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FIXED POINT RESULTS FOR COUPLINGS ON METRIC SPACES

Binayak S. Choudhury®, P. Maity?, P. Konar®

In this paper we define the concept of coupling between two non-empty subsets
in metric space. The definition is motivated by the concept of cyclic mapping of a metric
space. We show that these coupling have strong unique coupled fized point whenever they
satisfy Banach type or Chatterjea type contractive inequalities. We illustrate our main
results with examples.
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1. Introduction

In this paper we introduce two types of couplings defined on metric spaces, namely,
Banach type and Chatterjea type couplings. These are actually coupled cyclic mappings with
respect to two given subsets of a metric space. We establish the existence and uniqueness
of strong coupled fixed points for both types of couplings. The celebrated work of Banach
[2], in which he established the Contraction Mapping Principle is widely recognized as the
source of metric fixed point theory. Another category of contraction which is separate from
Banach contraction, and does not imply continuity, was proposed by Kannan[18, 19] who
also established in the same work that such mappings necessarily have unique fixed points
in complete metric spaces. Mappings belonging to this category are known as Kannan type
mappings. These mappings, their extension and generalizations, have a large literature.
References [13, 14, 24] are some instances of these works. In the same vein, Chatterjea[7]
established another class of contraction different from the above two categories. Extension
of Chatterjea contraction, sometimes also called C-contraction, have been studied in good
number of papers. Some recent references are of there works are [1, 8, 17, 27]. Cyclic
contractions were introduced by Kirk et al.[21]. These are nonself contractions from one
subset to another subset of a metric space. Several types of cyclic contractions have been
studied in fixed point theory in works like [12, 15, 20, 24, 25].

Coupled fixed point was introduced in the work of Guo et al.[16]. It was after the
appearance of a coupled contration mapping theorem by Bhaskar et al.[3], the coupled fixed
point results appeared in a large number of works like [4, 5, 9, 10, 11, 22, 23, 26].
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Against the above background we define couplings of Banach and Chatterjea types
which are the cyclic coupled mappings satisfying contractions of the two categories respec-
tively mentioned above. Such mappings satisfying Kannan type contractive condition have
already been considered by Choudhury et al.[12]. We establish strong unique fixed point
theorems for both type of couplings. In the following we recall some definitions for the
purpose of further discussion in this paper.

Definition 1.1 (Coupled fixed point). [3] An element (x, y) € X x X, where X is any non-
empty set, is called a coupled fixed point of the mapping F' : X x X — X if F(z, y) =z
and F(y, ) =y.

Definition 1.2 (Strong Coupled fixed point). [12] An element (z, y) € X x X, where X is
any non-empty set, is a strong coupled fixed point of the mapping F' : X x X — X if (z, y)
is a coupled fixed point and xz = y; that is, if F(z, z) = «.

Definition 1.3 (Coupled Banach Contraction mapping). [3] Let (X, d) be a metric space.
A mapping F': X x X — X is called a coupled Banach contraction if there exists k € (0, 1)
such that for all (z, y), (u, v) € X x X, the following inequality holds:

AR (2,9), F(u,0)) < 5 [d(z, ) +dly, )]

Definition 1.4 (Chatterjea Contraction). [7] Let (X, d) be a metric space. A self-mapping
T : X — X is called a Chatterjea contraction if there exists k € (0, 3) such that for all
x,y € X, the following inequality holds:

d(Tz, Ty) < kld(z, Ty) + d(y, Tz)].

Definition 1.5 (Cyclic mapping). [21] Let A and B be two nonempty subsets of a given
set X. Any function f: X — X is said to be cyclic(with respect to A and B) if f(A) C B
and f(B) C A.

Next we define a ‘coupling’ by extending the idea behind a cyclic mapping.

Definition 1.6. [12] Let (X, d) be a metric space and let A and B be two non-empty
subsets of X. A coupling with respect to A and B is a function F': X x X — X such that
F(z, y) € B and F(y, ) € A whenever z € Aand y € B

Later, in the examples in section 2 and 3, we give the illustrations of the coupling
function.

