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MULTIFRACTAL CROSS-CORRELATION OF 
ATMOSPHERIC POLLUTANTS AND TEMPERATURE IN 

DIFFERENT ENVIRONMENTS 

Cristina MARIN1, Cristina STAN2 and Constantin P. CRISTESCU3 

This paper presents a multifractal detrended correlation and cross-
correlation analysis between PM10, CO and temperature. Data have been collected 
for 11 months in three types of sites: urban background, urban- traffic and regional. 
For the analyzed time-series multifractal characteristics with persistent cross-
correlations are observed. The source of the multifractality is found to be the long-
range type correlations.  
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1. Introduction 

The atmosphere is a complex system, composed from aerosols and gases 
which are continuously interacting which each other [1]. The study of atmospheric 
constituents is an important task because they have a direct and an indirect effect 
(acting as cloud condensation nuclei) on the Earth radiative budget, by scattering 
and absorbing radiation. Thus, on a long term, they can influence the climate, and 
on a shorter time scale they can have an impact on air quality and on human 
health [2].  

Experimental investigations on atmospheric aerosols can be performed 
using high precision mass measurements for micro and nanoparticles [3]. New 
techniques are continuously reported to improve the accuracy of detection of the 
atmospheric particles and aerosols, and to facilitate on-site and on-line detections 
and monitoring [3,4].  Multipole Paul traps could represent versatile tools for 
environment monitoring working independently or coupled to Aerosol Mass 
Spectrometers [5-7].  

The physical and chemical properties of the aerosols are strongly 
influenced by the meteorological and ambient conditions. The correlations 
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between the aerosol, gases concentrations and the meteorological parameters 
determined by the highly-nonlinear dynamics involved in their interactions are 
reflected in the apparent erratic recorded time-series. A complete and relevant 
analysis, cannot be achieved by the classical (conventional) statistics mainly due 
to the non-stationary behavior of the atmospheric data. In the case of a stationary 
data set, the statistical properties do not change over time and a sliding widow 
with the same number of points has the same characteristic distribution. That is 
one reason why conventional statistics cannot depict the nonlinear characteristics 
of non-stationary data series.  

Over the last few decades an increasing interest in the development of new 
methods for analysis of complex, non-stationary data is manifested. Contrary to 
the traditional descriptive analysis with all the limitations involved, new statistical 
theories and mathematical formalism such as those based on fractal and 
multifractal analysis, complex network and visibility graphs, etc., have a strong 
applicability in the investigation of atmospheric data [8-10].  

Multifractal method assesses data over a wider range of temporal scales 
and spectrum of fluctuation exponents and are based on fragmentation of the time 
series in self-similar segments and on the investigation of the scaling capacity 
derived from a power law behavior. A first important step in the evaluation of the 
cross-correlation between two non-stationary time series was reported by 
Podobnik and Stanley [11].  

Several studies have investigated the link between the atmospheric 
constituents and meteorological parameters. For example, the multifractal cross-
correlation between PM25 and four meteorological parameters (temperature, wind 
speed, relative humidity, pressure) were proven to have multifractal characteristics 
[12]. Also, the correlation between global CH4 and temperature showed wide 
multifractality due to long term correlations on long and short scales [13]. 

In the present work we investigate the multifractal multiscale detrended 
correlation and cross-correlation (MM-DCCA) between each pair of combination 
of PM10, CO and temperature in three different types of natural environments.  

The structure of the paper is as follows: the methodology for site selection, 
data analysis and MM-DCCA are presented in subsections of section 2. The 
results obtained for different environments and the source of multifractality are 
presented in section 3, while the main conclusions of the article are summarized in 
section 4. 

2. Methodology 

2.1 Sites and data 
The multifractal multiscale analysis presented in this paper is based on the 

environmental data provided by the National Air Quality Monitoring Network 
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(NAQMN, www.calitateaer.ro). Three types of sites were chosen for the analysis, 
depending on their location and characteristics: 

1. B1 station - an urban background station placed in the Western part 
of Bucharest (44.45; 26.04) next to Morii Lake.  

2. B6 station - a traffic station placed in the center of the city (44.44, 
26.10, 5 km away from B1) with a high density of cars (more than 
10000/day [14]) 

3. E3 station (47.32; 25.13) - situated at Poiana Stampei, in the 
Northern part of Romania, at an altitude of 912 m. 

Bucharest and its surrounding area are one of the most polluted sites in Romania 
[15]. The major pollution sources have been previously investigated: traffic, 
industry, residential heating, waste and landfill management, dust intrusions, 
pollen [16-22]. For a final comparison with the urban stations, a regional EMEP 
E3 station - was chosen. 

