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TWO APPLICATIONS OF PARALLEL FINITE STATE MACHINE
EXECUTION

Alexandru AGACHE!

In this paper we present two results regarding finite state machines (also
referred to as FSMs). They involve the concept of parallel finite state machine ex-
ecution, which proves essential in outlining both findings. The first result concerns
FSM equivalence with incomplete knowledge, where we determine the amount of
information required about two black box automata that can be run on different
inputs. The second leads to a method of testing whether a variable-length code is
uniquely decodable.

Keywords: automata theory, finite state machine equivalence, product automa-
ton, unique decodability

1. Preliminaries

In this section we briefly present the most import notations and definitions that
are used throughout the paper. While many are widely encountered in automata
theory, they are still summarized here for the reader’s convenience.

An alphabet ¥ is a non-empty finite set; its members are called symbols. A
word (or string) w over X is any finite sequence of symbols from 3. The length of w
is equal to the number of symbols in w, and is denoted by |w|. Two strings v and v
can be concatenated (joined into a single sequence with u followed by v) using the -
operator. A common shorthand notation for u - v is uv.

It’s easy to see that |uv| = |u| + |v|. There is one special word, called the
empty string, which is denoted by e, and has length |e| = 0. The emptry string is
also the identity element of concatenation: w-e = e-w = w, for any word w. The set
of all strings of length n over X is denoted by X". It’s worth nothing that %0 = {e}
for any alphabet X.

The set of all possible strings over X is called the Kleene closure of 3, and
is denoted by ¥*. It can be written as ¥* = U;enX’. A formal language (or
simply language) over X is any subset of ¥*. Concatenation is also defined for
languages: L1 - Lo = {uv|u € Ly and v € Ly}. Applying the Kleene closure leads
to L* = Ujen L.

A finite state machine is a mathematical model of computation. We use this
term in the restricted sense of language acceptor: a finite state machine M computes
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a function f: ¥* — {0,1}. A word w is accepted by M if and only if f(w) =1. We
also say that M accepts the language L(M) = {w € ¥*|f(w) = 1}. A deterministic
FSM is represented by a quintuple (3,5,s,6,F). X is the alphabet over which
input strings are defined, S is a non-empty set of states, s € S is the initial state,
d: S x 3 — S is the transition function, and F' C S is the set of final (or accepting)
states. Unless otherwise specified, § is a total function.

The execution of M for input w = ag...an—1 (a; € ¥) ends in state s, =
0(Sp—1,an—1), where sgp = s. If s,, € F' the input is accepted; otherwise the input is
rejected. The sequence of states Pys(w) = sg... s, is called the execution path (or
simply path) of w in M. Two paths are distinct if they are represented by different
sequences. Multiple words can have the same execution path. A state ¢ is reachable
if at least one input generates a path ending with ¢. We only consider automata
where every state is reachable, because unreachable states can be safely discarded.

The representation of a non-deterministic FSM is also possible with the quin-
tuple (X,S,s,0, F), but with one significant difference: the transition function is
defined as § : S x ¥ — P(S). The execution of a non-deterministic FSM may lead
to multiple paths, so Pys(w) becomes a set for any string w. There is a branch each
time multiple states are obtained from the application of §. The input is accepted
if at least one path ends in a final state.

A well known result in automata theory [1] states that for any non-deterministic
FSM, there is an equivalent deterministic FSM. Two finite state machines, M; and
Mo, are equivalent if they accept the same language. We denote this by M; = Ms.

Definition 1.1. Consider two finite state machines My and Ms, that receive inputs
over the same alphabet .. A third FSM Ms = (3, Ss, s3, 93, F3), called the product
automaton, can be built in the following manner:

° 53 = 51 X 52
S3 = (81, 32)
03((p,q),x) = (01(p, ), 02(q, x)), if M1 and Ms are deterministic
93((p, q), z) = d1(p, x) x 02(q,x), if My and Ma are non-deterministic

We say that M3 executes My and Mo in parallel: any path in Mz actually
consists two paths side by side, one from Mj, and the other from Ms. The previous
definition does not constrain F3, which can be chosen to fit different purposes. For
example, if F5 = F1 x Fy, M3 will accept those words accepted by both M; and Mo,
and L(Ms) = L(My) N L(Ms). The existence of the product automaton ultimately
shows that a limited number of finite sate machines cannot integrate into a more
power construct in terms of computation; we can always find a single FSM that
exhibits the same overall behaviour. At the same time, this comes at the cost of a
greatly expanded state space, which means the verification of algorithmic properties
becomes increasingly difficult.