2. Results for Banach Type Coupling

In this section we define Banach type coupling by putting together the concepts of
coupling and the coupled Banach contraction. Next we establish a strong unique coupled
fixed point theorem for such coupling. We also give an illustrative example.

Definition 2.1. Let A and B be two non-empty subsets of a complete metric space (X, d).
A coupling F : X x X — X is called a Banach type coupling with respect to A and B if it
satisfies the following inequality:

A(F(z,y), F(u,v)) < Jd(z, u) +d(y, v)] (2.1)

N |

where z,v € A, y,u € B and k € (0, 1).
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Theorem 2.1. Let A and B be two non-empty closed subsets of a complete metric space
(X,d). Let F: X x X — X be a Banach type coupling with respect to A and B. Then

ANB +# ¢ and F has a unique strong coupled fized point in AN B.

Proof. Let g € A and yy € B be any two elements and the sequences {z,} and {y,} be

defined as
Tnt1 = F(yn, ©,) and ype1 = F(x,, y,) for all n > 0.

Then, for all n > 0, x, € A and y, € B.
Now, using (2.1) and (2.2), we have

d(x1,y2) = d(z1, F(z1,91)) = d(F(yo,x0), F(x1,91))
< I;[d(yo, 1) + d(zo, y1)]
and
d(yr, x2) =d(yr, Fyr, 1)) = d(F(zo, yo), F(y1, 71))
< R, w) + dlyo, 2]

From the above two inequalities, we have

d(zq, y2);d(y1, ) < g[d(x(b y1) + d(yo, 1)].

Again, using (2.1), (2.2) and (2.3), we have

d(z2,y3) = d(z2, F(72,92)) = d(F(y1, z1), F(z2, y2))
< g[d(yh x2) +d(x1, Yy2)]
< g.z g[d(xo, y1) + d(yo, 1))

2

= %[d(mo, y1) + d(yo, 1))

Similarly, using (2.1), (2.2) and (2.3), we have

d(y27 'T?)) = d(y27F(y27 x2>) = d(F(.T], yl)aF(yQa 56'2))

k

< §[d(1'17 Yy2) +d(y1, v2)]
k [k

< 5.2 §[d(y0a r1) +d(wo, y1)]
k‘2

= E[d(yo, z1) + d(zo, y1)]-

Let, for some integer n,
kn
d(Tny Ynt1) < 7[d(l‘o, y1) +d(yo, =1)]

and

w‘yg

d(Yn, Tn+1) < —[d(yo, ©1) + d(z0, y1)]-

(2.2)
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Then, using (2.1), (2.2), (2.4) and (2.5), we have

d(@ni1, Ynr2) = d(@py1, F(Tni1, Yntr))
= d(F(yna xn)aF<xn+la ynJrl))

k
[d(ym anrl) + d(xp, yn+1)}

< =

-2
k| k™ k™

< 5 |5 Ao, @) +d(ao, v)) + (o, w1) +d(yo, 21)]
kn+1

< [d(xo, 1) + d(yo, x1)].

2
Similarly, using (2.1), (2.2), (2.4) and (2.5), we have

d(y"+17 I’n+2) = d(yn+17 F(yn+17 zn—&-l))
= d(F('T’ﬂv yn)7F<yn+17 -TnJrl))

k

S §[d(xn7 yn+1) +d(yn7 anrl)}
k [ k™ k™

< 5 |5 Ao, yo) +dlyo, 21)] + S [dlyo, 21) +d(xo, )]
kn+1

< [d(yo, 1) + d(z0, y1)]-

2
Thus (2.4) and (2.5) remain valid when n is replaced by n 4 1. But, as shown above, (2.4)
and (2.5) are true for n = 1,2.
Then, by induction, for all n > 1, we have that