Meteorological data (temperature, pressure, relative humidity RH) are 
provided by the NAQMN for sites B1 and EMEP, while for B6, measurements 
reported at the Filaret meteorological station (situated at 2 km distance) and 
provided by Weather Graphics [23] were used.  

The analysis was performed for PM10 and CO hourly measurements from 
01 January 2018 to 21 November 2018. In this study we have used only the 
measurements that passed the quality check criteria and that are validated by the 
NAQMN. The missing points have been replaced by the average of the neighbor 
points, resulting in a total number of points of 6500 for each atmospheric 
parameter. 

2.2 Multifractal Multiscale Detrended Cross-Correlation Analysis (MM-
DCCA) 

The multifractal formalism consists in the evaluation of Hurst exponent for 
different scales (frequencies) and different order of fluctuations. Taken a time 
series with N data points, the main steps are [24]: 

• a profile is created by subtracting the mean ( ) from each data point ( ) 
and integrating the time series 

     (1) 
• X(j) is divided into non-overlapping intervals, where s is 

the number of points (window length) in the time interval. If N is not 
exactly divided by s, in order not to exclude some points, the deviation of 
X(j) is performed twice, from beginning to end and reverse. 

• for each interval, the local trend (obtained as a second order fit, ) is 
subtracted from the profile and then the variance is computed, : 
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   (2) 
1. a q-order fluctuation function is defined as: 

  (3) 
 

2. for self-afine series, the q order fluctuation function is described by 
a power law dependence on s as: 
 

       (4) 
 

where the generalized Hurst exponent, , is computed as the slope of the 
fluctuation function versus s, in log-log scale. 

If  does not depend on q, the time series is monofractal and 
conversely, if   depends on q, then the time series is multifractal. The 
scaling behavior of the data can differ on different ranges of fluctuations: for q < 
0, the  is specific for small fluctuations, while for q>0 the is 
characteristic for large fluctuations. 

Also, depending on the value, the time series can be characterized 
as long range correlated (persistent behavior) for a value greater than 0.5; non-
correlated for a value of 0.5 (specific for Gaussian white noise); and anti-
correlated (anti-persistent) for less than 0.5. The persistent behavior means 
that a large (small) rise in the concentration of the data series is more likely to be 
followed by a large (small) value. For the anti-persistent behavior, a decreasing in 
the data series is more likely to be followed by an increment, and vice-versa.  

In the case of two time series (X and Y) with the same number of points, a 
generalized Hurst exponent can be defined similarly, the only difference 
consisting in the computation of the variance function: 

   (5) 
where  is the local trend for the second time series. 
It was proved that a single scaling exponent does not describe the whole 

properties of the time series and it possibly not reveals the internal dynamics of 
signals. Gierałtowski [25] proposed a multiscale multifractal analysis for the 
computing HX (q) dependence versus the range of the scale s, without any initial 
time-scale assumptions. An extension of this formalism was proposed by Shi et al. 
[26] to the analysis of cross-correlation properties between two time series. Such 
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investigation of the cross-correlation can be visualized as a Hurst surface, each 
point representing the generalized dependence HXY (q, s). If there is a dependence 
of HXY on the fluctuation parameter q for a fixed s, the two time-series are 
multifractal cross-correlated, otherwise, if no dependence is observed, the two 
time series are mono-fractal. 

In order to better quantify the fractal characteristics of the time series, we 
proposed two parameters: the strength of multifractality ( ) and variation of 
cross-correlation ( ) [9] 

-      (6) 
 

- .    (7) 
  
The strength of multifractality is a measure of the change in multifractality, while 
the second parameter is used to identify the multifractality variation across the 
different scales analyzed. 

3. Results 

3.1 Correlations in the atmospheric parameters (PM10, CO, 
temperature)  

The analysis of the correlation in the time-series of the investigated 
atmospheric parameters was performed for two types of urban environments.  

After preliminary tests similar as in [9], we choose as the starting width of 
the window scales s ∈ (30, 150), corresponding to (1.25 days, 6.25 days), with a 
slide length of 1 point. Then the window is moved and expanded until reaching 
the final width s ∈ (40, 200) corresponding to the time interval of around (1.6 
days, 8.33 days). 

The individual Hurst surfaces for PM10, CO and temperatures 
corresponding for the two environments are shown in Fig.  1.  

