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FUNDAMENTAL I'-SEMIGROUPS THROUGH H,-I'-SEMIGROUPS

Hossein HEDAYATT!, Irina CRISTEA?

In this paper, we consider the notions of H,-I'-semigroup and regular re-
lation. Firstly we prove that any semigroup endowed with an equivalence relation
can induce an H,-T'-semigroup. Secondly, by regular relations, isomorphism theo-
rems on H,-I'-semigroups are proved and discussed. Finally, as a strongly reqular
relation, we point out the fundamental relation on H,-I'-semigroups and create a
functor between the category of H,-I'-semigroups and the category of fundamental
I'-semigroups.
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1. Introduction and preliminaries

In 1986, Sen and Saha [1] defined the notion of a I'-semigroup as a generalization
of a semigroup. Many classical properties of semigroups have been extended to I'-
semigroups that have been investigated by a lot of mathematicians, for instance,
Chattopadhyay [2, 3], Hila [4, 5], Saha [6], Sen et. al. [7]- [10], Seth [11] and many
others.

Let S = {a,b,c,...} and ' = {a,f,7,...} be two non-empty sets. Then S is
called a I'-semigroup [1, 6] if there exists a mapping S x I' x § — S written as
(a,7,b) — ayb satisfying the following identity (aab)fBc = aa(bSc) for all a,b,c € S
and for all a, 8 € I'. An unique element e € S is called an identity element if
eyr = x = zye, for all x € S and v € I'. Let S be an arbitrary semigroup and I"
any non-empty set. Define a map S xI' x S — S by avb = ab for all a,b € S
and v € I'. It is easy to see that S is a '-semigroup. Thus, any semigroup can be
considered as a I'-semigroup.

Example 1.1. (1) Let S = [0,1] and ' = {1 | n is a positive integer}. Then S is a
I'-semigroup under the usual multiplication.

(2) Let S = {—1,0,i} a subset of the complex numbers C and I' = S. We notice
that S is not a semigroup under complex numbers multiplication, while it is a I'-
semigroup under the same operation.
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(3) Let S be the set of all m x n matrices, with m # n and I' be the set of all
n X m matrices over the same field. Then for A, B € S, the product AB can not be
defined i.e., S is not a semigroup under the usual matrix multiplication. But, for all
A,B,C € Sand P,Q €' we have APB € S and since the matrix multiplication is
associative, we have (APB)QC = AP(BQC). Hence S is a I'-semigroup.

These examples illustrate the motivation of the study of I'-semigroups like an inde-
pendent class of algebraic structures.

Algebraic hyperstructures represent a natural extension of classical algebraic struc-
tures and they were introduced by the French mathematician F. Marty [12]. In
a classical algebraic structure, the composition of two elements is an element (so
the operation is a single valued function), while in an algebraic hyperstructure, the
composition of two elements is a set, that is the hyperoperation, called also hyper-
product, is a multivalued function. The principal notions of algebraic hyperstructure
theory and many examples can be found in [13]-[16]. Many authors studied different
aspects of semihypergroups or semihyperrings, for instance, see [17, 18, 19], their
connections with I'-semihypergroups [20, 21]. Hedayati, Davvaz and Shum studied
on some aspects of I'-semirings and I-hyperrings in [22, 23]. On the other hand,
H,-structures have been first introduced by Vougiouklis in Fourth AHA Congress
(1990) [24] as a generalization of the well-known algebraic hyperstructures (hyper-
group, hyperring, hypermodule and so on). Actually some axioms concerning the
above hyperstructures such as the associative law, the distributive law and so on are
replaced by their corresponding weak axioms. The reader will find in [25, 16] some
basic definitions and theorems regarding the H,-structures. Since then the study of
H,-structure theory has been pursued in many directions by Vougiouklis, Davvaz,
Spartalis and others, for example see [26]-[29].