n

d(mna yn+1) = d(LEn, F(‘rna yn)) < ?[d(xm yl) +d(y07 1’1)] (26)
and o
dWYn, Tni1) = dYn, F(Yn, Tn)) < E[d(yo, x1) + d(xo, y1)]. (2.7)
Again, by (2.1) and (2.2), we have
k
d(z1,y1) = d(F(yo, z0), F(x0,90)) < §[d(y0,$0) + d(z0,y0)] = kd(w0,yo). (2.8)
Then, from (2.1), (2.2) and (2.8), we have
d(w2, y2) = d(F(y1, z1), F(21, y1))
k
< §[d(y1, x1) +d(xy, y1)]
- kd(‘rh yl)
< Kd(xo,y0)-
Let, for some integer n,
d(n, yn) < k"d(z0,0). (2.9)
Then, from (2.1), (2.2) and (2.9), we have
A(Tpy1, Ynt1) = dAF(Yn, Tn), F(Tn, yn))
k
< §[d(yn, Tp) + d(Tn, yn)]
< K" d(zo, yo)
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Therefore, (2.9) also holds if we replace n by n+ 1. But (2.9) is true for n = 1,2. Then, by
induction, it follows that for all n > 1,

d(xn7 yn) < knd(ilfo, yO) (210)
Now, by (2.6), (2.7) and (2.10), for all n > 1, we have

A(@ns Tnt1) + AWy Ynt1) <A@,y Yn) + d(Yn, Tg1) + d(Yn, Tn) + d(@n, Yns1)
2d(wp, Yn) + [d(Yn, Tnt1) + (T, Y1)
< 2k™d(zo,y0) + k" [d(z0,y1) + d(yo, z1)]-
Since 0 < k < 1, it follows that Xd(zn, Tnt1) + 2d(Yn, Ynt1) < 00.
This implies that {z,} and {y,} are Cauchy sequences and hence are convergent to

x and y respectively (say).
Since A and B are closed subsets, {z,} C A and {y,} C B, it follows that

Tn v €Aand y, »y € Bas n— oo. (2.11)

Again, from (2.10), d(x,,yn) — 0 as n — oco.
Therefore, from (2.11),
x=y. (2.12)
It then follows that x € AN B and hence AN B # ¢.
Now, from (2.1) and (2.2), for all n > 1, we have

d(z,F(z,y)) < d@,zne1) +d(@pgr, Fz,y))
< d(z,zp11) + d(F(Yn, 20), F(z,9))
S dlwmnnn) + 5 [0, ) + (o, 0]

Taking the limit as n — oo in the above inequality, using (2.11) and (2.12), we obtain
d(xz,F(z,z)) = 0. Then we conclude that x = F(z,z), that is, x is a strong coupled fixed
point of F'.

If possible, let there be two strong couple fixed point of F, that is,

F(x, ) =x and F(y, y) =y where z,y € AN B.
Then, by (2.1), we have

d(F(z, x), F(y, y))

SldCe, 9) +d(y, o)
= kd(z, y)

d(z,y)

IN

Since 0 < k < 1, we have that =z = y.
This shows that the strong coupled fixed point is unique. This completes the proof of the
theorem. 0

The following is an illustrative example of the above theorem.

Example 2.1. Let X = R with the metric defined as d(x,y) = |x — y|, where x,y € X.
Let A =10,00) and B = (—00,0].
Then A and B are nonempty closed subsets of X .

——, where z,y € X.

Let the function F be defined as F(x,y) = — 1
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Then F is a coupling and it satisfies inequality (2.1). Then theorem 2.1 can be applied
to this example and we have a strong coupled fixed point of F. Here (0,0) is the unique strong
coupled fized point of F.

3. Chatterjea Type Coupling

In this section, by extending the idea of Chatterjea contraction and combining it with
the concept of coupling we define the Chatterjea type coupling and show that these couplings
have strong unique coupled fixed points in metric spaces. We also discuss an example.

Definition 3.1. Let A and B be two non-empty subsets of a complete metric space (X, d).
A coupling F': X x X — X is called a Chatterjea type coupling with respect to A and B if
it satisfies the following inequality:

d(F(z,y), F(u,v)) < kld(z, F(u,v)) + d(u, F(z,y))] (3.1)
where z,v € A, y,u € B and k € (0, %)
Theorem 3.1. Let A and B be two non-empty closed subsets of a complete metric space

(X,d). Let F: X x X = X be a Chatterjea type coupling with respect to A and B. Then
ANB # ¢ and F has a unique strong coupled fized point in AN B.