A code is defined as a non-empty set of distinct words C' = {wp, w1, ..., wy,}.
If not all words have the same length, C is a wariable-length code. C is uniquely
decodable if, for any string that can be written as © = xg...x, (with z; € C), the
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representation is unique. This means that, if x = ug...uy, and x = vy ... v, (with
u;,v; € C), then m = n and u; = v;, Vi.

2. Introduction

The equivalence of finite-state machines is a classic topic in automata theory,
closely related to the notion of minimization. A classic result states that two FSMs
M and Ms are equivalent if, after minimizing them, the states of M; can be renamed
such that both M; and M, actually represent the same machine. We look at the
equivalence problem from a different angle: if M; and Ms are provided as black
boxes, how much information is necessary to determine if they are equivalent?

In this context, black box means a function f : ¥* — {0,1}, that can be
computed by a FSM M = (X, 5,s,d, F). When M is provided as a black box, the
only information available about its quintuple is the input alphabet >. Further data
can be gathered by feeding different words into M, and observing whether they are
accepted or not. In Section 3 we present a necessary and sufficient condition for the
equivalence of black box finite state machines.

The problem of deciding if a given code is uniquely decodable or not is also
widely known, and has numerous applications. One example [2] is encountered in
the field of static verification of computer networks. The goal here is to determine
if a network configuration correctly implements a given specification, without any
undesirable behaviour. Headers and packets are pieces of data of a given size; every
packet begins with one or more headers in succession. Each network protocol has
a specific header, which is logically divided into multiple parts, called fields. They
have different lengths, measured in bits, and a predefined significance. Network
protocol stacks and tunneling lead to packets that have multiple headers.

For symbolic execution, headers can be described as sequences of numbers,
representing the lengths of their constituent fields. We can look at natural numbers
as distinct symbols (up to the maximum field length) of an alphabet. A header h
with m fields can be seen as the code E(h) = ly...ly,—1, where [; is the length of
the ith field. Furthermore, the entire sequence of n headers from a single packet p
can be represented as E(p) = E(hg) - ... E(hn,—1). An important question related
to symbolic packets is whether two different protocol combinations can generate
packets p; and pg, such that E(p;) = E(p2). The answer is yes if and only if the set
of all headers is not uniquely decodable.

In Section 4, we present an automata-based method of deciding the unique de-
codability problem. First we discuss the intuition behind our solution, and continue
by illustrating a three step algorithm.

3. Equivalence of black box finite state machines

Let M7 and Ms be two black box automata. If no other information is provided
beforehand, there is no way to determine if M; = Ms. Our only possibility of
interacting with the machines is to observe their behaviour relative to different
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string, and we can only provide a finite number of inputs until a decision has to
be made. If we find that M; and My disagree at some point, they are clearly not
equivalent. However, nothing can be said if they agree each time. In this case, M;
and M> can be equivalent, but this is not guaranteed, since for any set of words
X C ¥* we can build two machines that agree on every w € X, but disagree on
other words.

The question turns into how much additional information is needed to de-
termine whether M; is equivalent to Ms . The most extreme case is when both
quintuples are known, but we want to find a less stringent requirement. We start
by assuming the number of states is know for both M; and Ms. For simplicity,
we consider that |Si| = |S2| = n. Any definite result should be easily adapted to
the general setting. The aim is to find a limit £ € N, such that M; and My are
equivalent if they agree on all words of length at most k. Since k is now a specific
number, it is possible to run both machines on every desired input in a finite (albeit
potentially very large) amount of time.

