest extrinsic geometry of the leaves and
appear in Riemannian geometry, e.g., in the theory of g-foliations, as kernels of degenerate
tensors, see [1, 6]. We are motivated by the problem of finding structures on manifolds,
which lead to totally geodesic foliations and Killing vector fields, see [5]. A well-known
source of totally geodesic foliations is the para- f-structure on a smooth manifold M?2"*P,
defined using (1,1)-tensor field f satisfying f2 = f and having constant rank 2n, see [3, 7).
The paracontact geometry (a counterpart to the contact geometry) is a higher dimensional
analog of almost product (p = 0) and almost paracontact (p = 1) structures [4]. A para-f-
structure with p = 2 arises on hypersurfaces in almost contact manifolds, e.g., [2]. Interest
in para-Sasakian manifolds is due to their connection with para-Kéahler manifolds and their
role in mathematical physics. If there exists a set of vector fields &i,...,&, with certain
properties, then M?"*P is said to have a para-f-structure with complemented frames. In
this case, the tangent bundle T'M splits into three complementary subbundles: +1-eigen-
distributions for f composing a 2n-dimensional distribution f(T'M) and a p-dimensional
distribution ker f (the kernel of f).

In [9], we introduced the “weak” metric structures that generalize an f-structure and
a para-f-structure, and allow us to take a fresh look at the classical theory. In [8], we
studied geometry of the weak f-structure and its satellites that are analogs of K- 8- and C-
manifolds. In this paper, using a similar approach, we study geometry of the weak para- f-
structure and its important cases related to a pseudo-Riemannian manifold endowed with
a totally geodesic foliation. A natural question arises: how rich are weak para-f-structures
compared to the classical ones? We study this question for weak analogs of para-X-, para-8-
and para-C- structures. The proofs of main results use the properties of new tensors, as
well as the constructions required in the classical case. The theory presented here can be
used to deepen our knowledge of pseudo-Riemannian geometry of manifolds equipped with
distributions.
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1. Preliminaries

Here, we describe “weak” metric structures generalizing certain classes of para-f-
manifolds and discuss their properties. A weak para-f-structure on a smooth manifold
M 2"+P is defined by a (1, 1)-tensor field f of rank 2n and a nonsingular (1,1)-tensor field
Q satisfying, see [9],

F-fQ=0, Q&=¢ (Cekerf). (1)
Ifker f ={X € TM : f(X) = 0} is parallelizable, then we fix vector fields & (1 < i < p),
which span ker f, and their dual one-forms n'. We get a weak almost para-f-structure (a
weak almost paracontact structure for p = 1), see [9],

==Y ne& 1) =7 (2)

By (2), f(TM) = N, kern’ and f(T'M) is f-invariant., i.e., fX € f(TM), X € f(TM).
Thus, f(T'M) is invariant for Q. A weak almost f-structure is called normal if the following
tensor (known for Q = id 7y, e.g., [6]) is zero:

NOXY) = [ X Y) =23 dif (X,Y)&. (3)
The Nijenhuis torsion of f and the exterior derivative of i’ are given by
FAXY) = PICY]+ (X Y] = FIFX, Y] - fIX fY), XY € Xar (4)
dni (X,Y) = (/2 {X (7 (V) = Y (' (C0)) =i (IX. Y}, XY €Xar (5)
If there exists a pseudo-Riemannian metric g such that
G(FX.fY) = —g(X,QY) + 3 n(X)ni(Y), X.Y €, (6)

then (f,Q,&,n',g) is called a metric weak para-f-structure, M(f,Q,&,n',g) is called a
metric weak para-f-manifold, and g is called a compatible metric. Putting Y = ¢; in (6) and
using (1), we get g(X,&;) = n'(X), thus, f(TM) L ker f and {;} is an orthonormal frame
of ker f.

We can rewrite (4) in terms of the Levi-Civita connection V (of g) as

[ AXY)= (Vv f =V )X = (fVxf = Vixf)Y. (7)
Proposition 1.1. (a) For a weak almost para-f-structure the following hold:
(b) For a metric weak almost para-f-structure, we get
Proof. (a) By (1) and (2), f2¢; = 0. Applying (1) to f&;, we get f& = 0. To show niof =0,
note that n°(f &) = 7°(0) = 0, and we get °(fX) =0 for X € f(TM). Next, using (2) and
fQ&) = f& =0, we get

PX=F(X)=FQX =Y n'(X)f&=fQX,
PX=PUX)=QfX =) n(fX)&=QfX

for any X € f(TM). This and [Q, f]& = 0 provide [@, f]=Q f — fQ =0.