Proof. Let g € A and yy € B be any two elements and the sequences {z,} and {y,} be
defined as

Tny1 = Fyn, z,) and yp41 = F(xy, yp) for all n > 0. (3.2)

Then, for all n > 0, x,, € A and y, € B.

Now, by (3.1) and (3.2), we have

d(z1,y2) = d(F(yo,20), F(21,y1))

< kld(yo, F(z1,91)) + d(21, F(yo, 20))]
Eld(yo, y2) + d(z1,21)]
kd(yo, y2)
k[d(yo, z1) + d(z1, y2)]

A

IN

or

k
d(z1,y2) < 7 d(yo, 21),

that is,
d(w1,y2) < td(yo, 1), (3.3)
where
0<t=-—"_ <1 (3.4)
< =5 =
Again, by (3.1) and (3.2), we have

d(y,z2) = d(F(zo,y0), F(y1,21))
< kld(xo, F(y1,21))) + d(y1, F(20,0))]
kld(zo,z2) + d(y1,y1)]
= kd(xg,z2)
< kld(zo,y1) + d(y1,72)]
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or,

d(y1,x2) < d(zo,y1),

1—Fk
that is,
d(y1,2) < td(wo, 1),
where ¢ is the same as in (3.4).
Again, by (3.1) and (3.2), we have

d(z2,y3) = d(F(y1,21), F(22,92))
kld(yy, F(z2,y2)) + d(z2, F(y1,21))]
kld(y1,y3) + d(z2, 22)]
kd(y1,ys)
< k[d(y1,72) + d(x2,ys3)]

IN

A

or, by (3.4) and (3.5),

d(x2,y3) < 1%
and by (3.1) and (3.2), we have
d(y2,z3) = d(F(21,91), F(y2, 22))
kld(z1, F(y2, 22)) + d(y2, F(z1,91))]
kld(z1, z3) + d(y2, y2)]
kd(z1,x3)
kld(z1,y2) + d(y2, z3)]

k
d(y1,z2) < m[td(xoayl)] = t*d(wo, 1)

IA

IN

or, by (3.3) and (3.4), we have

k k
d(y2, 3) < md(xlva) < m[fd(yoaml)} = t2d(yo, 1)-

Again, by (3.1) and (3.2) , we have
d(zs,ys) = d(F(y2,22), F(x3,y3))
kld(y2, F(z3,y3)) + d(zs, F(y2, 22))]
Eld(y2, ya) + d(z3,23)]
kd(yz2, ya)
kld(y2, x3) + d(z3, ya)]

IN

IN

or, by (3.4) and (3.7), we have

k k
d(z3,y4) < ﬁd(ymxs) < ——[t*d(yo, 71)] = t*d(yo, 1)].

1k
and by (3.1) and (3.2), we have
d(ys,za) = d(F(z2,y2), F(ys,23))
kld(z2, F(ys, z3)) + d(ys, F(z2, y2))]
= k[d(z2,74) + d(y3,y3)]
kd(xa,x4)
kld(z2,y3) + d(ys, 4)]

IN

IN

(3.6)

(3.7)

(3.8)



84 Binayak S. Choudhury, P. Maity, P. Konar

or, by (3.4) and (3.6), we have

k k
d(ys,m) < ﬁd@z,yg) < ﬁ[t d(mo,yl)] = t3d($0ay1)]-

Let m be any integer. Let us assume that
d(@n, Yn+1) = d(@n, F (20, yn)) < t"d(yo, 21),
Ad(Yn, Tnt1) = dYn, F(Yn, zn)) < t"d(z0, 11)
for all n < m where n is odd and
A(@ns Ynt1) = d(@n, F(@n,yn)) < t"d(2o, y1),
d(Yn, Tny1) = d(Yn; F(yn, n)) <t"d(yo, 1)

for all n < m where n is even.

Let m be even. Then (m + 1) is odd.