On a hyperstructure one may define two types of fundamental relations. The first
one, is connected with the regular relations. For example, if S is a hyperstructure,
i.e. a multivalued structure (in particular a semihypergroup, a hypergroup, a hy-
perring, a hypermodule or a multialgebra/hyperalgebra), then the quotient by the
fundamental relation £* is a single valued structure of the same type (a semigroup, a
group, a ring, a module, or an algebra respectively) [30, 22, 31]. Besides, Jantosciak
[32] defined other three equivalences on a hypergroup, called fundamental relations
too, in order to obtain the reduced hypergroups. The study of the hypergroups can
be therefore divided into two parts: the study of the reduced hypergroups and that
of the hypergroups with the same reduced form (see [33, 34]).

Let us recall this basic definition. Let S be a non-empty set. Then, the map
o: 8 x 8 — p*(9) is called a hyperoperation, where p*(S) is the family of non-
empty subsets of S. Also, (S,0) is called an H,-semigroup [16, 27] if, for every
z,y,z € S, we have zo(yoz)N(zoy)oz # (. In this definition, if A and B are two
non-empty subsets of S and x € S, then we define

AoB = Uaob, roA={r}oA and Aox = Ao {z}.

acA
beB
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The rest of the paper is organized as follows. In Section 2, after defining the H,-
I'-semigroups and the regular relations on them, we discuss the isomorphism theo-
rems. Section 3 is dedicated to the study of the fundamental relation in a H,-I'-
semigroup and the fundamental I'-semigroup. Moreover we established a covariant
functor between the category of H,-I'-semigroups and the category of fundamental
I'-semigroups. We conclude with final remarks and few open problems.

2. Isomorphism theorems on H,-I'-semigroups
based on regular relations

The regular relations are a particular case of the ideal congruence relations

introduced by Picket in the context of multialgebras [35]. Later on they have been
studied for the hypergroups, hyperrings, hypermodules and the connected hyper-
structures in order to obtain the corresponding factor hyperstructures.
Our intent here is to discuss on the three isomorphism theorems for the H,-I'-
semigroups by means of regular relations. We expect that these theorems can be
stated and proved as for the other structures/hyperstructures, but we will see that
this doesn’t happen for the second theorem. We recall that all these theorems
have been proved for I'-semigroups [36], I'- semihypergroups [21], I-hyperrings [22],
I-hypermodules [37]. On the other hand, isomorphism theorems for universal hy-
peralgebras (multialgebras) were proved by Ebrahimi et al. in [38].

Definition 2.1. Let S and I" be non-empty sets. Then S is called an H,-I'-
semigroup if there exists a mapping - : S x I' x § — ©*(S) such that (zyy)Bz ~
xy(yBz) for all z,y,z € S and 7,8 € I', where by A~ B we mean AN B # &. An
unique element e € S is called an identity element if eyx = x = zye, for all x € S
and v €T

In the next example, we will see that each semigroup endowed with an equivalence
relation can induce an H,-I'-semigroup.

Example 2.1. (1) Let (S,-) be a semigroup, ¢ an equivalence relation in S and
o(z) the equivalence class of x € S. If ) # I' C S and R is an equivalence re-
lation in I', then S/o is an H,-I'/R-semigroup, where S/o = {o(z) | = € S}
and I'/R = {R(v) | v € T'}. Define ® : S/o x I'/R x S/o — p*(S/o) by
o(x) ® R(y) ©o(y) = {o(z) | z € o(x)R(y)o(y)}. It is easy to verify that © is
well-defined. Also, (xyy)Bz = xy(ypBz) for all z,y,z € S and v, f € T', which implies
that (o(x) © R(7) ©0(y)) © R(B) © 0 (2) No(x) © R(7) © (o(y) © R(B) © 0 (z)) # 0.
Therefore, S/o is an H,-I'/ R-semigroup.

(2) Let 0 AT C Zyy,. Define @ : Zy, X I' X Zy, — ©*(Zm) by x &y Dy = {z+y,7}
for all z,y € Z,, and v € I'. Then, for all z,y,z € Z,, and 7,58 € ' we have
(zov@y)®B®z={z+y+z 08,7+2} and 2@v®(ySBD2) = {x+y+2,7, 2+ B}
Thus, (z&7®Y)®BD 2Ny (YD LD 2) # (. Therefore, Z,, is an H,-I-semigroup.