(b) By (6), the restriction @ z(7ar) is self-adjoint. This and (1) provide (8b) — the
symmetry of Q. For any Y € f(TM) there is Y € f(T'M) such that fY =Y. From (2) and
(6) with X € f(TM) and Y we get

g X, Y) = g(£X, 1Y) Q —g(X,Qv) & —g(X, V) = —g(X, V),

and the skew-symmetry of f, see (8a), follows. |
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Remark 1.1. If we assume that the symmetric tensor @ is positive definite, then f(T'M) de-
composes into the sum of two n-dimensional subbundles: f(TM) = D &D_, corresponding
to positive and negative eigenvalues of f, and in this case we get TM = D, & D_ P ker f.

Definition 1.1. A metric weak para-f-structure is called a weak para-K-structure if it is
normal and the fundamental 2-form ®(X,Y) = ¢g(X, fY) is closed, i.e., d® = 0. We define
two subclasses of weak para-K-manifolds as follows: weak para-C-manifolds if dn' = 0 for
any i, and weak para-S-manifolds if

dnf =®, 1<i<p. (9)
Omitting the normality condition, we get the following: a metric weak para-f-structure is

called (i) a weak almost para-S-structure if (9) is valid; (i) a weak almost para-C-structure
if ® and 7n* are closed forms.

For p = 1, weak para-C- and weak para-8- manifolds reduce to weak para-cosymplectic
manifolds and weak para-Sasakian manifolds, respectively. Recall the formulas with the Lie
derivative £z in the Z-direction and X,Y € X

(£z2f)X = [Z,fX]-[flZX], (10)
(£2m)X = Z(P (X)) - ([Z X)), (11)
(£Z g)(Xv Y) = Z(g(X’ Y)) - g([Za X]v Y) - g(Xa [Za YD
= g(VX Z,Y)ﬁLg(Vy Z,X). (12)
The following tensors are known in the theory of para-f-manifolds, e.g., [6]:
N (X,Y) = (Lpx )Y — (£5y )X L 2dii (fX,Y) - 240 (fY. X), (13)
N = (£e.HX 2 16 S X] - fl6 X, (14)
NV (X) = (£, )X D 607 (X)) = 17 (€, X]) = 240 (&, X)), (15)

Define the difference tensor Q = Q —id s (vanishing on a para- f-structure). By the above,
Q& =0and [Q, f]=0.

Remark 1.2. Let_M2”+p(g0,Q,§i,ni) be a framed weak para-f-manifold. Consider the
product manifold M = M2”+p x RP, where R? is a Euclidean space with a basis 01,. .., 0p,
and define tensor fields f and @ on M putting

7Y o) =(£x = Y a6, Y/ (X)9), QXY ai9)=(QX, Y a'd)).

Then f2 = —Q. The tensors N () appear when we use the integrability [f,f]=0of fto
express the normality of a weak almost para-f-structure.

2. The geometry of a metric weak para-f-structure

Here, we study the geometry of the characteristic distribution ker f, supplement the
sequence of tensors (3) and (13)-(15) with a new tensor N (® and calculate the covariant
derivative of f on a metric weak para- f-structure.

A distribution D C T'M is totally geodesic if and only if VxY 4+ Vy X € D for any
vector fields X,Y € D — this is the case when any geodesic of M that is tangent to D at
one point is tangent to D at all its points. Any integrable and totally geodesic distribution
determines a totally geodesic foliation. A foliation, whose orthogonal distribution is totally
geodesic, is called a Riemannian foliation. For example, a foliation is Riemannian if it is
invariant under isometries generated by Killing vector fields. Note that X = X T 4+ X+,
where X " is the projection of the vector X € TM onto f(TM), and X+ =", n’(X)&.

