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FUNDAMENTAL Γ-SEMIGROUPS THROUGH Hv-Γ-SEMIGROUPS

Hossein HEDAYATI1, Irina CRISTEA2

In this paper, we consider the notions of Hv-Γ-semigroup and regular re-
lation. Firstly we prove that any semigroup endowed with an equivalence relation
can induce an Hv-Γ-semigroup. Secondly, by regular relations, isomorphism theo-
rems on Hv-Γ-semigroups are proved and discussed. Finally, as a strongly regular
relation, we point out the fundamental relation on Hv-Γ-semigroups and create a
functor between the category of Hv-Γ-semigroups and the category of fundamental
Γ-semigroups.
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1. Introduction and preliminaries

In 1986, Sen and Saha [1] defined the notion of a Γ-semigroup as a generalization
of a semigroup. Many classical properties of semigroups have been extended to Γ-
semigroups that have been investigated by a lot of mathematicians, for instance,
Chattopadhyay [2, 3], Hila [4, 5], Saha [6], Sen et. al. [7]- [10], Seth [11] and many
others.
Let S = {a, b, c, . . .} and Γ = {α, β, γ, . . .} be two non-empty sets. Then S is
called a Γ-semigroup [1, 6] if there exists a mapping S × Γ × S −→ S written as
(a, γ, b) 7→ aγb satisfying the following identity (aαb)βc = aα(bβc) for all a, b, c ∈ S
and for all α, β ∈ Γ. An unique element e ∈ S is called an identity element if
eγx = x = xγe, for all x ∈ S and γ ∈ Γ. Let S be an arbitrary semigroup and Γ
any non-empty set. Define a map S × Γ × S −→ S by aγb = ab for all a, b ∈ S
and γ ∈ Γ. It is easy to see that S is a Γ-semigroup. Thus, any semigroup can be
considered as a Γ-semigroup.

Example 1.1. (1) Let S = [0, 1] and Γ = { 1
n | n is a positive integer}. Then S is a

Γ-semigroup under the usual multiplication.

(2) Let S = {−i, 0, i} a subset of the complex numbers C and Γ = S. We notice
that S is not a semigroup under complex numbers multiplication, while it is a Γ-
semigroup under the same operation.
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(3) Let S be the set of all m × n matrices, with m ̸= n and Γ be the set of all
n×m matrices over the same field. Then for A,B ∈ S, the product AB can not be
defined i.e., S is not a semigroup under the usual matrix multiplication. But, for all
A,B,C ∈ S and P,Q ∈ Γ we have APB ∈ S and since the matrix multiplication is
associative, we have (APB)QC = AP (BQC). Hence S is a Γ-semigroup.

These examples illustrate the motivation of the study of Γ-semigroups like an inde-
pendent class of algebraic structures.

Algebraic hyperstructures represent a natural extension of classical algebraic struc-
tures and they were introduced by the French mathematician F. Marty [12]. In
a classical algebraic structure, the composition of two elements is an element (so
the operation is a single valued function), while in an algebraic hyperstructure, the
composition of two elements is a set, that is the hyperoperation, called also hyper-
product, is a multivalued function. The principal notions of algebraic hyperstructure
theory and many examples can be found in [13]-[16]. Many authors studied different
aspects of semihypergroups or semihyperrings, for instance, see [17, 18, 19], their
connections with Γ-semihypergroups [20, 21]. Hedayati, Davvaz and Shum studied
on some aspects of Γ-semirings and Γ-hyperrings in [22, 23]. On the other hand,
Hv-structures have been first introduced by Vougiouklis in Fourth AHA Congress
(1990) [24] as a generalization of the well-known algebraic hyperstructures (hyper-
group, hyperring, hypermodule and so on). Actually some axioms concerning the
above hyperstructures such as the associative law, the distributive law and so on are
replaced by their corresponding weak axioms. The reader will find in [25, 16] some
basic definitions and theorems regarding the Hv-structures. Since then the study of
Hv-structure theory has been pursued in many directions by Vougiouklis, Davvaz,
Spartalis and others, for example see [26]-[29].
On a hyperstructure one may define two types of fundamental relations. The first
one, is connected with the regular relations. For example, if S is a hyperstructure,
i.e. a multivalued structure (in particular a semihypergroup, a hypergroup, a hy-
perring, a hypermodule or a multialgebra/hyperalgebra), then the quotient by the
fundamental relation ξ∗ is a single valued structure of the same type (a semigroup, a
group, a ring, a module, or an algebra respectively) [30, 22, 31]. Besides, Jantosciak
[32] defined other three equivalences on a hypergroup, called fundamental relations
too, in order to obtain the reduced hypergroups. The study of the hypergroups can
be therefore divided into two parts: the study of the reduced hypergroups and that
of the hypergroups with the same reduced form (see [33, 34]).
Let us recall this basic definition. Let S be a non-empty set. Then, the map
◦ : S × S −→ ℘∗(S) is called a hyperoperation, where ℘∗(S) is the family of non-
empty subsets of S. Also, (S, ◦) is called an Hv-semigroup [16, 27] if, for every
x, y, z ∈ S, we have x ◦ (y ◦ z)∩ (x ◦ y) ◦ z ̸= ∅. In this definition, if A and B are two
non-empty subsets of S and x ∈ S, then we define

A ◦B =
∪
a∈A
b∈B

a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.
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The rest of the paper is organized as follows. In Section 2, after defining the Hv-
Γ-semigroups and the regular relations on them, we discuss the isomorphism theo-
rems. Section 3 is dedicated to the study of the fundamental relation in a Hv-Γ-
semigroup and the fundamental Γ-semigroup. Moreover we established a covariant
functor between the category of Hv-Γ-semigroups and the category of fundamental
Γ-semigroups. We conclude with final remarks and few open problems.