First, we consider k = n. In other words, we try to determine if two finite
state machines with n states are equivalent, if they agree on every word of length at
most n. The answer is negative once more, because an invalidating example can be
found for this assumption.

Example 3.1. Consider M; and My over ¥ = {a}, with S; = Ss = S, |S]| = n,
n >3, 8 =8 = qo, and F1 = F» = {qo,qn-1}. The two transition functions, &
and 92, are defined as follows:

e 01(qi,a) = 02(qi,a) = giy1, fori=0..n —2

® 61(gn-1,a) = qo

® 02(gn-1,a) = qn—1

M and My agree on all words of length at most n, but fail to do so for most
of the longer inputs. Next, we try to determine if setting the limit higher leads to a
satisfactory result. Moreover, we are interested in an expression entirely dependent
on the number of states, without additional variables such as the size of X. Before
going further, we discuss a property that is essential to our later findings.

Lemma 3.1. Let M be a FSM with n states. If M accepts every input w of lenght
at most |w| <n —1, then M accepts any input.

Proof. If a FSM accepts every word of length [, then all states which can be reached
in [ steps from the initial state are accepting states, because every path of length [
must lead to an accepting state. Let @Q; be the set of all states reachable in ¢ steps
from the initial state, and Q@ = Qo U ... U Qp_1.

When M accepts every word of at most n — 1 symbols, the relation @ C F
must hold. Moreover, there is no state g such that ¢ € @, as can be shown using
the pigeonhole principle. Any state g which is only reachable in more than n — 1
steps, has to be at the end of a path that contains n + 1 distinct states (the first
step involves s and at most one other state). But this is impossible, because M has
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only n states. Thus, S C Q C F. Since F' C S (by definition), this means F' = S,
so M will accept every input. O

Lemma 3.1 does not work for a threshold lower than |S| — 1. Consider the
following example:

Example 3.2. Let M = (X, S,s,0, F) be a finite state machine, where ¥ = {a},
S = {s0,51,52,83}, 5= 80, 6(8i,0) = Sit1(mod 4), and F' = {s0, 51, 2}

All inputs w such that |w| < |S| —2 lead to final states, but M doesn’t accept
every string (s3 ¢ F, but it is reachable). With this in mind, let us return to Mj,
Ms, and the question of their equivalence.

Theorem 3.1. Two finite state machines, My = (3, S1, 1,01, F1) and My = (X, S, s2, 02, F),
are equivalent if they agree on every word of length at most k = |S1| - |Sa| — 1.

Proof. Consider the product finite state machine M3, with F3 = F} x Fy. This
particular choice of F3 means that for any word w, Ms(w) = M;j(w) A Ma(w). In
other words, M3 will only accept w if and only if both M; and Ms accept w. We go
further, by enlarging Fj in the following manner: F3 = (Fy x F») U (F} x Fy), where
F; =S\ Fi.

In this case, M3 also accepts those words which are rejected by both M;
and Ms, which means M3 only accepts an input if M; and My agree on it. This
construct can be used to determine the equivalence of M; and Ms. If Mg accepts
every word, then M; = My (from the previous construction of Ms). The implication
in Theorem 3.1 can be proved using Lemma 3.1: M3 accepts every input if it accepts
each word of at most |S3| — 1 = |S1| - |S2| — 1 symbols. O

Our equivalence result is both necessary and sufficient. Theorem 3.1 proves
the latter, while the former is a trivial implication: if two finite state machines are
equivalent, they surely behave in the same way over words of length equal to, or
shorter than, a specified threshold. Moreover, the threshold k& = |Si] - [S2| — 1 is
minimal: if we can only show that two FSMs agree on words shorter than k, then
nothing can be said about their equivalence.

The previous property can be shown to be true by relying on Lemma 3.1
(and further illustrated by Example 3.2). If £ < [S;| - |S2| — 1, then we are no
longer certain that the product automaton build in the proof of Theorem 3.1 accepts
all possible inputs (as demonstrated in Example 3.2). Every input which is not
accepted represents a string that leads to a disagreement between the FSMs under
consideration. Thus, any value of k smaller than |S1]|-[S2| — 1 no longer guarantees
the equivalence of M7 and M.