(3) Let ) £ T' C Z". Define ® : Z" x I x Z" —3 p*(Z") by
(M1, mn) ® (71, 7) @ (0,..,0) = {(m1 + 71, - ;M0 +72), (0., 0)},

(M1, ymp) @ (1Y) @ (MY, ... ml)=(m1 + 1 +mi, ... ,my + 9, +ml).
It is easy to verify that Z™ is an H,-I'-semigroup.
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In the following theorem, by a I'-semigroup S and every non-empty subset of S, we
construct an H,-I"-semigroup.

Theorem 2.1. Let S be a I'-semigroup and I a non-empty subset of S. Then,
S is an H,-I'-semigroup with the mapping ©; : S x I' x § — ©*(S) defined by
rOryOry =allvyy for allxz,y € S and v € T

Proof. 1t is easy to verify that @ is well-defined. Then, for all z,y,z € S and
a, 8 €T we have

(rOraory) ©rBoOr2

={teS|teallay} ®; B8Oz

={we S|wetllpz, tecal'lay}

={weS|we (allay)lIBz} =~ {w' € S |w € aTTa(yl'IBz)}

=rxorae{t eS|t eyllpz}=207a0; (yOr BO] 2).
Therefore, S is an H,-I"-semigroup. ]

In Theorem 2.1, if we define ®; by x ©; v ®ry = xyIl'y, for all z,y € S and v € T,
then it is easy to prove that S is an H,-I'-semigroup, too.

Let S be an H,-I'-semigroup and 6 an equivalence relation in S. Then, we extend
the relation # to the non-empty subsets A and B of S as follows: A#B if and only
ifVaeAdbe B, such that afb and Vb € B 3 a € A, such that bfa, where by
afb, we mean (a,b) € 6. An equivalence relation 6 on S is said to be regular if, for
all 2,9,z € S and a € T', 20y implies that (raz)f(yaz) and (zax)f(zay). By S/60
we mean the set of all equivalence classes of the elements of S with respect to the
relation 6, that is S/0 = {0(z) | x € S}. In what follows, S is an H,-I'-semigroup
unless otherwise specified. In the next lemma, we have a well-known property of
regular relations.

Lemma 2.1. Let 0 be a regular relation on S. Then, we have
{0(2) | ze0(z)ab(y)}={0(2) | z € zay}, for allz,y € S and o € T.

Proof. See [39]. O

Now, we will see that each H,-I'-semigroup with a regular relation can induce a new
H,-I'-semigroup.

Theorem 2.2. Let 0 be a regular relation on S. Then S/6 is an H,-T'-semigroup
with the mapping ©® : S/OxT' x S/0 — ©*(S/0) defined by 0(x) ©a®6(y) = {0(z) |
z € 0(x)ab(y)} for all 6(x),0(y) € S/0 and o € T'.

Proof. 1t follows from Lemma 2.1 (for more details see [39]). O

Let S; and Sy be two H,-I'-semigroups. A mapping ¢ : S1 —> So is called a homo-
morphism if p(zay) = p(x)ap(y), for all x,y € S; and o € I'. A homomorphism ¢
is called an isomorphism if ¢ is 1-1 and onto. Two H,-I'-semigroups 51 and Sy are
isomorphic if there exists an isomorphism ¢ : S7 — S5 between them; it is denoted
by S1 & S,. Let ¢ : S1 — S2 be a homomorphism of H,-I'-semigroups. We define
a relation K on S; as follows: KX = o Loy = {(z,y) € S1 x S1 | ¢(z) = p(y)}.
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In the next theorems, we consider the regular relation induced by homomorphisms
and investigate the corresponding results and properties associated with this regular
relation.

Lemma 2.2. The relation X is a reqular relation on Sy.
Proof. Straightforward. U

Since X is a regular relation in Sp, then by Theorem 2.2, S} /X is an H,-I’-semigroup.
Now, we have the following theorem.

Theorem 2.3. Let S1 and Se be two H,-I'-semigroups and ¢ : Sy — Sa a homo-
morphism. Then, there is a monomorphism v : S1/X — So such that Imyp = Imi

and the diagram
¥

St So

X =0

S1/X
commutes, i.e. 1 o K* = ¢, where the mapping KX* : S1 — S1/K is defined by
K*(z) = K(x), for all x € S;.