The next statement generalizes [6, Proposition 3], i.e., Q@ = id ;.
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Proposition 2.1. Let a metric weak pam -f-structure be mormal. Then the distribution
ker f is totally geodesic, the tensors N ) and N( vanish and

NE(X,Y) = ([QX, fY]). (16)
Proof. Assume N (V) = 0. Taking &; instead of Y and using (4), we get
0=[f, /(X&) = 2D d (X,€)§ = FP[X,&] = fIfX. &) = 2D (X, &),  (17)
For the scalar product of (17) with &;, using f & = 0, we get
dn’ (&, -) = 0; (18)

hence, N¢§'4) = 0, see (15). Next, combining (17) and (18), we get 0 = [f, f](X,&) =
FAX, &) — fIf X, &) = f (£¢,f)X. Applying f and using (2) and 1’ o f = 0, we achieve

0=f2(£e /)X = QU NX = (& [X]) & (19)
Further, (18) and (5) yield
0=2di’ (fX,&)=(fX) (0’ (&) ~& (0 (F X)) (f X, &) =n’ (&, fX]).  (20)

Since @ is non-singular, from (19)-(20) we get £¢, f =0, i.e, Ni(g) =0, see (14). Replacing
X by fX in our assumption N (1) = 0 and using (4) and (5), we get

0=g(lf, X, Y) =2 i ([X,Y)§, &)

= g([f*X, Y], &) = (fX) (' (V) +n'([f X Y]), 1<i<p. (21)
Using (2) and [fY, 7/ (X)&] = (fY)(Uj (X))& + 17 (X)[fY,&], we rewrite (21) as
QX YD) =D (X) ' ([, £YD) + Y (0 (X)) = FX (' (V) + ' ([ X, VD).
Since (20) gives n'([fY,&;]) = 0, the above equation becomes
QX fY]) + (V) (X)) — (FX) (07 (V) + 7 ([f X, Y]) = 0. (22)
Finally, combining (22) with (13), we get (16). Using the identity
Le, =g, d+dug,, (23)

from (18) and 7'(§;) = &5 we obtain £¢, 7/ = d(n’(&;)) + e, dp’ = 0. On the other hand,
by (11) we have (£¢, 77)X = g(X, Ve, &)+ 9(Vx &, &), X € Xp. Symmetrizing this and
using £¢, 77 = 0 and g(&;, &;) = 6;; yield

Ve, &+ Ve, & =0, (24)
thus, the distribution ker f is totally geodesic. O
Recall the co-boundary formula for exterior derivative d on a 2-form ®,
do(X,Y,Z) = (13){XO(Y,2)+Y ®(Z,X)+ Z®(X,Y)
—<I>([X,Y]7Z)—@([Z,X],Y)—(I)([Y,Z],X)}. (25)

The following result generalizes [6, Proposition 4].

Theorem 2.1. On a weak para-X-manifold the vector fields &1,...,&, are Killing and the
following is valid:

vfi £j =0, 1<4,j<p; (26)

thus, the distribution ker f is integrable and defines a totally geodesic Riemannian foliation
with flat leaves.
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Proof. By Proposition 2.1, the distribution ker f is totally geodesic, see (24), and NZ-(?’) =
£e,f = 0. Using tg,® = 0 and condition d® = 0 in the identity (23), we get £¢,® = 0. By
direct calculation we get the following:

(L, ®)(X,Y) = (L, 9)(X, [Y) + 9(X, (£e, )Y). (27)
From (27) we obtain (£¢, g)(X, fY) = 0. To show £¢, g = 0, we will examine (£¢, g)(fX,&;)
and (£¢, 9)(&k,&;)- Using £¢, 17 = 0, we get
Next, using (24), we get (£¢, 9)(&k, &) = —9(&i, Ve, &5 + Ve, &) = 0. Thus, &; is a Killing
vector field, i.e., £¢,g = 0. By d®(X,&;, ;) = 0 and (25) we obtain ¢([¢;,&;], fX) =0, ie.,

ker f is integrable. From this and (24) we get Vg, & = 0; thus, the sectional curvature is
K(&,&)=0. ]

Theorem 2.2. For a weak almost para-8-structure, we get N¢(2): N¢§4) =0 and
(NOXY)) =29(X, fQY) E; (28)

moreover, Ni(g) vanishes if and only if &; is a Killing vector field.