2. Isomorphism theorems on Hv-Γ-semigroups
based on regular relations

The regular relations are a particular case of the ideal congruence relations
introduced by Picket in the context of multialgebras [35]. Later on they have been
studied for the hypergroups, hyperrings, hypermodules and the connected hyper-
structures in order to obtain the corresponding factor hyperstructures.
Our intent here is to discuss on the three isomorphism theorems for the Hv-Γ-
semigroups by means of regular relations. We expect that these theorems can be
stated and proved as for the other structures/hyperstructures, but we will see that
this doesn’t happen for the second theorem. We recall that all these theorems
have been proved for Γ-semigroups [36], Γ- semihypergroups [21], Γ-hyperrings [22],
Γ-hypermodules [37]. On the other hand, isomorphism theorems for universal hy-
peralgebras (multialgebras) were proved by Ebrahimi et al. in [38].

Definition 2.1. Let S and Γ be non-empty sets. Then S is called an Hv-Γ-
semigroup if there exists a mapping · : S × Γ × S −→ ℘∗(S) such that (xγy)βz ≈
xγ(yβz) for all x, y, z ∈ S and γ, β ∈ Γ, where by A ≈ B we mean A ∩ B ̸= ∅. An
unique element e ∈ S is called an identity element if eγx = x = xγe, for all x ∈ S
and γ ∈ Γ.

In the next example, we will see that each semigroup endowed with an equivalence
relation can induce an Hv-Γ-semigroup.

Example 2.1. (1) Let (S, ·) be a semigroup, σ an equivalence relation in S and
σ(x) the equivalence class of x ∈ S. If ∅ ̸= Γ ⊆ S and R is an equivalence re-
lation in Γ, then S/σ is an Hv-Γ/R-semigroup, where S/σ = {σ(x) | x ∈ S}
and Γ/R = {R(γ) | γ ∈ Γ}. Define ⊙ : S/σ × Γ/R × S/σ −→ ℘∗(S/σ) by
σ(x) ⊙ R(γ) ⊙ σ(y) = {σ(z) | z ∈ σ(x)R(γ)σ(y)}. It is easy to verify that ⊙ is
well-defined. Also, (xγy)βz = xγ(yβz) for all x, y, z ∈ S and γ, β ∈ Γ, which implies
that (σ(x)⊙R(γ)⊙ σ(y))⊙R(β)⊙ σ(z)∩ σ(x)⊙R(γ)⊙ (σ(y)⊙R(β)⊙ σ(z)) ̸= ∅.
Therefore, S/σ is an Hv-Γ/R-semigroup.

(2) Let ∅ ̸= Γ ⊆ Zm. Define ⊕ : Zm ×Γ×Zm −→ ℘∗(Zm) by x⊕ γ ⊕ y = {x+ y, γ}
for all x, y ∈ Zm and γ ∈ Γ. Then, for all x, y, z ∈ Zm and γ, β ∈ Γ we have
(x⊕γ⊕y)⊕β⊕z = {x+y+z, β, γ+z} and x⊕γ⊕(y⊕β⊕z) = {x+y+z, γ, x+β}.
Thus, (x⊕γ⊕y)⊕β⊕z∩x⊕γ⊕(y⊕β⊕z) ̸= ∅. Therefore, Zm is an Hv-Γ-semigroup.

(3) Let ∅ ̸= Γ ⊆ Zn. Define ⊕ : Zn × Γ× Zn −→ ℘∗(Zn) by

(m1, . . .,mn)⊕ (γ1, . . ., γn)⊕ (0, . . ., 0) = {(m1 + γ1, . . .,mn + γn), (0, . . ., 0)},
(m1, . . . ,mn)⊕ (γ1, . . . , γn)⊕ (m′

1, . . . ,m
′
n)=(m1 + γ1 +m′

1, . . . ,mn + γn +m′
n).

It is easy to verify that Zn is an Hv-Γ-semigroup.
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In the following theorem, by a Γ-semigroup S and every non-empty subset of S, we
construct an Hv-Γ-semigroup.

Theorem 2.1. Let S be a Γ-semigroup and I a non-empty subset of S. Then,
S is an Hv-Γ-semigroup with the mapping ⊙I : S × Γ × S −→ ℘∗(S) defined by
x⊙I γ ⊙I y = xΓIγy for all x, y ∈ S and γ ∈ Γ.