Then, by (3.1) and (3.2), we have

A(Tm+1s Ymt2) = AEFYms Tm)s F(@mi1, Ymt1))
Eld(Ym, F(Tmi1s Ym+1)) + A @mi1, F(Ym, Tm))]
k[d(ym, Ym2) + d(Tmy1, xm-&-l)]
kd(yms Ym+2)
< k[d(ym, $m+1)—|—d(xm+1, ym+2)]

or, by (3.4) and (3.13), we have

A

k

d(Ym, Tm+1) < 7 [("d(yo, 21)] = " d(yo, 1)

L
1-k
and by (3.1) and (3.2) , we have
d(F(xmv ym),F(ynH»l» merl))
k[d(l‘ (ym+17 xm-‘rl)) +d(ym+1a F(mma ym))]
kld(xm, Tmi2) + d(Ym+1s Ym+1)]

= kd(xwu xm+2)

< k[d(xmv ym+1) +d(ym+17 xm+2)]
or, by (3.4) and (3.12), we have

d(merla ym+2) S

=

d(ym+1 ) xm+2)

IN

k k
d(ywz+1a xm+2) < ?d(.’ﬁm, ym+1) < 11— k[tmd(xo, yl)] = tm+1d($0, y1)~
Again, let m be odd. Then (m + 1) is even.
Then, by (3.1) and (3.2), we have
ATm+1, Ym+2) = dEYm, Tm), F(@ms1, Ymt1))

IA

kld(ym, F(Tmt1,Ym+1)) + A @it F(Ym, Tm))]
= k[d(Ym, Ymr2) +d(Tmi1, Tmy1)]
kd(yms Ym+2)
< Kld(Ym, Tme1) + ATt Yme2)]
or, by (3.4) and (3.11), we have

k
A(Tmt1, Yme2) < AYm, Tmi1) < —— T [t™d(zo, y1)] < " d(zo, y1)

L
1-k

N
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and by (3.1) and (3.2), we have

d(ym-&-l, xm+2) = d F(zm, ym),F(ym-&-l; xm+1))

(
Eld(@m, F(Ym+1s Tmt1)) + dWYmt1, F(@m,ym))]
= kld(

IN

d(@m, Tmy2) + dYmt1, Ym)]
kd(Zm, Tmi2)

< k[d(xma ym-‘rl) + d(ym+17 $m+2)]
or, by (3.4) and (3.10), we have

k

k
A(Ym+1, Tmy2) < 7d(33m, Ymi1) < ——[t"d(yo, z1)] <t d(yo, 1)

1-k
Thus we can conclude that (3.10), (3.11), (3.12
we have shown in (3.3), (3.5), (3.6) and (3.7)
Then by induction, we can conclude that (3.10
n > 1.
From the above we conclude that for all odd integer n, we have

d(xnv yn+1) = d(ITH F(In, yn)) < tnd(y(b 1‘1), (314)

d(yna xn—i—l) = d(yn7 F(yna zn)) < tnd(l’o, yl) (315)

and for all even integer n, we have
d(.l?n, yn-l-l) = d(l‘n, F(xnvyn)) < tnd(l'O) y1)7 (316)
d(yna xn-i—l) = d(yna F(yn7 $n)) < tnd(yfh x1)~ (317)
Now when n is odd. Then, by (3.1), (3.2), (3.14) and (3.15), we have
d($n+17 yn+1) = d(F(yn7 .”L'n), F($n7 yn))
kld(Yn, F(Tn, yn)) + d(@n, F(Yn, T4))]
k[d
k[
[

at (3.10)-(3.13) are valid for m = 1,2, 3.

1-k

) and (3.13) are valid for (m + 1) also. But
th

0), (3 11), (3.12) and (3.13) are valid for all

IN

(Yns Ynt1) + d(@n, Tni1)]
A(Yns Tnt1) + d(@nt1, Ynt1) + A @, Ynt1) + dYnt1, Tosr)]
(

"

IN

A(Yny, Tny1) +d(Tn, Yng1) +2d(Tpi1, Ynir)]
t"[d(xo, y1) + d(yo, x1)] + 2kd(Tpi1, Ynt1),