Proof. Applying (9) in (13) and using skew-symmetry of f we get Ni(z) = 0. Equation (9)

with Y = & yields dn/(X,&) = g(X, f&) = 0 for any X € Xjy; thus, we get (18), i.e.,
Ni§-4) = 0. Using (9) and

for all 4, we also calculate
(1/2) g(N (X, Y),&) = —dn' (f X, [Y) — g(3; dn? (X,Y) &, &)
= —B(fX, fY) - ®(X,Y) = g(X,(f* — /)Y) = 9(X, QfY),

that proves (28). Using (9) in the equality (£¢, dn’)(X,Y) = & (dn(X,Y))—dn? ([&, X],Y)—
dn’ (X, [&,Y]), and using (12), we obtain for all i, j

(Le, di)(X,Y) = (L&, 9)(X, fY) +g(X, (£e, )Y). (29)

Since £y =ty od + d o vy, the exterior derivative d commutes with ‘the Lie-derivative, i.e.,
do £y = £y od, and as in the proof of Theorem 2.1, we get that dn® is invariant under the
action of &, i.e., £¢, dn? = 0. Therefore, (29) implies that ¢; is a Killing vector field if and

only if N = 0. O

Theorem 2.3. For a weak almost para-C-structure, we get Ni@) = N¢§'4) =0, N = 7, f1,
and (26) is valid; thus, the distribution ker [ is tangent to a totally geodesic foliation with
the sectional curvature K (§;,&;) = 0. Moreover, Ni(?’) =0 (1 <i<p)if and only if each &
is a Killing vector field.

Proof. By (13) and (15) and dn® = 0, the tensors Ni(Q) and N¢§4) vanish. Moreover, by (3

and (29), respectively, the tensor N () coincides with [f, f], and NZ-(?’) =L f (1<
p) vanish if and only if each §; is a Killing vector. From the equalities 3d®(X,&;,&;)
9([&, &), £X) and 2dn*(&;,&) = g([&i, &), &) and conditions d® = 0 and dn’ = 0 we obtain
[€,&] =0, 1 <i,j <p. Next, from dn’ = 0 and the equality 2dn*(&;, X) + 2dn? (&, X) =
9(Ve, & + Ve, &, X) we obtain (24): V¢, & 4+ Ve, & = 0. From the above we get (26). [

~

A

The following assertion generalizes [6, Proposition 1].
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Proposition 2.2. For a metric weak para-f-structure we get
29(Vx )Y, Z)=-3d®(X, fY,fZ) —3dP(X,Y, Z)
—g(N (Y. 2), 1X) + 3,2 (V. Z)' (X)
+2dn' (fY, X)n'(Z) = 2dn'(fZ, X)n'(Y)) + N (X, Y, Z),
where a skew-symmetric w.r.t. Y and Z tensor N ®)(X Y, Z) is defined by
NOX,Y,2) = (f2)(9(X,QY)) - (fY) (9(X,Q2)) + ¢([X, [ Z],QY)

—g([X, fY],Q2) + g([Y, f 2] — |2, fY] - fIY. Z], QX).

Proof. Using the skew-symmetry of f, one can compute
29((Vx Y, 2) = X g(fY, 2)+(fY) 9(X, Z2)=Z g(X, [Y) + g([X, Y], Z)
+9(1Z, X], 1Y) = 9([fY. 2, X) + X g(Y, f2) + Y (X, f2)
—(F2)9(X.Y) +9(X, Y], f2) + g([f 2, X1, Y) = g([Y, f 2], X).
Using (6), we obtain
9(X,2) = ~0(fX.2) = g(X,QZ) + ) (0 (X) ' (Z) + ' (X) n'(Q2))
= —®(fX,2)+ ) 1'(X)1'(Z) - g(X,Q2).