Proof. Define ¢ : S1/K — S by ¥(K(x)) = ¢(z) for all x € S;. We have

K(z) = K(y) <= (z,y) € K = ¢(z) = p(y) = »(X(z)) = $(X(y)).
Then, v is well-defined and 1-1. Also, 1 is a homomorphism since, for all z,y € Sy
and a € I', we have

P(K(z) © a0 K(y) ={(X(2) | 2 € zay} = {p(2) | 2 € zay}

= p(zay) = p(x)ap(y) = P(K(z))ap(X(y)).
It is easy to prove that Imy = I'ma). Also, the diagram is commutative, because
for all z € S1 we have (¢ o K*)(x) = (K*(z)) = ¥ (K(z)) = ¢(x). This completes
the proof. O

Now, by the help of the regular relation X, we state the first isomorphism theorem.

Theorem 2.4. (First Isomorphism Theorem) Let S1 and Sy be H,-I'-semigroups
and ¢ : S1 — Sy a homomorphism. Then S1/X = Imey.

Proof. It follows immediately from Theorem 2.3. 0
Theorem 2.5. Let S1 and Sy be H,-I'-semigroups and ¢ : S1 — So a homomor-

phism. If 0 is a reqular relation on S1 such that 6 C X, then there is an unique
monomorphism 1 : S1/0 — S such that Ime = Im) and the diagram

¥

S1 So

o My

S1/6
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commutes, i.e. ¥ o 0* = ¢, where the mapping 6* : S; — S1/0 is defined by
0*(z) = 0(x), for all x € S;.

Proof. Define 1 : S1/6 — Sz by ¢(0(x)) = ¢(z), for all x € S;. Suppose that
z,y € S1 such that §(z) = 0(y). That is (z,y) € 6, which implies that (z,y) € K.
Hence, ¢(z) = ¢(y). Thus, 9 is well-defined. Now, suppose that z,y € S; and
a €I'. Then,

P(O(z) ©a©0(y) =v({0(2) | 2z € zay}) = {(0(2)) | z € zay}
={p(2) | z € zay} = p(zay) = p(z)ap(y) = Y(O(z))ap(0(y)).

Therefore, 1 is a homomorphism. It is easy to see that Imy = Ima. Suppose that
x € S1. Then, (¢ 0 0%)(x) = (0*(z)) = ¥(6(z)) = ¢(x). It implies that 1) o 0* = .
Finally, let ¢* : S1/60 — S5 be any homomorphism satisfying ¢* 06* = . Then, for
all 2 € Sy, we have 1 (6(x)) = v (6 (x)) = 4" 0 0" (z) = () = ¥(6(x)). Therefore,
1* = 9 and the proof is completed. O

Let 6 and p be two relations in the H,-I'-semigroup S with § C p. Define the
relation 11/0 on S/6 by /0 = {(0(x),0(y)) € S/0 x S/0 | (x,y) € p}. Suppose that
O(x) = O(y). Then, (z,y) € 0 C p which implies that (6(z),0(y)) € /0 and so
p/0(0(x)) = u/0(0(y)). Therefore, /0 is well-defined.

Lemma 2.3. If 0 and p are regular relations on S, then 11/0 is a regular relation
on S/6.

Proof. Suppose that © € S. Then (z,z) € p and thus (6(z),0(x)) € p/6. Hence
p/0 is reflexive. Also, let z,y € S such that (0(x),0(y)) € u/0. Then, (x,y) € p.
Since p is symmetric, (y,z) € p, which implies that (6(y), 0(x)) € /6. Hence, p/0 is
symmetric. Also, let z,y,2z € S such that (0(x),0(y)) € 1/0 and (0(y),0(z)) € /6.
Then (x,y) € p and (y,z) € p. Since p is transitive, (x,z) € p, which implies
that (0(x),0(z)) € u/0. Hence, u/0 is transitive. Therefore, 1/6 is an equivalence
relation on S/6. Now, we prove that u/6 is regular. Suppose that z,y,z € S and
a € I'. We have

0(z)(1/0)0(y) (z,y) € p = zpy = (vaz)p(yaz)

.
= {f(u) |ue xaz}@@(v) | v € yaz}
= (B(z) 0a®0(2)u/0(0(y) ©acb(z)).