Proof. It is easy to verify that ⊙I is well-defined. Then, for all x, y, z ∈ S and
α, β ∈ Γ we have

(x⊙I α⊙I y)⊙I β ⊙I z

= {t ∈ S | t ∈ xΓIαy} ⊙I β ⊙I z

= {w ∈ S | w ∈ tΓIβz, t ∈ xΓIαy}
= {w ∈ S | w ∈ (xΓIαy)ΓIβz} ≈ {w′ ∈ S | w′ ∈ xΓIα(yΓIβz)}
= x⊙I α⊙I {t′ ∈ S′ | t′ ∈ yΓIβz} = x⊙I α⊙I (y ⊙I β ⊙I z).

Therefore, S is an Hv-Γ-semigroup. �

In Theorem 2.1, if we define ⊙I by x⊙I γ ⊙I y = xγIΓy, for all x, y ∈ S and γ ∈ Γ,
then it is easy to prove that S is an Hv-Γ-semigroup, too.

Let S be an Hv-Γ-semigroup and θ an equivalence relation in S. Then, we extend
the relation θ to the non-empty subsets A and B of S as follows: AθB if and only
if ∀ a ∈ A ∃ b ∈ B, such that aθb and ∀ b ∈ B ∃ a ∈ A, such that bθa, where by
aθb, we mean (a, b) ∈ θ. An equivalence relation θ on S is said to be regular if, for
all x, y, z ∈ S and α ∈ Γ, xθy implies that (xαz)θ(yαz) and (zαx)θ(zαy). By S/θ
we mean the set of all equivalence classes of the elements of S with respect to the
relation θ, that is S/θ = {θ(x) | x ∈ S}. In what follows, S is an Hv-Γ-semigroup
unless otherwise specified. In the next lemma, we have a well-known property of
regular relations.

Lemma 2.1. Let θ be a regular relation on S. Then, we have
{θ(z) | z∈θ(x)αθ(y)}={θ(z) | z ∈ xαy}, for all x, y ∈ S and α ∈ Γ.

Proof. See [39]. �

Now, we will see that each Hv-Γ-semigroup with a regular relation can induce a new
Hv-Γ-semigroup.

Theorem 2.2. Let θ be a regular relation on S. Then S/θ is an Hv-Γ-semigroup
with the mapping ⊙ : S/θ×Γ×S/θ −→ ℘∗(S/θ) defined by θ(x)⊙α⊙θ(y) = {θ(z) |
z ∈ θ(x)αθ(y)} for all θ(x), θ(y) ∈ S/θ and α ∈ Γ.

Proof. It follows from Lemma 2.1 (for more details see [39]). �

Let S1 and S2 be two Hv-Γ-semigroups. A mapping φ : S1 −→ S2 is called a homo-
morphism if φ(xαy) = φ(x)αφ(y), for all x, y ∈ S1 and α ∈ Γ. A homomorphism φ
is called an isomorphism if φ is 1-1 and onto. Two Hv-Γ-semigroups S1 and S2 are
isomorphic if there exists an isomorphism φ : S1 −→ S2 between them; it is denoted
by S1 ∼= S2. Let φ : S1 −→ S2 be a homomorphism of Hv-Γ-semigroups. We define
a relation K on S1 as follows: K = φ−1 ◦ φ = {(x, y) ∈ S1 × S1 | φ(x) = φ(y)}.
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In the next theorems, we consider the regular relation induced by homomorphisms
and investigate the corresponding results and properties associated with this regular
relation.

Lemma 2.2. The relation K is a regular relation on S1.

Proof. Straightforward. �

SinceK is a regular relation in S1, then by Theorem 2.2, S1/K is anHv-Γ-semigroup.
Now, we have the following theorem.

Theorem 2.3. Let S1 and S2 be two Hv-Γ-semigroups and φ : S1 −→ S2 a homo-
morphism. Then, there is a monomorphism ψ : S1/K −→ S2 such that Imφ = Imψ
and the diagram

S1
-φ

?

K∗

S1/K

�
�

�
���

∃ψ

S2

commutes, i.e. ψ ◦ K∗ = φ, where the mapping K∗ : S1 −→ S1/K is defined by
K∗(x) = K(x), for all x ∈ S1.

Proof. Define ψ : S1/K −→ S2 by ψ(K(x)) = φ(x) for all x ∈ S1. We have

K(x) = K(y) ⇐⇒ (x, y) ∈ K ⇐⇒ φ(x) = φ(y) ⇐⇒ ψ(K(x)) = ψ(K(y)).

Then, ψ is well-defined and 1-1. Also, ψ is a homomorphism since, for all x, y ∈ S1
and α ∈ Γ, we have

ψ(K(x)⊙ α⊙K(y)) = {ψ(K(z)) | z ∈ xαy} = {φ(z) | z ∈ xαy}
= φ(xαy) = φ(x)αφ(y) = ψ(K(x))αψ(K(y)).

It is easy to prove that Imφ = Imψ. Also, the diagram is commutative, because
for all x ∈ S1 we have (ψ ◦K∗)(x) = ψ(K∗(x)) = ψ(K(x)) = φ(x). This completes
the proof. �

Now, by the help of the regular relation K, we state the first isomorphism theorem.

Theorem 2.4. (First Isomorphism Theorem) Let S1 and S2 be Hv-Γ-semigroups
and φ : S1 −→ S2 a homomorphism. Then S1/K ∼= Imφ.