By the skew-symmetry of f and using (31) six times, (30) can be written as
29(Vx Y. 2) = X (Y. 2) + (fY) (- (fX,2) + ) n'(X)1'(2))
~(fY)9(X,Q2) - Z2(X.Y)

+ (X, Y], £2) + Y 0" (X, fYD0'(2) = 9((X, £Y],QZ) + @((2, X],Y)
— (Y, 20, 1X) = Y ' ([FY. Z) 0" (X) + g([fY, Z),QX) + X B(Y, Z)
Y ®(X,2) ~ (f2) (— (X, Y) + Y 0'(X)n'(V)) + (fZ)g(X.QY)

+ (X, Y], 2) + g(f[=F 2. X).FY) + Y 0 (FZ. XD (V) = (£ 2, X],QY)

+ (Y, 120, X) = 0'([Y. FZ) 0" (X) + g([Y, £ 2], QX).
We also have
g(IND(Y,2), fX) = g(f2Y, Z) + (Y, [ Z) = fIfY, Z) = [IY, £ Z), fX)
= —g(f[Y: 2),QX) + g([fY. f Z) — fIfY. Z] = Y, 2] - [V, 2],  X).
From this and (25) we get the required result.

Remark 2.1. For particular values of the tensor N (®) we get

NO(X,&,2) = —NO(X,2,6)=g(N(2), QX),
NOWe, Y, Z) = g(&, f2),QY) — g([&, FY],QZ),
NO(& Y, &) = NO(g,¢,Y)=0.

(31)

(32)

The following corollary of Proposition 2.2 and Theorem 2.2 generalizes well-known

results with Q = id 7.
Corollary 2.1. For a weak almost para-8-structure we get
29((Vx )Y, 2) = —g(N DY, 2), fX) + 29(FX, fY) 7(2)
—29(fX, f2)a(Y) + N®(X.Y, 2),

(33)
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where 7=, n'. In particular, taking © = & and then Y = & in (33), we get
29((Ve /)Y, 2) = N®(&.Y.2), 1<i<p, (34)

and (26); thus, the characteristic distribution is tangent to a totally geodesic foliation with
the sectional curvature K(&;,&;) = 0.

Proof. By Theorem 2.2, we have dn’ = ® and Ni(z) = Ni§-4) = 0. Invoking (9) and using

Theorem 2.2 and Proposition 2.2, we get (33). From (34) with Y = &; we get g(fV¢, &, Z) =

07 thus vfz f_] S kerf. AISO) Uk([§z>€]]) = _ank(fufg) = _29(57,7.]?5]) = 07 hence7 [f?mé]] =
0, i.e., Vg, & = Vg, &. Finally, from g(&;,&k) = d;x, using the &;-derivation and the above
equality, we get V¢, & € f(I'M). This and V¢, &; € ker f prove (26). |

3. The tensor field h

Here, we apply for a weak almost para-S-manifold the tensor field h = (hq,..., hp),
where h; = %Ni(S) = %.,551.]‘ . By Theorem 2.2, h; = 0 if and only if & is a Killing field.
First, we calculate

(Lo NX D Ve (FX) -V xbim f(Ve, X—Vx &)=(Ve, )X -V x&t [VxE (35

For X =¢; in (35), using g((Ve, f) &5, 2) = %N(s)(fi,fj,Z) =0, see (34) and (26), we get
hi & = 0. The following result generalizes the fact that for an almost para-8-structure, each
tensor h; is self-adjoint and commutes with f.

Proposition 3.1. For a weak almost para-S-structure, the tensor h; and its conjugate h}
satisfy

g((hi = H)X,Y) = (1/2) NO(&;, X, Y), (36)
V& = Q'fhi—f, (37)
hif +fhi = —(1/2) £¢,Q. (38)
Proof. (i) The scalar product of (35) with Y, using (34), gives
g(<£§zf)X7Y):N(5)(§Z7X’Y)+g(va§l_va£Z7 Y) (39)
Similarly,
9(£6.NY, X) = NOEY, X) +9(fVy & = Viv &, X). (40)

Using (13) and (fX)(n°(Y)) — (fY)(n*(X)) = 0 (this vanishes if X or Y equals &; and also
for X and Y in f(TM)), we get N( (X,Y) =n'([fY,X] — [fX,Y]). Thus, the difference
of (39) and (40) gives 2g((h; — h})X,Y) = NOI(&, X,Y) — Ni(Q) (X,Y). From this and
Ni(Q) =0 (see Theorem 2.2) we get (36).