To the best of the author’s knowledge, Theorem 3.1 is a novel result. It is
worth noting that no assumptions were made about ¥, or about anything related
to My or My, besides knowing the number of states for both of them. We have also
shown that |Si| - |S2| — 1 is the minimum value of k required for the truth of the
equivalence result.
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4. Deciding unique decodability

Next, we turn our attention toward the problem of codes and unique decod-
ability. A very simple example of a uniquely decodable code is {0,1}, as well as any
other code with elements that only consist of different symbols. On the other hand,
{a, ab, aab} is not uniquely decodable: a string like aaab can be represented both as
a-aab, and as a - a - ab.

Let C be the code over ¥ which is checked for uniqued decodability, and M
a finite state machine that accepts the language L = C*. We want to determine if
this FSM can be used to find solution to the unique decodability problem. There is
not much to be inferred if M is a deterministic FSM, because every input generates
a unique path. We can determine if there is at least one representation of w using
codes from C (when w is accepted). The situation changes when M is a non-
deterministic finite state machine. A particularly interesting example is the following
non-deterministic FSM:

Example 4.1. Let M = (X, S, 8,0, F) be a non-deterministic FSM, where S = {s¢},
s =380, F ={so}, and §(sp, w) = s, Vw € C.

The previous example uses a shorthand method to describe a FSM. First, §
is not total anymore. We assume that any transition which is not explicitly defined
leads to an implicit state where any further steps lead to the rejection of the input (a
sink state). We call this the reduced form of M. It is helpful because the execution
of the FSM fails as soon as no transition is available, instead of going for more steps
that ultimately reject the input anyway. Second, the domain of § is now S x ¥*. This
allows a more compact representation, by merging multiple states. Once more, if we
reach a step where no further progress is possible, the input is implicitly rejected.

The automaton in Example 4.1 has a single explicit state, which is also an
accepting state, and each transition starts from, and returns to it. This definition of
M is equivalent to exhaustively trying all possible combinations of codes from C' (up
to |w|) to generate the input w. The fact that M is non-deterministic means there
can be multiple paths to acceptance. Each such path represents a different sequence
of codes, so finding any input that generates at least two different accepting paths
means C' is not uniquely decodable.

There are two issues with this approach. First, the time complexity is ex-
ponential. Second, at each step, we only determine if one particular word can be
generated in more than one way. This leads once more to the situation where the
search never stops if C' actually is uniquely decodable.

Definition 4.1. Let C be a code, and M' a non-deterministic FSM that accepts the
language C*, and has multiple accepting paths for an input w if and only if w has
multiple encodings over C. We say that M uniquely accepts C*.

If M’ uniquely accepts C*, we build the product automaton M” = M’ x M’,
with F”/ = F' x F'. A path P” from M" is called non-trivial if it contains at
least one state (g;,q;) € S” with i # j, where ¢;,¢; € S’. The construction of M"
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would be redundant for a deterministic FSM, because every path is trivial. Non-
deterministic automata allow multiple paths for the same input, so M" reveals all
pairs of execution paths for a given string. It is important to note that M” can be
built using the reduced representation of M’ (resulting the reduced form of M"),
because any path that leads to a sink state in M’ cannot be included in a successful
path of M”.

Proposition 4.1. C is uniquely decodable if and only if M" has at least one non-
trivial accepting path.

Proof. In particular, by examining M"”, we can determine whether at least one string
can be accepted via two distinct transition sequences. This is equivalent to finding
a non-trivial path P” from s” to any final state of M"”. If P” exists, it can be split
into P| and Pj, two distinct accepting paths of M’, and therefore C' is not uniquely
decodable. On the other hand, if C' is uniquely decodable, then M’ has at most
one accepting path for any input. In turn, this means all accepting paths of M"”
are trivial, because we cannot find two distinct acceping paths in M for the same
input. O

The biggest challenge of building M" is the construction of the transition rela-
tion. The shorthand representation in Example 4.1 is not well-suited for describing
a product FSM that executes two copies of M, because the presence of transitions
which use multiple symbols hinders the application of Definition 1.1.