Proof. It follows immediately from Theorem 2.3. �
Theorem 2.5. Let S1 and S2 be Hv-Γ-semigroups and φ : S1 −→ S2 a homomor-
phism. If θ is a regular relation on S1 such that θ ⊆ K, then there is an unique
monomorphism ψ : S1/θ −→ S2 such that Imφ = Imψ and the diagram

S1
-φ

?

θ∗

S1/θ

�
�

�
���

∃!ψ

S2
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commutes, i.e. ψ ◦ θ∗ = φ, where the mapping θ∗ : S1 −→ S1/θ is defined by
θ∗(x) = θ(x), for all x ∈ S1.

Proof. Define ψ : S1/θ −→ S2 by ψ(θ(x)) = φ(x), for all x ∈ S1. Suppose that
x, y ∈ S1 such that θ(x) = θ(y). That is (x, y) ∈ θ, which implies that (x, y) ∈ K.
Hence, φ(x) = φ(y). Thus, ψ is well-defined. Now, suppose that x, y ∈ S1 and
α ∈ Γ. Then,

ψ(θ(x)⊙ α⊙ θ(y)) = ψ({θ(z) | z ∈ xαy}) = {ψ(θ(z)) | z ∈ xαy}
= {φ(z) | z ∈ xαy} = φ(xαy) = φ(x)αφ(y) = ψ(θ(x))αψ(θ(y)).

Therefore, ψ is a homomorphism. It is easy to see that Imφ = Imψ. Suppose that
x ∈ S1. Then, (ψ ◦ θ∗)(x) = ψ(θ∗(x)) = ψ(θ(x)) = φ(x). It implies that ψ ◦ θ∗ = φ.
Finally, let ψ∗ : S1/θ −→ S2 be any homomorphism satisfying ψ∗◦θ∗ = φ. Then, for
all x ∈ S1, we have ψ

∗(θ(x)) = ψ∗(θ∗(x)) = ψ∗ ◦ θ∗(x) = φ(x) = ψ(θ(x)). Therefore,
ψ∗ = ψ and the proof is completed. �

Let θ and µ be two relations in the Hv-Γ-semigroup S with θ ⊆ µ. Define the
relation µ/θ on S/θ by µ/θ = {(θ(x), θ(y)) ∈ S/θ × S/θ | (x, y) ∈ µ}. Suppose that
θ(x) = θ(y). Then, (x, y) ∈ θ ⊆ µ which implies that (θ(x), θ(y)) ∈ µ/θ and so
µ/θ(θ(x)) = µ/θ(θ(y)). Therefore, µ/θ is well-defined.

Lemma 2.3. If θ and µ are regular relations on S, then µ/θ is a regular relation
on S/θ.

Proof. Suppose that x ∈ S. Then (x, x) ∈ µ and thus (θ(x), θ(x)) ∈ µ/θ. Hence
µ/θ is reflexive. Also, let x, y ∈ S such that (θ(x), θ(y)) ∈ µ/θ. Then, (x, y) ∈ µ.
Since µ is symmetric, (y, x) ∈ µ, which implies that (θ(y), θ(x)) ∈ µ/θ. Hence, µ/θ is
symmetric. Also, let x, y, z ∈ S such that (θ(x), θ(y)) ∈ µ/θ and (θ(y), θ(z)) ∈ µ/θ.
Then (x, y) ∈ µ and (y, z) ∈ µ. Since µ is transitive, (x, z) ∈ µ, which implies
that (θ(x), θ(z)) ∈ µ/θ. Hence, µ/θ is transitive. Therefore, µ/θ is an equivalence
relation on S/θ. Now, we prove that µ/θ is regular. Suppose that x, y, z ∈ S and
α ∈ Γ. We have

θ(x)(µ/θ)θ(y) =⇒ (x, y) ∈ µ =⇒ xµy =⇒ (xαz)µ̄(yαz)

=⇒ {θ(u) | u ∈ xαz}µ/θ{θ(v) | v ∈ yαz}
=⇒ (θ(x)⊙ α⊙ θ(z))µ/θ(θ(y)⊙ α⊙ θ(z)).

Similarly, we can show that (θ(z) ⊙ α ⊙ θ(x))µ/θ(θ(z) ⊙ α ⊙ θ(y)). Therefore, µ/θ
is a regular relation on S/θ. �

If µ and θ are regular relations in S with θ ⊆ µ, then we know that (S/θ)/(µ/θ) is
an Hv-Γ-semigroup. In the next theorem, by the help of regular relations, we prove
the third isomorphism theorem.

Theorem 2.6. (Third Isomorphism Theorem) Let θ and µ be regular relations on
S with θ ⊆ µ. Then, (S/θ)/(µ/θ) ∼= S/µ.
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Proof. Define φ : (S/θ)/(µ/θ) −→ S/µ by φ(µ/θ(θ(x))) = µ(x), for all x ∈ S.
Clearly, φ is onto. Also, for all x, y ∈ S, we have

µ/θ(θ(x))=µ/θ(θ(y)) ⇐⇒ (θ(x), θ(y))∈µ/θ ⇐⇒ (x, y)∈µ⇐⇒ µ(x)=µ(y).