(ii) From Corollary 2.1 with Y = &;, we find

9(Vx P&, Z2)=— (1/2)9(N D (&, 2), FX)=g(f X, f2)+(1/2) NO(X, &, 2).  (41)
Note that 1N ®)(X, &, Z) = g(hiZ,QX), see (32). By (4) with Y = &, we get
[f, F(X, &) = 21X, 6] - FIFX. &) = FN (). (42)
Using (6), (10) and (42), we calculate
9([f 11(&, 2), [ X) = g(f* [€:, Z) = [1&i, F2), [X) = —g(f(£e.f) 2, [ X)
=9((£6.))2,QX) = 3 ' (X)n((£e./)2). (43)
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From (9) we have g([X, &], &) = 2dn* (&, X) = 2®(&, X) = 0. By (26), we get g(Vx &, &) =
9(Ve, X, &) = —9(Ve &r, X) = 0 for X € f(T'M), thus

9(Vx &, &) =0, X eTM, 1<ik<p. (44)
Using (35), we get
29((Ve )V 6) B N O, v,) P o, (45)
From (35), (44) and (45) we obtain
9((£e, /)X, &) = —9(Vyx &, &) = 0. (46)
Since f¢&; = 0, we find
(Vxf)&=—-fVx&. (47)

Thus, combining (41), (43) and (46), gives
—9(f Vx&i, 2) = 9(X, Q2)—g(hiZ,QX)= X2 0 (X)) (Z) +9(hi Z, QX)
=g(hiZ, X) + 9(X,Q2) = ¥, W(X) 0 (2) + g(h: Z, QX). (48)
Replacing Z by fZ in (48) and using (2), (44) and f &; = 0, we achieve (37): ¢(QVx &,2) =
9(fQ—hif)Z,X) =g(f(h] - Q)X, Z).

(iii) Using (2), we get Ve f+ (vf@f)f = Vg, (f2) = sz@ - V&(Z] 77j ®§j)a where
Ve, (30,7 @&;) = 0 by (26). From the above and (35), we get (38):
+f2Vx & —Vyex & = [QX,&] - QX,&] = *(fﬁié)X-
We used (26) and (44) to show Zj (g(VX §,65) & — 9(X, &) Ve, fi) =0. |

Remark 3.1. For a weak almost para-8-structure, we get 2 g(h; X, §;) = —9(Vyx &,§;) =0
by (45); thus, f(T'M) is h;-invariant; moreover, hf §; = 0.

The next statement follows from Propositions 2.1 and 2.2.

Corollary 3.1. For a weak para-X-structure, we have

29(Vx/)Y,2) =) (2di' (fY. X)0'(Z) = 2dif (£ 2,X) 0/ (Y)

+0'([QY, fZ) ' (X)) + N (X, Y, Z).
In particular, using (36), gives 29((Ve, )Y, Z) = ni([éY, fZ]) for 1 <i<p.

4. The rigidity of a para-S-structure
Here, we prove the rigidity theorem for para-S-manifolds.
Proposition 4.1. For a weak para-8-structure we get
9(Vx )Y, Z) = g(QX, Z)7(Y) = 9(QX,Y) 7(Z) + 5N ®)(X,Y, Z)
=22 W (X)) 0’ (Z) — 0’ (V) 0(Z)). (49)
Proof. Since N () = 0, by Corollary 2.1, we get (49). O

Remark 4.1. Using Y = & in (49), we get fVx& = —f2X — 2(N®)(X, &, -))°, which
generalizes the equality Vx & = —fX for a para-S-structure, e.g., [6].

It was shown in [9] that a weak almost para-S-structure with positive partial Ricci
curvature can be deformed to an almost para-8-structure.
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Theorem 4.1. A metric weak para-f-structure is a weak para-S-structure if and only if it
18 a para-S-structure.

Proof. Let (f,Q,&,n,g) be a weak para-S-structure. Since N () = 0, by Proposition 2.1,

we get Ni(S) = 0. By (32), we then obtain N ®)(- &, -) = 0. Recall that OX =QX - X
and 77 (QX) = 0. Using the above and Y = §; in (49), we get

9(Vx )&, 2) = 9(QX,2) - RN )
9QXT,2)+ > (2)( )—n(QX))—Zjnj(Z)(nj(X)—ni(X))
9(QXT,2)+ 3 W (2)(n(QX) —n'(QX)) = g(QX T, 2). (50)

Using (47), we rewrite (50) as ¢(Vx &, fZ) = g(QX ", Z). By the above and (2), we find
for all i,