IN

that is,

k‘ thrl
1_2kt"[d(y0a r1) +d(wo, y1)] = 11—

d($n+1, yn+1) < [d(llm 331) +d($o, y1)] (3~18)

k t
where ¢ is the same as in (3.4) and Tk~ 1-¢
Again, when n is even. Then, by (3.1), (3.2), (3.16) and (3.17), we have

d@nt1s Ynt1) = dF(Yn, zn), F(@n, yn))

kld(yn, F(zn,yn)) + d(@n, F(yn, xn))]
k[d

k[

[

IN

(Yns Ynt1) + d(@n, Tni1)]
A(Yns Tnt1) + d(@nt1, Ynt1) + A @, Ynt1) + dYnt1, Tosr)]
(

"

IN

Ad(WYny, Tpy1) +d(Tn, Yng1) +2d(Tpi1, Ynir)]
d(yo, 1) +d(wo, y1)] + 2kd(Tni1, Yni1),

IN
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that is,
tn-}-l
d($n+17 yn+1) < — ok [ (y07 ir1) +d($07 yl)} 1_ t[d(y07 xl) +d($0, ?/1)] (319)
. . k t
where ¢ is the same as in (3.4) and Tk~ 1-¢
Therefore, combining (3.18) and (3.19), for all n, we have
tn
d(fl?n, yn) =1_ [d(y()a ,131)+d(1307 yl)] (320)

It follows that

Yd(xn, 1) +Zd(Yn, Yni1) < B(d(@n, Yn) +dYn, Tot1)) +2(d(Yn, Tn) +d(@n; Yni1))
= Z[d(l‘n, yn) + d<yna xn)] + Z[d(yna xn-i—l) + d(xna yn+1)]

SR [d(yo, 21) + d(zo, 1)]] + S (Ao, 1) + d(zo, 1))

1-—t¢
Since 0 < t < 1, it follows that Xd(zn, Xnt1) + 2d(Yn, Ynt1) < 00.
This implies that {z,} and {y,} are Cauchy sequences and hence are convergent to

IN

x and y respectively (say).
Since A and B are closed subsets, {z,} C A and {y,} C B, it follows that

z, > €Aand y, >y € Basn— oo. (3.21)

Again, from (3.20), since 0 < ¢t < 1, d(xy, yn) — 0 as n — oo.
Therefore, from (3.21),
x=y. (3.22)
It then follows that © € AN B and hence AN B # ¢.
Now, from (3.1) and (3.2),

d(l‘, F(ZE, y)) < ( anrl) + d(anrla (xa y))
= d(z, Tnt1) + d(F (yn, xn)7 F(z, y))
( [ )+

) +
y)

S

€T, xn-i-l) +k d(yTH ( (l‘, xn+1)]'

Taking the limit as n — oo in the above inequality, using (3.21) and (3.22), we obtain
d(z, F(z,z)) = 0. So, we conclude that x = F(x, x), that is, z is a strong coupled fixed
point of F.

If possible, let there be two strong coupled fixed points of F, that is,

F(z, ) =x and F(y, y) =y where z,y € AN B.
Then, by (3.1), we have
dlz,y) = d(F(z, z), F(y, y))
kld(z, F(y, y)) +d(y, F(z, )]
= kld(z, y) +d(y, z)]
= 2kd(z, y)

IN

Since 0 < k < %, we have that x = y.
This shows that the strong coupled fixed point is unique.
This completes the proof of the theorem. O
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Example 3.1. Let X = R with the metric defined as

d(z, y) = |z —y|.

Let A =[—-m, 0] and B =0, =].

Then A and B are nonempty closed subsets of X.
Let F: X x X — X be defined as

Pz, y)=4 0, if (v, y) € Ax B,
2, otherwise.

Then F is a coupling. Let k = %

3.1,

Then all the conditions of the theorem 3.1 are satisfied. By an application of theorem
there is a strong coupled fixed point of F'. Here (0, 0) is the unique strong coupled fized

point of F.

4. Conclusions

The concept of coupling arises by a combination of coupled mappings and cyclic

mappings. Both categories of mappings are well studied in fixed point theory. It may be of
interest to investigate fixed point and related properties for couplings satisfying other types

of inequalities as well. This may also be treated as an open problem.
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