Similarly, we can show that (6(z) ® a ® 6(x))u/0(0(z) ® a ® 0(y)). Therefore, 11/6
is a regular relation on S/#. g

If ;1 and 6 are regular relations in S with 6 C p, then we know that (5/6)/(n/0) is
an H,-I'-semigroup. In the next theorem, by the help of regular relations, we prove
the third isomorphism theorem.

Theorem 2.6. (Third Isomorphism Theorem) Let 6 and p be regular relations on
S with 0 C p. Then, (S/0)/(n/0) = S/p.



Fundamental I'-semigroups through H,-I"-semigroups 39

Proof. Define ¢ : (S/0)/(n/0) — S/p by o(pn/0(0(x))) = p(z), for all x € S.
Clearly, ¢ is onto. Also, for all x,y € S, we have

1/ 0(0(x))=p/0(0(y)) <= (0(x),0(y))en/0 = (z,y)ep <= u(x)=p(y).
Therefore, ¢ is well-defined and 1-1. Clearly, ¢ is onto. Now, we prove that ¢ is a
homomorphism. Suppose that z,y € S and « € I, then

P (11/0(0()) © @ © u/0(0()) =2 ({1/0(6(2)) | 6() € 6() © a @ 0(y)})
—o({1/0(6(2)) | zeway})={p(1/0(0(2)) | 2€zay}={u(2) | = € zay}

— (1) © @ © ply) = p(/00()) © @ © (/0(6))).
Hence, ¢ is a homomorphism. Therefore, (S/0)/(11/0) = S/ . O

Remark 2.1. It is quite easy to notice that the second isomorphism theorem can
not be proved by the help of regular relation: if we consider 6u/p or /0 N p, for 6
and p regular relation, we don’t obtain H,-I'-semigroups. So we are forced to work
with other entities, like the hyperideals [39]. But the problem is not so easy as it
seems to be. If I and J are hyperideals on a H,-I"-semigroup, then we have to prove
the second isomorphism theorem by the form IT'J/I = J/INJ. In this case we meet
some problems. The quotient IT'J/I is not well-defined because we don’t know if
I C IT'J. Besides, how can we construct a well-defined map ¢ : IT'J/I — J/INJ?
Till now we have no answer to these questions, it reamins an open problem to
investigate in future.

3. Fundamental relation in H,-I'-semigroups

In this section, we introduce the notion of fundamental relation in H,-I'-semigroups
as a strongly regular relation. Also, by the help of the fundamental relation in
H,-I'-semigroups we construct fundamental I'-semigroups.

It is worth to mention that an H,-I"-semigroup can be viewed as a particular multi-
algebra (95, (04)yer), where o, : S xS — P*(S) are binary hyperoperations, defined
here by xo,y = xvyy, and which satisfies the weak associativity. The fundamental re-
lation of a multialgebra and the relative quotient multialgebra are studied in [31, 40].
Here we focus on the same arguments in the particular case of H,-I'-semigroups, giv-
ing a detailed presentation of these properties, using the terminology and the tools
of I'-semigroups.

Definition 3.1. Let S be an H,-I'-semigroup. We define the relation £* as the
smallest equivalence relation such that the quotient S/* is a I'-semigroup. Then,
the relation £ is called the fundamental relation in H,-I'-semigroup S, and S/&* is
called the fundamental I'-semigroup. Let us denote the set Ugr) = U as follows:

U= {a1v1ia9v2 - anynant1 | a; €S, v, €T, Vie {1,...,n}, n € N}

In fact, U is the set of all finite products of elements of S and I'. It is easy to see
that S C U, that is U contains all singletons of the elements of S. Now, we define
the relation & on S as follows:

2y <= Juel, {z,y} Cu.

Let £ be the transitive closure of . For all a,b € S and v € I', we define &(a) o yo
£(b) ={&(c) | c € €(a)¥£(b)}. Now, we obtain some interesting results concerning .
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Lemma 3.1. The set £(a) oy o &(b) is a singleton, i.e., |€(a) oy o £(b)| = 1.