9(Vx &+ X, fZ)=0. (51)
Since f is skew-symmetric, applying (49) with Z = &; in (7), we obtain

g([f, AUXY), &) = g([f X, fY], &) = 9(Vex )Y, &) — 9(Vy )X, &)
=9(@Q Y, X) —g(QfY,&)1(X) —g(QfX,Y) +9(Q f X, &) 1(Y). (52)

Recall that [@, f] = 0 and f& = 0. Thus, (52) yields g([f, f](X,Y),&) = 2¢9(QX, fY).
From this, using the definition of N (V)| we get

gV D (X,Y),&) = 29(QX, IY). (53)
From N M =0 and (53) we get g(QX, fY) =0 (X,Y € Xp); thus, Q = 0. 0O

For a weak almost para-S-structure all & are Killing if and only if h = 0, see The-
orem 2.2. The equality h = 0 holds for a weak para-S-structure since it is true for a
para-8-structure, see Theorem 4.1.

Corollary 4.1. For a weak para-8-structure, &1,...,&, are Killing vector fields; moreover,
ker f defines a Riemannian totally geodesic foliation.

5. The characteristic of a weak para-C-structure

Here, we show that a weak para- f-structure with parallel tensor f reduces to a weak
para-C-structure, Recall that Vx £ = 0 holds on para-C-manifolds.

Proposition 5.1. Let (f,Q,&,n', g) be a weak para-C-structure. Then
29((Vx /)Y, 2) = N®(X,Y, Z). (54)
Using (54) with Y =& and (2), we get g(Vx &, QZ) = —3NON(X, &, fZ).
Proof. Using Theorem 2.3, from Proposition 2.2 we get
29((Vx /)Y, 2) = —g([f, FI(Y, 2), fX) + NO(X,Y, Z). (55)
From (55), using condition [f, f] = 0 we get (54). O

Theorem 5.1. A metric weak para-f-structure with Vf = 0 and condition [£;,&;] = 0 is
a weak para-C-structure with N ®) = 0.
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Proof. Using condition Vf = 0, from (7) we obtain [f, f| = 0. Hence, from (3) we get
NOX,Y)=-23,dn'(X,Y) &, and from (7) with Y = & we obtain
fogi—fVX&:O, X e Xy (56)
By (25), 3d®(X,Y,Z) = g(Vxf)Z,Y) + g((Vy /)X, Z) + g((Vz[)Y, X); hence, using
condition V f = 0 again, we get d® = 0. Next,
NAW.&) = = (Y. = 9(&. FVeY) = 0.
Setting Z = &; in Proposition 2.2, and using V f = 0 and the properties

Ao =0, NPV, =0, NO(XY)=-2) dy(X,Y)&,
we find 0 = 2dn? (fY, X) — N®)(X,&;,Y). By (32) and (56),

NO(X,&.Y) = g(l&; Y] = f1. Y], QX) = g(Vyv & — [ Vv &, QX) = 0;
hence, dn’ (Y, X) = 0. From this and g([&;,&;], &) = 2dn*(¢;,&) = 0 we get dp? = 0. By
the above, N = 0. Thus, (f,Q,&,n",g) is a weak para-C-structure. Finally, from (54)
and condition Vf =0 we get N ) = 0. O

Corollary 5.1. A normal metric weak para-f-structure with Vf = 0 is a weak para-C-
structure with N (®) = 0.

Proof. By N(M=0, we get dn=0, Vi. As in Theorem 5.1, we get d® = 0. O

Example 5.1. Let M be a 2n-dimensional smooth manifold and f : TM — TM an
endomorphism of rank 2n such that V f = 0. To construct a weak para-C-structure on
M xRP, take any point (z,1,...,t,) and set & = (0,d/dt;), n* = (0,dt;), f(X,Y) = (fX, 0)
and Q(X,Y) = (f2X,Y), where X € T,M and Y = >, Y& € RY. Then (2) holds and
Theorem 5.1 can be used.

6. Conclusions

It was shown that the weak para-f-structure is a useful tool for studying totally
geodesic foliations and Killing vector fields. We proved that a weak para-S-structure is a
para-8-structure (the rigidity theorem) and that a weak para- f-structure with parallel tensor
f reduces to a weak para-C-structure.
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