Example 4.2. Consider C = {u,v,w}, and u =v - w.

The input string u can be accepted in two ways: either by d(sg,u) = sg, or
via §(0(sg,v), w) = sg. However, the product FSM M” must use the same number
of symbols during each step, so §” cannot be properly with sg as the only explicit
state. Additional states are required for the initial FSM to allow the construction
from Definition 1.1.

The simplest general solution for building M’ that uniquely accepts C* is to
have a separate path for each w € C, one separate transition for each symbol in w,
and one separate state for all but the last every symbol in w. We call this the trivial
construction of the uniquely accepting FSM in the reduced form. For example, the
FSM in Figure 1 uniquely accepts the language C*, for C' = {a, ab, aab}.

We propose the following three-step procedure to determine if a variable-length
code C' is uniquely decodable:

(1) Build the reduced form of M’, the finite state machine that uniquely accepts
C*, using the trivial construction method.

(2) Build the product automaton M” = M’ x M’, with F” = F' x F'.

(3) Check whether a non-trivial accepting path exists in M”.

We evaluate the complexity of each phase in reverse order. The search for a
non-trivial path is actually done during the construction of M”, which requires at
most O(|C] - |S"]) = O(|C| - |S’|?) steps. The trivial construction method leads to
a FSM with [S"| = >, co |w| — |C| + 1. We denote n = |S’|. The construction of
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start

Fig. 1. A FSM that uniquely accepts {a, ab, aab}*

M’ requires O(n) steps. In conclusion, the complexity of the previous procedure is
O(|C|n?).

Our solution illustrates an important aspect of the deterministic/non-deterministic
FSM correspondence. In general, results that concern non-deterministic finite state
machines have to account for the exponential state explosion caused by the trans-
formation to a deterministic automaton. We present a problem instance where
the asymptotic complexity is conserved. The conversion of M” to a determinis-
tic FSM is not necessary, because reachability properties carry over between the
non-deterministic and deterministic cases.

The overall complexity of the solution can be reduced using instances of M’
with smaller number of states. The trivial construction leads to an upper bound,
in the sense that we never have to consider a larger FSM. Simple optimizations are,
for example, merging common prefixes and suffixes. Figure 2 shows a smaller FSM,
which is equivalent to the one in Figure 1. Depending on C, the number of states in
S’ can be significantly smaller than n. The effort required to find a smaller M’ that
uniquely accepts C' has to be balanced with the complexity of the overall unique
decodability problem.

a
start H @

Fig. 2. A smaller FSM that uniquely accepts {a, ab, aab}*

5. Related Work

The problem of FSM equivalence has been extensively studied [3], and also
adapted to modern theoretical constructs and developments, culminating with quan-
tum finite automata [4, 5]. Most current research efforts focus on the situation where
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complete information is available, and optimizations aim to increase the applicability
at scale [6, 7, 8].

In Section 3, we focus on the equivalence of two finite state machines, without
access to full information about their configuration. This can be seen as trying
to determine whether two FSMs are equivalent by observing their output on an
arbitrary (but finite) number of strings, and leads to Theorem 3.1.

FSM equivalence with incomplete information has been mostly studied in the
context of machine learning or language processing [9, 10]. To the author’s knowl-
edge, the closest result to the one presented in Section 3 can be found in [11],
which gives a somewhat similar property for probabilistic automata, which is fur-
ther discussed in [12], leading to an equivalence result for 1-way quantum finite
automata [13].

The best known algorithm for deciding if a code is uniquely decodable is the
Sardinas-Patterson algorithm [14], which can run as fast as O(|C|n) time using spe-
cialized data structures. We found our solution easier to implement, and reasonably
fast in practice. Our use of automata to discern properties of codes is similar to
other approaches [15, 16]. We focus on general variable-length codes, which are
useful for static verification of network properties.

6. Conclusions

We proved Theorem 3.1, which establishes a necessary and sufficient condition
for the equivalence of black box finite state machines, and described an automata-
based algorithm that can be used to determine if a variable length code is uniquely
decodable.
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