Proof. Let £(c) € £(a) oy o &(b). Then, c € £(a)yE(D), so there exists a’ € £(a) and
b € £(b) such that ¢ € a/yb. Tt is enough we prove that £(z) = £(2'), for all z € avb
and 2’ € a/yb’. We know that a’€a if and only if there exist x1,...,Tme1 € S with
x1 = a' and x,, 11 = a and there exist uq, ..., u, € U such that {x;, z;11} C g, for
i=1,2,...,m. Also, b/'éb if and only if there exist y1, ..., Ynt1 € S with y; = b’ and
Ynt+1 = b and there exist vy, ..., v, € Usuch that {y;,yj41} Cv;, for j=1,2,...,n
Therefore, we obtain

{ {Zi, ity Cwyvr, i=1,2,...,m—1, (+)

Tm+17{Y5, Yj+1} S umyv;, j=1,2,...,n

Therefore, u;yv1 = t; € U, for 1 = 1,2,...,m — 1 and u,,yvj = tyyj—1 € U, for
j =1,2,...,n. Now, choose the elements z1, 2z, ..., zmtn such that z; € z;vy1,
for i =1,2,...,m and 2p4; € Tm417Yj+1, for j = 1,2,...,n. Using (*), we have
{2k, 2zk41} C tg, for k =1,...,m+n — 1. Thus, every element z; € z17y; = a’b' is

equivalent to every element Zmtn € Tm+1YYn+1 = ayb with respect to the relation
&. Therefore, |£(a) oy o0 &(b)| = 1 and we can write £(a) oy o £(b) = &(c), for all
c € £(a)yE(b). This completes the proof. O

Now, by the help of an H,-I'-semigroup and the relation &, we construct a I'-
semigroup.

Lemma 3.2. S/¢ is a I'-semigroup.

Proof. We define x : S/g xT'x S/& — S/€ by (£(a),7,£(b)) — &(a) oy o&(b). For
any £(z),£(y),&(z) € S/€ and «, 8 € T we prove that
() oao(E(y)oBok(z)) = (E(x)oaod(y)) o B o&(z).

Suppose that &(a) € €(z) oo (£(y) 0 fo&(2)). By Lemma 3.2, we have {(a) = £(a1),
where a; € za(yfz). Then,

fla) = &lar)€g(z)oao(E(y)opfol
)

< a; €za(yfz) <= a; € (J:ay

= &(ar) € (E(w) oao&(y)) o fog(2).

Hence, £(6) € ((2)oaof(y))ofof(2). Thismples that (s)oao(E(5)o8o8(=) ~
(€(z) o0 &(y)) o B o&(2). Therefore, S/€ is a I'-semigroup. O

In the next lemma, we will see that ¢ is the smallest equivalence relation with the
property that S/ is a [-semigroup.

(2))
Bz

Lemma 3.3. & is the smallest equivalence relation in S such that S/€ is a T-
semigroup. In other words, & = £*.

Proof. Let u be an equivalence relation on S such that S/u is a I'-semigroup. We
denote the equivalence class of a € S as usually by p(a). Then, we have u(a) o
v o u(b) = u(d), for all d € u(a)yu(b). Thus, for every A C u(a) and B C u(b) we



Fundamental I'-semigroups through H,-I"-semigroups 41

can write p(a) oy o u(b) = p(ayb) = p(AyB). By induction we can extend these
relations on finite products. Then, for all u € U and x € u we have u(x) = p(u).
Hence, for all t € S, x € £(t) implies that x € u(t). Also, p is transitivity closed, so
if (x,t) € €, then it implies that (z,t) € u. Therefore, £ is the smallest equivalence
relation such that S/€ is a I'-semigroup. O

Theorem 3.1. The fundamental relation £ is the transitive closure of the relation

£.
Proof. 1t is concluded by Lemmas 3.1, 3.2 and 3.3. O

In the following, we investigate some properties of the equivalence classes corre-
sponding to the fundamental relation in H,-I"-semigroups.

Theorem 3.2. Let S be an H,-I'-semigroup and £* the fundamental relation on S.