As observed, all the parameters present specific dependence of Hurst 
exponent, demonstrating the multifractal characteristics. The values of the Hurst 
exponent greater than 0.5 suggest that the fluctuations are persistent.  

Looking on each column, a significant modification of characteristics the 
Hurst surfaces can be seen, with an increasing departure from horizontality in the 
specific order PM10, CO and temperature. This is equivalent with an increasing in 
multifractality, which in turn is an indicator of the stability of the dynamics of the 
time-series at different scale and order of fluctuations. Consequently, the most 
active dynamics dependent by the fluctuations are those involved in temperature 
variation. It follows by CO data-set and by PM10 - that seems to have a more 
stable behavior.   
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Looking on each line, the Hurst surfaces in the two environments are 
similar, but for the traffic station, the Hurst values at all the scales are smaller at 
large fluctuations. The Hurst surfaces for CO are different in the urban 
background and traffic region: for small fluctuations, the urban site has higher 
values than in the traffic station, while in the large fluctuations zone, the values of 
the Hurst exponent decrease to approximately the same value (0.7). 

For temperature time-series, Hurst surfaces in the two environments have 
different characteristics compared to the Hurst surfaces for PM10 and CO. 
However, the similarities between their characteristics for the two location are 
obvious, as expected. For the temperature measured at the two city sites, the lower 
values (~0.5) of H are obtained when q is 0 and the highest values (1.5) are 
obtained when q=-5. 

 
 B1 B6 
PM10 

  
CO 

  
temp 

  
Fig.  1 Hurst surfaces for PM10 (first row), CO (second row) and temperature (third row) 

in suburban (B1 station, left) and traffic (B6 station, right) environment 
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Table 1 shows the values of the strength of multifractality ( ) and of 
the variation of correlation ( ). The highest strength of multifractality is for 
temperature and the lowest for PM10. Also, for these two data sets,  is 
higher for all the parameters in the traffic conditions, which could be explained by 
the more complex processes that take place in such locations. For example, in the 
traffic environments there are more sources that produce different aerosols and 
gases, thus the chemical and physical reactions between the aerosols and gases are 
more complex. This is not the case for CO, whose dynamics seems to be strongly 
biased and quite similar at large and small fluctuation order (q), consequently less 
multifractal. 

For all data set investigated,  decreases while s increases, different 
from parameter  that have two distinct behavior: increases with the 
increasing of q for the suburban environment, while, conversely, for the traffic 
station, decreases when q increases. Consequently, as expected, at traffic station 
the dynamics at small fluctuations is more dominant than at large fluctuations. 

 
Table 1 

Strengths of multifractality and variation of correlation 
Single- 

Correlation 
  

s_min s_max q_min q_max 
PM10 B1 0.22 

0.42 
0.09 
0.24 

0.02 0.11 
PM10 B6 0.13 0.05 
CO B1 0.56 

0.21 
0.45 
0.14 

0.04 0.07 
CO B6 0.00 0.07 

TEMP B1 0.71 0.38 0.14 0.18 
TEMP B6 0.88 0.50 0.19 0.18 

 

3.2 Cross-correlations of pairs PM10, CO and temperature  
We search now for the multifractal characteristics of the cross-correlated 

pairs PM10, CO and temperature, and investigate if there are new information that 
can be revealed.  

Figure 2 illustrates the Hurst surfaces of the cross-correlation PM10-
temperature and PM10-CO at the two stations. As observed, for all the analyzed 
cases, the correlations are long range persistent and the Hurst values are almost 
similar in both environments. 

However, specific differences can be noted. The range of the Hurst values 
is small for the cross-correlation PM10-temperature (between 0.6 and 1.1) across 
all the fluctuations interval, while for the cross-correlation PM10-CO, the range of 
Hurst values is different on the q scale: lower for high fluctuations and higher for 
small fluctuations. 

 



234                          Cristina Marin, Cristina Stan and Constantin P. Cristescu 

 B1 B6 
PM10-
temp 

  
PM10-
CO 

  
Fig.  2 Hurst surfaces for cross-correlation PM10-temperature (first row), PM10-CO (second row) in 

suburban (B1 station, left) and traffic (B6 station, right) environment 

Hurst exponents for the cross-correlation PM10-CO pair correlation 
decreases, at large fluctuations, towards 0.5. We can assume that, at short term, 
pollution can accumulate while at a larger scale of time a quasi-stationary state is 
reached. 