Therefore, φ is well-defined and 1-1. Clearly, φ is onto. Now, we prove that φ is a
homomorphism. Suppose that x, y ∈ S and α ∈ Γ, then

φ(µ/θ(θ(x))⊙ α⊙ µ/θ(θ(y)))=φ({µ/θ(θ(z)) | θ(z) ∈ θ(x)⊙ α⊙ θ(y)})

=φ({µ/θ(θ(z)) | z∈xαy})=
{
φ(µ/θ(θ(z))) | z∈xαy

}
={µ(z) | z ∈ xαy}

= µ(x)⊙ α⊙ µ(y) = φ(µ/θ(θ(x)))⊙ α⊙ φ(µ/θ(θ(y))).

Hence, φ is a homomorphism. Therefore, (S/θ)/(µ/θ) ∼= S/µ. �
Remark 2.1. It is quite easy to notice that the second isomorphism theorem can
not be proved by the help of regular relation: if we consider θµ/µ or µ/θ ∩ µ, for θ
and µ regular relation, we don’t obtain Hv-Γ-semigroups. So we are forced to work
with other entities, like the hyperideals [39]. But the problem is not so easy as it
seems to be. If I and J are hyperideals on a Hv-Γ-semigroup, then we have to prove
the second isomorphism theorem by the form IΓJ/I ∼= J/I∩J . In this case we meet
some problems. The quotient IΓJ/I is not well-defined because we don’t know if
I ⊂ IΓJ . Besides, how can we construct a well-defined map φ : IΓJ/I −→ J/I ∩J?
Till now we have no answer to these questions, it reamins an open problem to
investigate in future.

3. Fundamental relation in Hv-Γ-semigroups

In this section, we introduce the notion of fundamental relation in Hv-Γ-semigroups
as a strongly regular relation. Also, by the help of the fundamental relation in
Hv-Γ-semigroups we construct fundamental Γ-semigroups.
It is worth to mention that an Hv-Γ-semigroup can be viewed as a particular multi-
algebra (S, (◦γ)γ∈Γ), where ◦γ : S×S −→ P∗(S) are binary hyperoperations, defined
here by x◦γ y = xγy, and which satisfies the weak associativity. The fundamental re-
lation of a multialgebra and the relative quotient multialgebra are studied in [31, 40].
Here we focus on the same arguments in the particular case of Hv-Γ-semigroups, giv-
ing a detailed presentation of these properties, using the terminology and the tools
of Γ-semigroups.

Definition 3.1. Let S be an Hv-Γ-semigroup. We define the relation ξ∗ as the
smallest equivalence relation such that the quotient S/ξ∗ is a Γ-semigroup. Then,
the relation ξ∗ is called the fundamental relation in Hv-Γ-semigroup S, and S/ξ∗ is
called the fundamental Γ-semigroup. Let us denote the set U(S,Γ) = U as follows:

U = {a1γ1a2γ2 · · · anγnan+1 | ai ∈ S, γi ∈ Γ, ∀i ∈ {1, . . . , n}, n ∈ N}.
In fact, U is the set of all finite products of elements of S and Γ. It is easy to see
that S ⊆ U, that is U contains all singletons of the elements of S. Now, we define
the relation ξ on S as follows:

xξy ⇐⇒ ∃ u ∈ U, {x, y} ⊆ u.

Let ξ be the transitive closure of ξ. For all a, b ∈ S and γ ∈ Γ, we define ξ(a) ◦ γ ◦
ξ(b) = {ξ(c) | c ∈ ξ(a)γξ(b)}. Now, we obtain some interesting results concerning ξ.
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Lemma 3.1. The set ξ(a) ◦ γ ◦ ξ(b) is a singleton, i.e., |ξ(a) ◦ γ ◦ ξ(b)| = 1.

Proof. Let ξ(c) ∈ ξ(a) ◦ γ ◦ ξ(b). Then, c ∈ ξ(a)γξ(b), so there exists a′ ∈ ξ(a) and
b′ ∈ ξ(b) such that c ∈ a′γb′. It is enough we prove that ξ(z) = ξ(z′), for all z ∈ aγb
and z′ ∈ a′γb′. We know that a′ξa if and only if there exist x1, . . . , xm+1 ∈ S with
x1 = a′ and xm+1 = a and there exist u1, . . . , um ∈ U such that {xi, xi+1} ⊆ ui, for
i = 1, 2, . . . ,m. Also, b′ξb if and only if there exist y1, . . . , yn+1 ∈ S with y1 = b′ and
yn+1 = b and there exist v1, . . . , vn ∈ U such that {yj , yj+1} ⊆ vj , for j = 1, 2, . . . , n.
Therefore, we obtain{

{xi, xi+1}γy1 ⊆ uiγv1, i = 1, 2, . . . ,m− 1,
xm+1γ{yj , yj+1} ⊆ umγvj , j = 1, 2, . . . , n

(∗)

Therefore, uiγv1 = ti ∈ U, for i = 1, 2, . . . ,m − 1 and umγvj = tm+j−1 ∈ U, for
j = 1, 2, . . . , n. Now, choose the elements z1, z2, . . . , zm+n such that zi ∈ xiγy1,
for i = 1, 2, . . . ,m and zm+j ∈ xm+1γyj+1, for j = 1, 2, . . . , n. Using (∗), we have
{zk, zk+1} ⊆ tk, for k = 1, . . . ,m+ n− 1. Thus, every element z1 ∈ x1γy1 = a′γb′ is
equivalent to every element zm+n ∈ xm+1γyn+1 = aγb with respect to the relation
ξ. Therefore, |ξ(a) ◦ γ ◦ ξ(b)| = 1 and we can write ξ(a) ◦ γ ◦ ξ(b) = ξ(c), for all
c ∈ ξ(a)γξ(b). This completes the proof. �

Now, by the help of an Hv-Γ-semigroup and the relation ξ, we construct a Γ-
semigroup.