If S has the identity element e and £*(x) = £*(2'), then there exist B, B’ C £*(b)

and C,C" C £*(c), for some b,c € S, such that xvC C B and 2'+'C' C B’, for all
/

v,y €T

Proof. 1t is enough we take B = B’ = £*(z) = £*(2/) and C' = C" = £*(e). Now,
let z € 2vC C &*(x)yE*(e), then £*(2) € &£ (x) oy o {*(e). But, we know that
& (x) € £*(x) oyo&*(e) (since £*(e) is the identity element of S/&*). On the other
hand, |£*(xz) oy o &*(e)| =1, so £*(2) = £*(x). Hence, z € *(x) = B, which implies
that yC C B. Similarly, we can prove that 2/'+'C’ C B'. O

In the next theorem, we will give a characterization of the equivalence class of the
identity element of S.

Theorem 3.3. Let S be an H,-I'-semigroup and £ the fundamental relation in S.
If S has the identity element e, then y € £*(e) if and only if there exists B C £*(b),
for some b € B, such that yyB C B, for ally € T.

Proof. Let y € *(e), be S, v €T and B = £*(b). Suppose that z € yyB; we have
€(2) = £(y) 07 0 £ (b) = £°(¢) 07 0 €¥(b) = £°(b), 50 2 € £°(b) = B, which implies
that yyB C B.

Conversely, suppose that there exists B C £*(b), for some b € S, such that yyB C B,
for all v € I'. Then £*(y) oy o &*(b) = £*(b) = £*(e) oy 0 £*(b). On the other hand,
&*(e) is unique. Hence £*(y) = £*(e), which implies that y € £*(e). O

Proposition 3.1. Let S be an H,-I'-semigroup.
If u=a1m1a272 - - A Ynan1 €W, then £ (u) = £*(a1) oy 0§ (az) oz 0 ... 0 & (an)
Tn © & (an+1) = &5 (2), for all z € w.

Proof. We have

zeu = a171a27%2...0pYnan+1
= {(z) €€ (a1)omo&f(ag) oy o...0 (an) ovn o0& (ant1)
= () =&(a1) omo& (az) oreo... 08 (an) oy 0§ (ant1)
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Besides, clearly

§(u) =& (2) =& (ar) omoi(az) oz o+ 08 (an) 0y 0 & (ant1),
which completes the proof. O

Lemma 3.4. Let S be an H,-I'-semigroup and £* the fundamental relation in S.
Then, llg : S — S/&" defined by llg(z) = &£ (x) is an epimorphism of H,-I'-
SEMIGroups.

Proof. Clearly, Ilg is well-defined. We prove that IIg(xyy) = IIg(z)oyollg(y) for all
z,y € SandyeTl. Let z € xyy C Ilg(z)yIlg(y). Then, llg(z) € llg(z) oyollg(y).
By Lemma 3.1, we know that |IIg(z)oyollg(y)| = 1, hence IIg(z) = IIg(x)oyolls(y),
consequently IIg(zyy) = Ilg(z) oyollg(y). Therefore, IIg is an epimorphism of H,-
I-semigroups from S to S/&*. g

In the sequel, we prove that there exists a covariant functor between the category of
H,-T'-semigroups and the category of fundamental I'-semigroups. For this we need
the following theorem.

Theorem 3.4. Let S1 and Sz be H,-I'-semigroups, and £ and & the fundamental
relations in S1 and Sa, respectively. If f : S1 — So is a homomorphism, then
there exists an unique homomorphism f*: S1/&] — Sa/&5 such that the following
diagram commutes:

s, Lo,

HS1 { 4 HSQ
sie Lsosye,

Moreover, if f is an isomorphism, then f* is an isomorphism, too.

Proof. We define f* : S1/61 — Sy/¢5 by f*(§1(x) = &(f(x)) for all ¢f(x) €
S1/&7. Clearly, f* olIlg, = IIg, o f. Therefore, the diagram is commutative. We
prove that f* is a homomorphism. Let &f(x) = & (y), i.e. x&y. Then, there exist
ai,...,am+1 € S1 and uy, ..., um € U, ) by @ = a1 and y = a1 such that
{ai,a;41} C w4, for all 1 <i < m. Now, since f is a homomorphism we have

flui) € Wisyry = {f(ai), flait1)} C flui) € Us, 1

= (f(2), f(y)e&s = &(f(2)=E&(f(v)) = [ (& (@)= (& ().