Table 2 
Strengths of multifractality and variation of cross- correlation 

Cross-
correlation 

  
s_min s_max q_min q_max 

PM10-temp B1 0.24 
0.35 

0.03 
0.06 

0.13 0.14 
PM10-temp B6 0.15 0.14 
PM10-CO B1 0.33 

0.29 
0.25 
0.26 

0.02 0.10 
PM10-CO B6 0.04 0.07 

 
From the data of Table 2, it is observed that  is higher for the 

smallest scale of investigation (around 1 day) for all cross-correlated time-series 
and decreases at the maximum scale (around 8 days). Consequently, the strongest 
interactions manifest at low time-scale.  

The strength of multifractality is higher for the cross-correlation PM10-CO 
than PM10-temperature only at B1 station, while the variation of cross-correlation 
is high for the PM10-temperature at both stations.  
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3.3 Cross-correlations of atmospheric parameters in remote 
environments 

The Hurst surfaces for the cross-correlation between the CO from the 
different city environments (urban background and traffic) and the CO measured 
at the regional station (EMEP) are illustrated in Fig. 3. Both show multifractal 
characteristics and persistent correlations. This means that an increasing in one 
data series will be followed by also an increasing of concentrations in the second 
data series, or if the values in one data set is decreasing, a decrease will be 
observed also in the second data set.  

The Hurst surfaces for the comparison of the city station with the regional 
station are similar, with higher values at small fluctuations, while at the large 
fluctuation regime, a decrease is observed. By comparing the two analyzed cases, 
the Hurst values are higher for the cross-correlation between urban background 
and regional station than for the cross-correlation between traffic and the regional 
station. 
 

CO B1-CO EMEP CO B6-CO EMEP 

  
Fig. 3 Hurst surfaces for cross-correlation CO from the suburban station (left) and traffic station 

(right) with the CO measured at the regional station 

3.4 Source of long-range correlations 
There are two sources of multifractality: long range correlations (at small 

or large fluctuations) and broad probability mass distribution. A shuffling 
procedure, which involves the reordering of the values in the time series, destroys 
the long-range correlations and does not affect probability mass distribution. So, if 
the source of the multifractality is the long-range correlation, the shuffled data 
will have a H value close to 0.5, specific for uncorrelated gaussian noise [26,27]. 
If the multifractality is derived from the fat-tailed distribution, the shuffling 
procedure will not affect the Hurst surfaces, and another procedure is required, 
which involves the calculation of surrogate data from the original data by 
randomizing the phase in the Fourier space. 
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We evaluated the source of multifractality for the cross-correlated data and 
illustrate the case between the CO from the urban background station and the one 
from the traffic station in order to find hidden influences in the data sets. 

In Fig.  4 are shown the Hurst surfaces for this cross-correlation and the 
Hurst surface after the shuffling procedure. Before the shuffling procedure, the 
surface shows multifractality characteristics and long-range correlations. After the 
shuffling, the H values for each independent time-series (HX, HY) and for the 
correlated one (HXY) are close to 0.5, which indicates that the source of 
multifractality is of long-range type for small and large fluctuations at all the scale 
analyzed. 

 

  
Fig.  4 The cross-correlation between CO measured at the suburban station and CO measured at 

the traffic station (left) and the Hurst surfaces after the shuffling procedure 

4. Conclusions 

In this paper, correlation, and cross-correlation for PM10, CO and 
temperature have been investigated. The data analyzed were collected for almost 
one year in three different types of environments: city- background, city-traffic 
and regional. 

The time series exhibit multifractal and nonlinear features for single and 
cross-correlated data and the fluctuations are long range correlated for all the 
analyzed cases.  The highest multifractal strength is for the temperature at the 
traffic station, followed by CO and the most stable dynamics is characteristic for 
PM10. The cross-correlated analysis of pair PM10-temperature at the traffic station 
shows a more sensitive variation at small temporal scale (around 1 day). After the 
shuffling procedure of the data for CO measured at the background station and at 
the traffic station and for their correlated set, the Hurst surfaces approaches close 
to 0.5, which demonstrates the long-range correlations as the source of 
multifractality for the whole range of small and large fluctuations. 

Analysis of the long-term correlations offers new important information 
related to the complexity of air pollutants dynamics, useful for improving the 
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investigation and forecasting the air quality, mainly in how the future might be 
affected by the present and past values of specific atmospheric 
parameters/pollutants, at different temporal scales.  

Further studies are planned for the analysis of the data from a network of 
stations in different environmental locations in order to map the results of MM-
DCCA methods and to define new quantitative descriptors that can signal sudden 
changes in the dynamics of atmospheric processes and providing a better 
forecasting of air pollutant time-series. 
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