Lemma 3.2. S/ξ is a Γ-semigroup.

Proof. We define ∗ : S/ξ × Γ× S/ξ −→ S/ξ by (ξ(a), γ, ξ(b)) 7→ ξ(a) ◦ γ ◦ ξ(b). For
any ξ(x), ξ(y), ξ(z) ∈ S/ξ and α, β ∈ Γ we prove that

ξ(x) ◦ α ◦ (ξ(y) ◦ β ◦ ξ(z)) = (ξ(x) ◦ α ◦ ξ(y)) ◦ β ◦ ξ(z).

Suppose that ξ(a) ∈ ξ(x)◦α◦ (ξ(y)◦β ◦ξ(z)). By Lemma 3.2, we have ξ(a) = ξ(a1),
where a1 ∈ xα(yβz). Then,

ξ(a) = ξ(a1) ∈ ξ(x) ◦ α ◦ (ξ(y) ◦ β ◦ ξ(z))
⇐⇒ a1 ∈ xα(yβz) ⇐⇒ a1 ∈ (xαy)βz

⇐⇒ ξ(a1) ∈ (ξ(x) ◦ α ◦ ξ(y)) ◦ β ◦ ξ(z).

Hence, ξ(a) ∈ (ξ(x)◦α◦ξ(y))◦β ◦ξ(z). This implies that ξ(x)◦α◦(ξ(y)◦β ◦ξ(z)) =
(ξ(x) ◦ α ◦ ξ(y)) ◦ β ◦ ξ(z). Therefore, S/ξ is a Γ-semigroup. �

In the next lemma, we will see that ξ is the smallest equivalence relation with the
property that S/ξ is a Γ-semigroup.

Lemma 3.3. ξ is the smallest equivalence relation in S such that S/ξ is a Γ-
semigroup. In other words, ξ = ξ∗.

Proof. Let µ be an equivalence relation on S such that S/µ is a Γ-semigroup. We
denote the equivalence class of a ∈ S as usually by µ(a). Then, we have µ(a) ◦
γ ◦ µ(b) = µ(d), for all d ∈ µ(a)γµ(b). Thus, for every A ⊆ µ(a) and B ⊆ µ(b) we
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can write µ(a) ◦ γ ◦ µ(b) = µ(aγb) = µ(AγB). By induction we can extend these
relations on finite products. Then, for all u ∈ U and x ∈ u we have µ(x) = µ(u).
Hence, for all t ∈ S, x ∈ ξ(t) implies that x ∈ µ(t). Also, µ is transitivity closed, so
if (x, t) ∈ ξ, then it implies that (x, t) ∈ µ. Therefore, ξ is the smallest equivalence
relation such that S/ξ is a Γ-semigroup. �

Theorem 3.1. The fundamental relation ξ∗ is the transitive closure of the relation
ξ.

Proof. It is concluded by Lemmas 3.1, 3.2 and 3.3. �

In the following, we investigate some properties of the equivalence classes corre-
sponding to the fundamental relation in Hv-Γ-semigroups.

Theorem 3.2. Let S be an Hv-Γ-semigroup and ξ∗ the fundamental relation on S.
If S has the identity element e and ξ∗(x) = ξ∗(x′), then there exist B,B′ ⊆ ξ∗(b)
and C,C ′ ⊆ ξ∗(c), for some b, c ∈ S, such that xγC ⊆ B and x′γ′C ′ ⊆ B′, for all
γ, γ′ ∈ Γ.

Proof. It is enough we take B = B′ = ξ∗(x) = ξ∗(x′) and C = C ′ = ξ∗(e). Now,
let z ∈ xγC ⊆ ξ∗(x)γξ∗(e), then ξ∗(z) ∈ ξ∗(x) ◦ γ ◦ ξ∗(e). But, we know that
ξ∗(x) ∈ ξ∗(x) ◦ γ ◦ ξ∗(e) (since ξ∗(e) is the identity element of S/ξ∗). On the other
hand, |ξ∗(x) ◦ γ ◦ ξ∗(e)| = 1, so ξ∗(z) = ξ∗(x). Hence, z ∈ ξ∗(x) = B, which implies
that xγC ⊆ B. Similarly, we can prove that x′γ′C ′ ⊆ B′. �

In the next theorem, we will give a characterization of the equivalence class of the
identity element of S.

Theorem 3.3. Let S be an Hv-Γ-semigroup and ξ∗ the fundamental relation in S.
If S has the identity element e, then y ∈ ξ∗(e) if and only if there exists B ⊆ ξ∗(b),
for some b ∈ B, such that yγB ⊆ B, for all γ ∈ Γ.