Therefore, f* is well-defined. Now, we prove that
fr&1(x) oy ogi(y) € [ (& () oo [ (& ()
Let f*(§1(2)) € f*(éi‘(w) 0y 0&i(y)), for z € £ (x)¥€7 (y). For all t € zyy, we have

§(2) =& () = f(t) € fla)vf(y) =
f*(fi‘(t)) &(f ())Efz(f( ) ey o &(f(y)=r(&(x)) ovo fH(&1(y))
= [7(&1(2)) = F1(&@) € f(&(x) oy o fH(&1 ()
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On the other hand, we know that f*(&j(z) oyo&f(y)) and f*(&f(x)) oyo f*(&5(y))
are singletons. Thus,

(& (@) oy o &i(y) = [ (& (@) oy o f7 (&1 (y))-

Therefore, f* is a homomorphism.

Moreover, if f is an isomorphism, then we show that f* is an isomorphism. It
is enough we prove that f* is 1-1 and onto. Let f*(&(z)) = f*(&(y)). Then,
§&(f(x)) = & (f(y)). Hence, there exist t1,...,tpm41 € S2 and wy, ..., wy, € Ug, 1)
with f(z) = t; and f(y) = tim41 such that {¢;,t;41} C w;, for all 1 < i < m. Now,
since f is onto, there exist r; € Sy such that f(r;) = t; for all 2 <4 < m, and hence
there exists u; € U(g, 1y such that f(u;) = w;. Thus {f(r), f(riv1)} € f(u;). Since
fis 1-1, then {r;,r;ix1} C u;. It concludes that x&y, i.e., £(x) = & (y). Therefore,
f*is 1-1. Also, clearly f* is onto, which implies that f* is an isomorphism. O

Theorem 3.5. Let H,-I'-S be the category of H,-I'-semigroups and I'-S be the cat-

egory of fundamental I'-semigroups. Then, there exists a covariant functor between
H,TI'-S and I'-S.

Proof. We define F : H,-I'-S — I'-S by F(S) = S/§* and F(f) = f*, where S
is an H,-I"-semigroup, £* the fundamental relation in .S and f is a homomorphism
between H,-I'-semigroups. Let ¢ : S1 — S5 and ¢ : S — S3 be homomorphisms
of H,-I'-semigroups. We have ¢ 01 : S; — S3. We prove that (¢ o ¥)* = ¢* o ¢*.
We know that (¢otp)* : S1/§7 — S3/&5 and ¢* o™ : S1 /€] — S3/&5. By Theorem
3.4, we have

(po)*(&i(x) = &Glpo(x)) = &(p(d(x)))
= ¢ (&(¢(2))) = ¢* o " (&1 (2))-

Thus, (¢ 0o ¥)* = ¢* o ¢*. Therefore, F(p o)) = F(p) o F(¢). Let Ig: S — S be
the identity homomorphism of the H,-I-semigroup S. We have F(Is) = I = Ig/¢+,
because I and Ig/¢- are identity homomorphisms of S/£*. Therefore, J is a covari-
ant functor. 0

It is worth pointing out that the first functorial consideration of the fundamental
algebra of a multialgebra belongs to Pelea [40]. Since then, this aspect has bbeen
investigated for all the other hyperstructures.

4. Conclusions and future work

The study of the I'-structures or I'-hyperstructures ([22, 23, 37]) represents
a new line of research in hyperstructure theory, motivated by the various examples
of these mathematical objects. In this note we have investigated the class of H,-I'-
semigroups, where the weak associativity is verified. A covariant functor between
the category of the H,-I'-semigroups and that of fundamental I'-semigroups it was
defined. Moreover, we have proved the first and third isomorphism theorem using
only regular relations. But what about the second isomorphism theorem? It can not
be proved in the same way, but it should be necessary to introduce a new notion, that
of hyperideal [39], or maybe another one. For the moment the problem remains an
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open one. Besides, another future problem could be to study other H,-I'-structures
as H,-I'-rings or H,-I'-modules.
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