Proof. Let y ∈ ξ∗(e), b ∈ S, γ ∈ Γ and B = ξ∗(b). Suppose that z ∈ yγB; we have
ξ∗(z) = ξ∗(y) ◦ γ ◦ ξ∗(b) = ξ∗(e) ◦ γ ◦ ξ∗(b) = ξ∗(b), so z ∈ ξ∗(b) = B, which implies
that yγB ⊆ B.
Conversely, suppose that there exists B ⊆ ξ∗(b), for some b ∈ S, such that yγB ⊆ B,
for all γ ∈ Γ. Then ξ∗(y) ◦ γ ◦ ξ∗(b) = ξ∗(b) = ξ∗(e) ◦ γ ◦ ξ∗(b). On the other hand,
ξ∗(e) is unique. Hence ξ∗(y) = ξ∗(e), which implies that y ∈ ξ∗(e). �

Proposition 3.1. Let S be an Hv-Γ-semigroup.
If u=a1γ1a2γ2 . . . anγnan+1∈U, then ξ∗(u) = ξ∗(a1) ◦ γ1 ◦ ξ∗(a2) ◦ γ2 ◦ . . . ◦ ξ∗(an) ◦
γn ◦ ξ∗(an+1) = ξ∗(z), for all z ∈ u.

Proof. We have

z ∈ u = a1γ1a2γ2 . . . anγnan+1

=⇒ ξ∗(z) ∈ ξ∗(a1) ◦ γ1 ◦ ξ∗(a2) ◦ γ2 ◦ . . . ◦ ξ∗(an) ◦ γn ◦ ξ∗(an+1)

=⇒ ξ∗(z) = ξ∗(a1) ◦ γ1 ◦ ξ∗(a2) ◦ γ2 ◦ . . . ◦ ξ∗(an) ◦ γn ◦ ξ∗(an+1)



42 Hossein HEDAYATI, Irina CRISTEA

Besides, clearly

ξ∗(u) = ξ∗(z) = ξ∗(a1) ◦ γ1 ◦ ξ∗(a2) ◦ γ2 ◦ · · · ◦ ξ∗(an) ◦ γn ◦ ξ∗(an+1),

which completes the proof. �

Lemma 3.4. Let S be an Hv-Γ-semigroup and ξ∗ the fundamental relation in S.
Then, ΠS : S −→ S/ξ∗ defined by ΠS(x) = ξ∗(x) is an epimorphism of Hv-Γ-
semigroups.

Proof. Clearly, ΠS is well-defined. We prove that ΠS(xγy) = ΠS(x)◦γ◦ΠS(y) for all
x, y ∈ S and γ ∈ Γ. Let z ∈ xγy ⊆ ΠS(x)γΠS(y). Then, ΠS(z) ∈ ΠS(x) ◦ γ ◦ΠS(y).
By Lemma 3.1, we know that |ΠS(x)◦γ◦ΠS(y)| = 1, hence ΠS(z) = ΠS(x)◦γ◦ΠS(y),
consequently ΠS(xγy) = ΠS(x)◦γ ◦ΠS(y). Therefore, ΠS is an epimorphism of Hv-
Γ-semigroups from S to S/ξ∗. �

In the sequel, we prove that there exists a covariant functor between the category of
Hv-Γ-semigroups and the category of fundamental Γ-semigroups. For this we need
the following theorem.

Theorem 3.4. Let S1 and S2 be Hv-Γ-semigroups, and ξ∗1 and ξ∗2 the fundamental
relations in S1 and S2, respectively. If f : S1 −→ S2 is a homomorphism, then
there exists an unique homomorphism f∗ : S1/ξ

∗
1 −→ S2/ξ

∗
2 such that the following

diagram commutes:

S1
f−→ S2

ΠS1 ↓ ↓ ΠS2

S1/ξ
∗
1

f∗
−→ S2/ξ

∗
2 ,

Moreover, if f is an isomorphism, then f∗ is an isomorphism, too.

Proof. We define f∗ : S1/ξ
∗
1 −→ S2/ξ

∗
2 by f∗(ξ∗1(x)) = ξ∗2(f(x)) for all ξ∗1(x) ∈

S1/ξ
∗
1 . Clearly, f∗ ◦ ΠS1 = ΠS2 ◦ f . Therefore, the diagram is commutative. We

prove that f∗ is a homomorphism. Let ξ∗1(x) = ξ∗1(y), i.e. xξ
∗
1y. Then, there exist

a1, . . . , am+1 ∈ S1 and u1, . . . , um ∈ U(S1,Γ) by x = a1 and y = am+1 such that
{ai, ai+1} ⊆ ui, for all 1 ≤ i ≤ m. Now, since f is a homomorphism we have

f(ui) ∈ U(S2,Γ) =⇒ {f(ai), f(ai+1)} ⊆ f(ui) ∈ U(S2,Γ)

=⇒ (f(x), f(y))∈ξ∗2 =⇒ ξ∗2(f(x))=ξ
∗
2(f(y)) =⇒ f∗(ξ∗1(x))=f

∗(ξ∗1(y)).

Therefore, f∗ is well-defined. Now, we prove that

f∗(ξ∗1(x) ◦ γ ◦ ξ∗1(y)) ⊆ f∗(ξ∗1(x)) ◦ γ ◦ f∗(ξ∗1(y)).

Let f∗(ξ∗1(z)) ∈ f∗(ξ∗1(x) ◦ γ ◦ ξ∗1(y)), for z ∈ ξ∗1(x)γξ
∗
1(y). For all t ∈ xγy, we have

ξ∗1(z) = ξ∗1(t) =⇒ f(t) ∈ f(x)γf(y) =⇒
f∗(ξ∗1(t))=ξ

∗
2(f(t)) ∈ ξ∗2(f(x)) ◦ γ ◦ ξ∗2(f(y))=f∗(ξ∗1(x)) ◦ γ ◦ f∗(ξ∗1(y))

=⇒ f∗(ξ∗1(z)) = f∗(ξ∗1(t)) ∈ f∗(ξ∗1(x)) ◦ γ ◦ f∗(ξ∗1(y)).
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On the other hand, we know that f∗(ξ∗1(x) ◦ γ ◦ ξ∗1(y)) and f∗(ξ∗1(x)) ◦ γ ◦ f∗(ξ∗1(y))
are singletons. Thus,

f∗(ξ∗1(x) ◦ γ ◦ ξ∗1(y)) = f∗(ξ∗1(x)) ◦ γ ◦ f∗(ξ∗1(y)).

Therefore, f∗ is a homomorphism.
Moreover, if f is an isomorphism, then we show that f∗ is an isomorphism. It
is enough we prove that f∗ is 1-1 and onto. Let f∗(ξ∗1(x)) = f∗(ξ∗1(y)). Then,
ξ∗2(f(x)) = ξ∗2(f(y)). Hence, there exist t1, . . . , tm+1 ∈ S2 and w1, . . . , wm ∈ U(S2,Γ)

with f(x) = t1 and f(y) = tm+1 such that {ti, ti+1} ⊆ wi, for all 1 ≤ i ≤ m. Now,
since f is onto, there exist ri ∈ S1 such that f(ri) = ti for all 2 ≤ i ≤ m, and hence
there exists ui ∈ U(S1,Γ) such that f(ui) = wi. Thus {f(ri), f(ri+1)} ⊆ f(ui). Since
f is 1-1, then {ri, ri+1} ⊆ ui. It concludes that xξ

∗
1y, i.e., ξ

∗
1(x) = ξ∗1(y). Therefore,

f∗ is 1-1. Also, clearly f∗ is onto, which implies that f∗ is an isomorphism. �

Theorem 3.5. Let Hv-Γ-S be the category of Hv-Γ-semigroups and Γ-S be the cat-
egory of fundamental Γ-semigroups. Then, there exists a covariant functor between
Hv-Γ-S and Γ-S.

Proof. We define F : Hv-Γ-S −→ Γ-S by F(S) = S/ξ∗ and F(f) = f∗, where S
is an Hv-Γ-semigroup, ξ∗ the fundamental relation in S and f is a homomorphism
between Hv-Γ-semigroups. Let ψ : S1 −→ S2 and φ : S2 −→ S3 be homomorphisms
of Hv-Γ-semigroups. We have φ ◦ ψ : S1 −→ S3. We prove that (φ ◦ ψ)∗ = φ∗ ◦ ψ∗.
We know that (φ◦ψ)∗ : S1/ξ∗1 −→ S3/ξ

∗
3 and φ∗◦ψ∗ : S1/ξ

∗
1 −→ S3/ξ

∗
3 . By Theorem

3.4, we have

(φ ◦ ψ)∗(ξ∗1(x)) = ξ∗3(φ ◦ ψ(x)) = ξ∗3(φ(ψ(x)))

= φ∗(ξ∗2(ψ(x))) = φ∗ ◦ ψ∗(ξ∗1(x)).

Thus, (φ ◦ ψ)∗ = φ∗ ◦ ψ∗. Therefore, F(φ ◦ ψ) = F(φ) ◦ F(ψ). Let IS : S −→ S be
the identity homomorphism of the Hv-Γ-semigroup S. We have F(IS) = I∗S = IS/ξ∗ ,
because I∗S and IS/ξ∗ are identity homomorphisms of S/ξ∗. Therefore, F is a covari-
ant functor. �

It is worth pointing out that the first functorial consideration of the fundamental
algebra of a multialgebra belongs to Pelea [40]. Since then, this aspect has bbeen
investigated for all the other hyperstructures.

4. Conclusions and future work

The study of the Γ-structures or Γ-hyperstructures ([22, 23, 37]) represents
a new line of research in hyperstructure theory, motivated by the various examples
of these mathematical objects. In this note we have investigated the class of Hv-Γ-
semigroups, where the weak associativity is verified. A covariant functor between
the category of the Hv-Γ-semigroups and that of fundamental Γ-semigroups it was
defined. Moreover, we have proved the first and third isomorphism theorem using
only regular relations. But what about the second isomorphism theorem? It can not
be proved in the same way, but it should be necessary to introduce a new notion, that
of hyperideal [39], or maybe another one. For the moment the problem remains an



44 Hossein HEDAYATI, Irina CRISTEA

open one. Besides, another future problem could be to study other Hv-Γ-structures
as Hv-Γ-rings or Hv-Γ-modules.
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